首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic evidence suggests that the Bacillus subtilis dnaX gene only encodes for the τ subunit of both DNA polymerases III (Pol IIIs). The B.subtilis full-length protein and their mutant derivatives τ(373– 563) (lacking the N-terminal, domains I–III or amino acid residues 1–372) and τ(1–372) (lacking the C-terminal region or amino acids 373–563) have been purified. The τ protein forms tetramers, τ(373– 563) forms dimers, whereas τ(1–372), depending on the ionic strength, forms trimers or tetramers in solution. In the absence of single-stranded (ss) DNA and a nucleotide cofactor, τ interacts with the SPP1 hexameric replicative G40P DNA helicase in solution or with G40P-ATP bound to ssDNA, with a 1:1 stoichiometry. G40P(109–442), lacking the N-terminal amino acid residues 1–108, interacts with the C-terminal moiety of τ. The data indicate that the interaction of G40P with the τ subunit of Pol III, is relevant for the loading of the Pol IIIs into the SPP1 G38P-promoted open complex.  相似文献   

2.
The two DNA strands of the nuclear genome are replicated asymmetrically using three DNA polymerases, α, δ, and ε. Current evidence suggests that DNA polymerase ε (Pol ε) is the primary leading strand replicase, whereas Pols α and δ primarily perform lagging strand replication. The fact that these polymerases differ in fidelity and error specificity is interesting in light of the fact that the stability of the nuclear genome depends in part on the ability of mismatch repair (MMR) to correct different mismatches generated in different contexts during replication. Here we provide the first comparison, to our knowledge, of the efficiency of MMR of leading and lagging strand replication errors. We first use the strand-biased ribonucleotide incorporation propensity of a Pol ε mutator variant to confirm that Pol ε is the primary leading strand replicase in Saccharomyces cerevisiae. We then use polymerase-specific error signatures to show that MMR efficiency in vivo strongly depends on the polymerase, the mismatch composition, and the location of the mismatch. An extreme case of variation by location is a T-T mismatch that is refractory to MMR. This mismatch is flanked by an AT-rich triplet repeat sequence that, when interrupted, restores MMR to >95% efficiency. Thus this natural DNA sequence suppresses MMR, placing a nearby base pair at high risk of mutation due to leading strand replication infidelity. We find that, overall, MMR most efficiently corrects the most potentially deleterious errors (indels) and then the most common substitution mismatches. In combination with earlier studies, the results suggest that significant differences exist in the generation and repair of Pol α, δ, and ε replication errors, but in a generally complementary manner that results in high-fidelity replication of both DNA strands of the yeast nuclear genome.  相似文献   

3.
The mechanisms that control the fidelity of DNA replication are being investigated by a number of approaches, including detailed kinetic and structural studies. Important tools in these studies are mutant versions of DNA polymerases that affect the fidelity of DNA replication. It has been suggested that proper interactions within the core of DNA polymerase III (Pol III) of Escherichia coli could be essential for maintaining the optimal fidelity of DNA replication (H. Maki and A. Kornberg, Proc. Natl. Acad. Sci. USA 84:4389–4392, 1987). We have been particularly interested in elucidating the physiological role of the interactions between the DnaE (α subunit [possessing DNA polymerase activity]) and DnaQ ( subunit [possessing 3′→5′ exonucleolytic proofreading activity]) proteins. In an attempt to achieve this goal, we have used the Saccharomyces cerevisiae two-hybrid system to analyze specific in vivo protein interactions. In this report, we demonstrate interactions between the DnaE and DnaQ proteins and between the DnaQ and HolE (θ subunit) proteins. We also tested the interactions of the wild-type DnaE and HolE proteins with three well-known mutant forms of DnaQ (MutD5, DnaQ926, and DnaQ49), each of which leads to a strong mutator phenotype. Our results show that the mutD5 and dnaQ926 mutations do not affect the subunit-α subunit and subunit-θ subunit interactions. However, the dnaQ49 mutation greatly reduces the strength of interaction of the subunit with both the α and the θ subunits. Thus, the mutator phenotype of dnaQ49 may be the result of an altered conformation of the protein, which leads to altered interactions within the Pol III core.  相似文献   

