首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Bacteroides mobilizable transposon NBU1 uses an integrase (IntN1) that is a tyrosine recombinase for its integration and excision from the host chromosome. Previously we showed that IntN1 makes 7-bp staggered cuts within the NBU1 att sites, and certain mismatches within the crossover region of the attN1 site (G(-2)C attN1) or the chromosomal target site (C(-3)G attBT1-1) enhanced the in vivo integration efficiency. Here we describe an in vitro integration system for NBU1. We used nicked substrates and a Holliday junction trapping peptide to show that NBU1 integration proceeds via formation of a Holliday junction intermediate that is formed by exchange of bottom strands. Some mismatches next to the first strand exchange site (in reactions with C(-3)G attBT1-1 or G(-2)C attN1 with their wild-type partner site) not only allowed formation of the Holliday junction intermediate but also increased the rate of recombinant formation. The second strand exchange appears to be homology-dependent. IntN1 is the only tyrosine recombinase known to catalyze a reaction that is more efficient in the presence of mismatches and where the first strand exchange is homology-independent. The possible mechanisms by which the mismatches stimulate recombination are discussed.  相似文献   

2.
NBU1 is a 10.3-kbp integrated Bacteroides element that can be induced to excise from the chromosome and can be mobilized to a recipient by trans-acting functions provided by certain Bacteroides conjugative transposons. The NBU1 transfer intermediate is a covalently closed circle, which is presumed to be the form that integrates into the recipient genome. We report here that a 2.4-kbp segment of NBU1 was all that was required for site-specific integration into the chromosome of Bacteroides thetaiotaomicron 5482. This 2.4-kbp region included the joined ends of the NBU1 circular form (attN1) and a single open reading frame, intN1, which encoded the integrase. Previously, we had found that NBU1 integrates preferentially into a single site in B. thetaiotaomicron 5482. We have now shown that the NBU1 target site is located at the 3' end of a Leu-tRNA gene. The NBU1 integrase gene, intN1, was sequenced. The predicted protein had little overall amino acid sequence similarity to any proteins in the databases but had limited carboxy-terminal similarity to the integrases of lambdoid phages and to the integrases of the gram-positive conjugative transposons Tn916 and Tn1545. We also report that the intN1 gene is expressed constitutively.  相似文献   

3.
Summary: A classical feature of the tyrosine recombinase family of proteins catalyzing site-specific recombination, as exemplified by the phage lambda integrase and the Cre and Flp recombinases, is the ability to recombine substrates sharing very limited DNA sequence identity. Decades of research have established the importance of this short stretch of identity within the core regions of the substrates. Since then, several new enzymes that challenge this paradigm have been discovered and require the role of sequence identity in site-specific recombination to be reconsidered. The integrases of the conjugative transposons such as Tn916, Tn1545, and CTnDOT recombine substrates with heterologous core sequences. The integrase of the mobilizable transposon NBU1 performs recombination more efficiently with certain core mismatches. The integration of CTX phage and capture of gene cassettes by integrons also occur by altered mechanisms. In these systems, recombination occurs between mismatched sequences by a single strand exchange. In this review, we discuss literature that led to the formulation of the current strand-swapping isomerization model for tyrosine recombinases. The review then focuses on recent developments on the recombinases that challenged the paradigm that was derived from the studies of early systems.  相似文献   