4.
There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome.  相似文献   

5.
To investigate the possible role of accessory subunits of Escherichia coli DNA polymerase III holoenzyme (HE) in determining chromosomal replication fidelity, we have investigated the role of the dnaX gene. This gene encodes both the tau and gamma subunits of HE, which play a central role in the organization and functioning of HE at the replication fork. We find that a classical, temperature-sensitive dnaX allele, dnaX36, displays a pronounced mutator effect, characterized by an unusual specificity: preferential enhancement of transversions and -1 frameshifts. The latter occur predominantly at non-run sequences. The dnaX36 defect does not affect the gamma subunit, but produces a tau subunit carrying a missense substitution (E601K) in its C-terminal domain (domain V) that is involved in interaction with the Pol III alpha subunit. A search for new mutators in the dnaX region of the chromosome yielded six additional dnaX mutators, all carrying a specific tau subunit defect. The new mutators displayed phenotypes similar to dnaX36: strong enhancement of transversions and frameshifts and only weak enhancement for transitions. The combined findings suggest that the tau subunit of HE plays an important role in determining the fidelity of the chromosomal replication, specifically in the avoidance of transversions and frameshift mutations.  相似文献   

6.
Wagner J  Fujii S  Gruz P  Nohmi T  Fuchs RP 《EMBO reports》2000,1(6):484-488
The recent discovery of a new family of ubiquitous DNA polymerases involved in translesion synthesis has shed new light onto the biochemical basis of mutagenesis. Among these polymerases, the dinB gene product (Pol IV) is involved in mutagenesis in Escherichia coli. We show here that the activity of native Pol IV is drastically modified upon interaction with the β subunit, the processivity factor of DNA Pol III. In the absence of the β subunit Pol IV is strictly distributive and no stable complex between Pol IV and DNA could be detected. In contrast, the β clamp allows Pol IV to form a stable initiation complex (t1/2 ≈ 2.3 min), which leads to a dramatic increase in the processivity of Pol IV reaching an average of 300–400 nucleotides. In vivo, the β processivity subunit may target DNA Pol IV to its substrate, generating synthesis tracks much longer than previously thought.  相似文献   

7.
To probe Pol ζ functions in vivo via its error signature, here we report the properties of Saccharomyces cerevisiae Pol ζ in which phenyalanine was substituted for the conserved Leu-979 in the catalytic (Rev3) subunit. We show that purified L979F Pol ζ is 30% as active as wild-type Pol ζ when replicating undamaged DNA. L979F Pol ζ shares with wild-type Pol ζ the ability to perform moderately processive DNA synthesis. When copying undamaged DNA, L979F Pol ζ is error-prone compared to wild-type Pol ζ, providing a biochemical rationale for the observed mutator phenotype of rev3-L979F yeast strains. Errors generated by L979F Pol ζ in vitro include single-base insertions, deletions and substitutions, with the highest error rates involving stable misincorporation of dAMP and dGMP. L979F Pol ζ also generates multiple errors in close proximity to each other. The frequency of these events far exceeds that expected for independent single changes, indicating that the first error increases the probability of additional errors within 10 nucleotides. Thus L979F Pol ζ, and perhaps wild-type Pol ζ, which also generates clustered mutations at a lower but significant rate, performs short patches of processive, error-prone DNA synthesis. This may explain the origin of some multiple clustered mutations observed in vivo.  相似文献   

8.
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these ‘antimutagenic’ changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient ‘mutator’ derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.  相似文献   

9.
DNA polymerase zeta (pol ζ) participates in several DNA transactions in eukaryotic cells that increase spontaneous and damage-induced mutagenesis. To better understand this central role in mutagenesis in vivo, here we report the fidelity of DNA synthesis in vitro by yeast pol ζ alone and with RFC, PCNA and RPA. Overall, the accessory proteins have little effect on the fidelity of pol ζ. Pol ζ is relatively accurate for single base insertion/deletion errors. However, the average base substitution fidelity of pol ζ is substantially lower than that of homologous B family pols α, δ and . Pol ζ is particularly error prone for substitutions in specific sequence contexts and generates multiple single base errors clustered in short patches at a rate that is unprecedented in comparison with other polymerases. The unique error specificity of pol ζ in vitro is consistent with Pol ζ-dependent mutagenic specificity reported in vivo. This fact, combined with the high rate of single base substitution errors and complex mutations observed here, indicates that pol ζ contributes to mutagenesis in vivo not only by extending mismatches made by other polymerases, but also by directly generating its own mismatches and then extending them.  相似文献   

10.
11.
The homodimeric Escherichia coli β sliding clamp contains two hydrophobic clefts with which proteins involved in DNA replication, repair and damage tolerance interact. Deletion of the C-terminal five residues of β (βC) disrupted both clefts, severely impairing interactions of the clamp with the DnaX clamp loader, as well as the replicative DNA polymerase, Pol III. In order to determine whether both clefts were required for loading clamp onto DNA, stimulation of Pol III replication and removal of clamp from DNA after replication was complete, we developed a method for purification of heterodimeric clamp proteins comprised of one wild-type subunit (β+), and one βC subunit (β+C). The β+C heterodimer interacted normally with the DnaX clamp loader, and was loaded onto DNA slightly more efficiently than was β+. Moreover, β+C interacted normally with Pol III, and stimulated replication to the same extent as did β+. Finally, β+C was severely impaired for unloading from DNA using either DnaX or the δ subunit of DnaX. Taken together, these findings indicate that a single cleft in the β clamp is sufficient for both loading and stimulation of Pol III replication, but both clefts are required for unloading clamp from DNA after replication is completed.  相似文献   