4.
Conjugative transposons (CTns) are major contributors to the spread of antibiotic resistance genes among Bacteroides species. CTnBST, a newly discovered Bacteroides conjugative transposon, carries an erythromycin resistance gene, ermB, and previously has been estimated to be about 100 kbp in size. We report here the locations and sequencing of both of its ends. We have also located and sequenced the gene that catalyzes the integration of CTnBST, intBST. The integrase gene encodes a 377-amino-acid protein that has the C-terminal R-K-H-R-H-Y motif that is characteristic of members of the tyrosine recombinase family of integrases. DNA sequence comparisons of the ends of CTnBST, the joined ends of the circular intermediate, and the preferred site into which the circular form of CTnBST had integrated revealed that the preferred integration site (attB1) contained an 18-bp sequence of identity to the crossover region, attBST, on CTnBST. Although this site was used in about one-half of the integration events, sequence analysis of these integration events revealed that both CTnBST and a miniature form of CTnBST (miniBST) integrated into a variety of other sites in the chromosome. All of the sites had two conserved regions, AATCTG and AAAT. These two regions flanked a 2-bp sequence, bp 10 and bp 11 of the 18-bp sequence, that varied in some of the different sites and sometimes in the attBST sequences. Our results suggest that CTnBST integrates site selectively and that the crossover appears to occur within a 12-bp region that contains the two regions of conserved sequences.  相似文献   

5.
The mobilizable Bacteroides element NBU2 (11 kbp) was found originally in two Bacteroides clinical isolates, Bacteroides fragilis ERL and B. thetaiotaomicron DOT. At first, NBU2 appeared to be very similar to another mobilizable Bacteroides element, NBU1, in a 2.5-kbp internal region, but further examination of the full DNA sequence of NBU2 now reveals that the region of near identity between NBU1 and NBU2 is limited to this small region and that, outside this region, there is little sequence similarity between the two elements. The integrase gene of NBU2, intN2, was located at one end of the element. This gene was necessary and sufficient for the integration of NBU2. The integrase of NBU2 has the conserved amino acids (R-H-R-Y) in the C-terminal end that are found in members of the lambda family of site-specific integrases. This was also the only region in which the NBU1 and NBU2 integrases shared any similarity (28% amino acid sequence identity and 49% sequence similarity). Integration of NBU2 was site specific in Bacteroides species. Integration occurred in two primary sites in B. thetaiotaomicron. Both of these sites were located in the 3' end of a serine-tRNA gene NBU2 also integrated in Escherichia coli, but integration was much less site specific than in B. thetaiotaomicron. Analysis of the sequence of NBU2 revealed two potential antibiotic resistance genes. The amino acid sequences of the putative proteins encoded by these genes had similarity to resistances found in gram-positive bacteria. Only one of these genes was expressed in B. thetaiotaomicron, the homolog of linA, a lincomycin resistance gene from Staphylococcus aureus. To determine how widespread elements related to NBU1 and NBU2 are in Bacteroides species, we screened 291 Bacteroides strains. Elements with some sequence similarity to NBU2 and NBU1 were widespread in Bacteroides strains, and the presence of linA(N) in Bacteroides strains was highly correlated with the presence of NBU2, suggesting that NBU2 has been responsible for the spread of this gene among Bacteroides strains. Our results suggest that the NBU-related elements form a large and heterogeneous family, whose members have similar integration mechanisms but have different target sites and differ in whether they carry resistance genes.  相似文献   

6.
NBU1 is a Bacteroides mobilizable transposon (MTn) that is integrated within the host chromosome and requires CTnDOT functions for its excision and transfer into a new host. The NBU1 integrase IntN1 has been classified as a tyrosine recombinase based on the presence of conserved residues. We created alanine mutants of the residues R291, K314, H393, R396, H419 and the conserved substitution Y429F and tested them for integration efficiency. The results suggest that these residues in IntN1 are important for integration, and Y429 could be the catalytic nucleophile. We employed suicide substrates and partially purified IntN1 to determine the positions of IntN1 cleavage within the 14 bp common core region that is identical in both NBU1 att sites. We show that IntN1 makes 7 bp staggered cuts on the top and bottom strands. From previous mutational analysis of the att sites, we show that two specific mutations near the site of bottom strand cleavage within this 7 bp region increased integration, and mutations of the two bases near top strand cleavage site had no effect on integration. These results indicate that IntN1 lacks the strict requirement for homology between the recombining sites seen with other tyrosine recombinases. We also show that phosphorothioate substitutions at the cleavage site and 1 bp downstream inhibited cleavage by IntN1. This differs from other studied tyrosine recombinases where inhibition occurs by substitutions at the cleavage site only.  相似文献   

7.
The integrase gene (int) on the genome of φFSW, which is a temperate bacteriophage of Lactobacillus casei strain Shirota (formerly denoted as S-1), and the four attachment sites on the genomes of the phage and its host were characterized by sequencing. The φFSW integrase was found to belong to the integrase family of site-specific tyrosine recombinase. The attachment sites shared a 40bp common core within which an integrative site-specific recombination occurs. The common core was flanked on one side by an additional segment of high sequence similarity. An integration plasmid, consisting of int, the phage attachment site (attP), and a selectable marker, inserted stably into the bacterial attachment site (attB) within the common core, as did the complete prophage genome at a frequency of more than 10(3)/microg of plasmid DNA. This plasmid was used as a test system for a preliminary mutational analysis of int and attP. The attB common core was located within and near the end of an open reading frame that appears to encode a homolog to glucose 6-phosphate isomerase, an enzyme of the glycolytic pathway. It is unlikely that the prophage integration inactivates this protein, since a change of only the C-terminal amino acid is predicted because of the sequence similarity between attP and attB.  相似文献   

8.
XerC is a site-specific recombinase of the bacteriophage lambda integrase family that is encoded by xerC at 3700 kbp on the genetic map of Escherichia coli. The protein was originally identified through its role in converting multimers of plasmid ColE1 to monomers; only monomers are stably inherited. Here we demonstrate that XerC also has a role in the segregation of replicated chromosomes at cell division. xerC mutants form filaments with aberrant nucleotides that appear unable to partition correctly. A DNA segment (dif) from the replication terminus region of the E. coli chromosome binds XerC and acts as a substrate for XerC-mediated site-specific recombination when inserted into multicopy plasmids. This dif segment contains a region of 28 bp with sequence similarity to the crossover region of ColE1 cer. The cell division phenotype of xerC mutants is suppressed in strains deficient in homologous recombination, suggesting that the role of XerC/dif in chromosomal metabolism is to convert any chromosomal multimers (arising through homologous recombination) to monomers.  相似文献   

9.
A newly discovered Bacteroides conjugative transposon (CTn), CTnBST, integrates more site specifically than two other well-studied CTns, the Bacteroides CTn CTnDOT and the enterococcal CTn Tn916. Moreover, the integrase of CTnBST, IntBST, had the C-terminal 6-amino-acid signature that is associated with the catalytic regions of members of the tyrosine recombinase family, most of which integrate site specifically. Also, in most of these integrases, all of the conserved amino acids are required for integration. In the case of IntBST, however, we found that changing three of the six conserved amino acids in the signature, one of which was the presumed catalytic tyrosine, resulted in a 1,000-fold decrease in integration frequency. Changes in the other amino acids had little or no effect. Thus, although the CTnBST integrase still seems to be a member of the tyrosine recombinase family, it clearly differs to some extent from other members of the family in its catalytic site. We also determined the sequence requirements for CTnBST integration in the 18-bp region where the crossover occurs preferentially during integration. We found that CTnBST integrates in this preferred site about one-half of the time but can also use other sites. A consensus sequence was tentatively derived by comparison of a few secondary sites: AATCTGNNAAAT. We report here that within the consensus region, no single base change affected the frequency of integration. However, 3 bp at one end of the consensus sequence (CTG) proved to be essential for integration into the preferred site. This sequence appeared to be at one end of a 7-bp crossover region, CTGNNAA. The other bases could vary without affecting either integration frequency or specificity. Thus, in contrast to well-studied site-specific recombinases which require homology throughout the crossover region, integration of CTnBST requires homology at one end of the crossover region but not at the other end.  相似文献   