12.
The Escherichia coli dnaX36 mutant displays a mutator effect, reflecting a fidelity function of the dnaX-encoded τ subunit of the DNA polymerase III (Pol III) holoenzyme. We have shown that this fidelity function (i) applies to both leading- and lagging-strand synthesis, (ii) is independent of Pol IV, and (iii) is limited by Pol II.  相似文献   

13.
Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a stable ternary complex of Pol II, the replicative polymerase Pol III core complex and the dimeric processivity clamp, β. Single-molecule experiments reveal that the interactions of Pol II and Pol III with β allow for rapid exchange during DNA synthesis. As with another TLS polymerase, Pol IV, increasing concentrations of Pol II displace the Pol III core during DNA synthesis in a minimal reconstitution of primer extension. However, in contrast to Pol IV, Pol II is inefficient at disrupting rolling-circle synthesis by the fully reconstituted Pol III replisome. Together, these data suggest a β-mediated mechanism of exchange between Pol II and Pol III that occurs outside the replication fork.  相似文献   

14.
C. J. Saveson  S. T. Lovett 《Genetics》1997,146(2):457-470
Repeated genes and sequences are prone to genetic rearrangements including deletions. We have investigated deletion formation in Escherichia coli strains mutant for various replication functions. Deletion was selected between 787 base pair tandem repeats carried either on a ColE1-derived plasmid or on the E. coli chromosome. Only mutations in functions associated with DNA Polymerase III elevated deletion rates in our assays. Especially large increases were observed in strains mutant in dnaQ, the ε editing subunit of Pol III, and dnaB, the replication fork helicase. Mutations in several other functions also altered deletion formation: the α polymerase (dnaE), the γ clamp loader complex (holC, dnaX), and the β clamp (dnaN) subunits of Pol III and the primosomal proteins, dnaC and priA. Aberrant replication stimulated deletions through several pathways. Whereas the elevation in dnaB strains was mostly recA- and lexA-dependent, that in dnaQ strains was mostly recA- and lexA-independent. Deletion product analysis suggested that slipped mispairing, producing monomeric replicon products, may be preferentially increased in a dnaQ mutant and sister-strand exchange, producing dimeric replicon products, may be elevated in dnaE mutants. We conclude that aberrant Polymerase III replication can stimulate deletion events through several mechanisms of deletion and via both recA-dependent and independent pathways.  相似文献   

15.
Eukaryotic DNA replication requires the coordinated activity of the multi-subunit DNA polymerases: Pol α, Pol δ and Pol . The conserved catalytic and regulatory B subunits associate in a constitutive heterodimer that represents the functional core of all three replicative polymerases. Here, we combine X-ray crystallography and electron microscopy (EM) to describe subunit interaction and 3D architecture of heterodimeric yeast Pol α. The crystal structure of the C-terminal domain (CTD) of the catalytic subunit bound to the B subunit illustrates a conserved mechanism of accessory factor recruitment by replicative polymerases. The EM reconstructions of Pol α reveal a bilobal shape with separate catalytic and regulatory modules. Docking of the B–CTD complex in the EM reconstruction shows that the B subunit is tethered to the polymerase domain through a structured but flexible linker. Our combined findings provide a structural template for the common functional architecture of the three major replicative DNA polymerases.  相似文献   

16.
During nuclear DNA replication, proofreading-deficient DNA polymerase α (Pol α) initiates Okazaki fragment synthesis with lower fidelity than bulk replication by proofreading-proficient Pol δ or Pol ε. Here, we provide evidence that the exonuclease activity of mammalian flap endonuclease (FEN1) excises Pol α replication errors in a MutSα-dependent, MutLα-independent mismatch repair process we call Pol α-segment error editing (AEE). We show that MSH2 interacts with FEN1 and facilitates its nuclease activity to remove mismatches near the 5′ ends of DNA substrates. Mouse cells and mice encoding FEN1 mutations display AEE deficiency, a strong mutator phenotype, enhanced cellular transformation, and increased cancer susceptibility. The results identify a novel role for FEN1 in a specialized mismatch repair pathway and a new cancer etiological mechanism.  相似文献   

17.
To better understand the functions and fidelity of DNA polymerase ε (Pol ε), we report here on the fidelity of yeast Pol ε mutants with leucine, tryptophan or phenylalanine replacing Met644. The Met644 side chain interacts with an invariant tyrosine that contacts the sugar of the incoming dNTP. M644W and M644L Pol ε synthesize DNA with high fidelity, but M644F Pol ε has reduced fidelity resulting from strongly increased misinsertion rates. When Msh6-dependent repair of replication errors is defective, the mutation rate of a pol2-M644F strain is 16-fold higher than that of a strain with wild-type Pol ε. In conjunction with earlier studies of low-fidelity mutants with replacements for the homologous amino acid in yeast Pol α (L868M/F) and Pol δ (L612M), these data indicate that the active site location occupied by Met644 in Pol ε is a key determinant of replication fidelity by all three B family replicative polymerases. Interestingly, error specificity of M644F Pol ε is distinct from that of L868M/F Pol α or L612M Pol δ, implying that each polymerase has different active site geometry, and suggesting that these polymerase alleles may generate distinctive mutational signatures for probing functions in vivo.  相似文献   

18.
DNA polymerase ζ (Pol ζ) and Rev1 are key players in translesion DNA synthesis. The error-prone Pol ζ can also participate in replication of undamaged DNA when the normal replisome is impaired. Here we define the nature of the replication disturbances that trigger the recruitment of error-prone polymerases in the absence of DNA damage and describe the specific roles of Rev1 and Pol ζ in handling these disturbances. We show that Pol ζ/Rev1-dependent mutations occur at sites of replication stalling at short repeated sequences capable of forming hairpin structures. The Rev1 deoxycytidyl transferase can take over the stalled replicative polymerase and incorporate an additional ‘C’ at the hairpin base. Full hairpin bypass often involves template-switching DNA synthesis, subsequent realignment generating multiply mismatched primer termini and extension of these termini by Pol ζ. The postreplicative pathway dependent on polyubiquitylation of proliferating cell nuclear antigen provides a backup mechanism for accurate bypass of these sequences that is primarily used when the Pol ζ/Rev1-dependent pathway is inactive. The results emphasize the pivotal role of noncanonical DNA structures in mutagenesis and reveal the long-sought-after mechanism of complex mutations that represent a unique signature of Pol ζ.  相似文献   

19.
DNA polymerases (Pol) α, δ, and ϵ replicate the bulk of chromosomal DNA in eukaryotic cells, Pol ϵ being the main leading strand and Pol δ the lagging strand DNA polymerase. By applying chromatin immunoprecipitation (ChIP) and quantitative PCR we found that at G1/S arrest, all three DNA polymerases were enriched with DNA containing the early firing lamin B2 origin of replication and, 2 h after release from the block, with DNA containing the origin at the upstream promoter region of the MCM4 gene. Pol α, δ, and ϵ were released from these origins upon firing. All three DNA polymerases, Mcm3 and Cdc45, but not Orc2, still formed complexes in late S phase. Reciprocal ChIP of the three DNA polymerases revealed that at G1/S arrest and early in S phase, Pol α, δ, and ϵ were associated with the same nucleoprotein complexes, whereas in late S phase Pol ϵ and Pol α/δ were largely associated with distinct complexes. At G1/S arrest, the replicative DNA polymerases were associated with lamins, but in late S phase only Pol ϵ, not Pol α/δ, remained associated with lamins. Consistently, Pol ϵ, but not Pol δ, was found in nuclear matrix fraction throughout the cell cycle. Therefore, Pol ϵ and Pol α/δ seem to pursue their functions at least in part independently in late S phase, either by physical uncoupling of lagging strand maturation from the fork progression, or by recruitment of Pol δ, but not Pol ϵ, to post-replicative processes such as translesion synthesis or post-replicative repair.  相似文献   

20.
Termination of DNA replication, complete topological unlinking of the parental template DNA strands, partition of the daughter chromosomes, and cell division follow in an ordered and interdependent sequence during normal bacterial growth. In Escherichia coli, topoisomerase IV (Topo IV), encoded by parE and parC, is responsible for decatenation of the two newly formed chromosomes. In an effort to uncover the pathway of information flow between the macromolecular processes that describe these events, we identified dnaX, encoding the τ and γ subunits of the DNA polymerase III holoenzyme, as a high-copy suppressor of the temperature-sensitive phenotype of the parE10 allele. We show that suppression derives from overexpression of the γ, but not the τ, subunit of the holoenzyme and that the partition defect of parE10 cells is nearly completely reverted at the nonpermissive temperature as well. These observations suggest a possible association between Topo IV and the replication machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号