10.
Site-specific recombination is an important mechanism for genetic exchange. Insertional recombination mediated by the recently delineated large resolvase or serine recombinase proteins is unique within the resolvase family as integration was thought to be a reaction catalysed only by members of the integrase or tyrosine recombinase family of site-specific recombinases. The large resolvase TnpX is a serine recombinase that is responsible for the movement of the Tn4451/3 family of chloramphenicol resistance elements, which are found within two genera of the medically important clostridia. Deletion analysis of TnpX showed that the last 110 amino acids (aa) of TnpX, which comprise a cysteine rich region, were not essential for its biological function and that a region required for DNA binding was located between aa 493-597. Purified TnpX was shown to bind to the ends of the element and to the joint of the circular intermediate with high affinity but, most unusually, to bind to its target sites with a considerably lower affinity. Therefore, it was concluded that the resolvase-like excision and insertion reactions mediated by TnpX were distinct processes even though the same serine recombinase mechanism was involved. TnpX is the first large serine recombinase in which differential binding to its transposon and target sites has been demonstrated.  相似文献   

11.
The Bacteroides species harbor a family of conjugative transposons called tetracycline resistance elements (Tcr elements) that transfer themselves from the chromosome of a donor to the chromosome of a recipient, mobilize coresident plasmids, and also mediate the excision and circularization of members of a family of 10- to 12-kbp insertion elements which share a small region of DNA homology and are called NBUs (for nonreplicating Bacteroides units). The NBUs are sometimes cotransferred with Tcr elements, and it was postulated previously that the excised circular forms of the NBUs were plasmidlike forms and were transferred like plasmids and then integrated into the recipient chromosome. We used chimeric plasmids containing one of the NBUs, NBU1, and a Bacteroides-Escherichia coli shuttle vector to show that this hypothesis is probably correct. NBU1 contained a region that allowed mobilization by both the Tcr elements and IncP plasmids, and we used these conjugal elements to allow us to estimate the frequencies of excision, mobilization, and integration of NBU1 in Bacteroides hosts to be approximately 10(-2), 10(-5) to 10(-4), and 10(-2), respectively. Although functions on the Tcr elements were required for the excision-circularization and mobilization of NBU1, no Tcr element functions were required for integration into the recipient chromosome. Analysis of the DNA sequences at the integration region of the circular form of NBU1, the primary insertion site in the Bacteroides thetaiotaomicron 5482 chromosome, and the resultant NBU1-chromosome junctions showed that NBU1 appeared to integrate into the primary insertion site by recombining within an identical 14-bp sequence present on both NBU1 and the target, thus leaving a copy of the 14-bp sequence at both junctions. The apparent integration mechanism and the target selection of NBU1 were different from those of both XBU4422, the only member of the conjugal Tcr elements for which these sequences are known, and Tn4399, a mobilizable Bacteroides transposon. The NBUs appear to be a distinct type of mobilizable insertion element.  相似文献   

12.
CTnDOT is a Bacteroides conjugative transposon (CTn) that has facilitated the spread of antibiotic resistances among bacteria in the human gut in recent years. Although the integrase encoded by CTnDOT (IntDOT) carries the C-terminal set of conserved amino acids that is characteristic of the tyrosine family of recombinases, the reaction it catalyzes involves a novel step that creates a short region of heterology at the joined ends of the element during recombination. Also, in contrast to tyrosine recombinases, IntDOT catalyzes a reaction that is not site specific. To determine what types of contacts IntDOT makes with the DNA during excision and integration, we first developed an agarose gel-based assay for CTnDOT recombination, which facilitated the purification of the native IntDOT protein. The partially purified IntDOT was then used for DNase I footprinting analysis of the integration site attDOT and the excision sites attL and attR. Our results indicate that CTnDOT has five or six arm sites that are likely to be involved in forming higher-order nucleoprotein complexes necessary for synapsis. In addition, there are four core sites that flank the sites of strand exchange during recombination. Thus, despite the fact that the reaction catalyzed by IntDOT appears to be different from that typically catalyzed by tyrosine recombinases, the protein-DNA interactions required for higher-order structures and recombination appear to be similar.  相似文献   

13.
NBU1 is an integrated Bacteroides element that can he mobilized from Bacteroides donors to Bacteroides recipients. Previous studies have shown that a plasmid carrying the internal mobilization region of NBU1 could be transferred by conjugation from Bacteroides thetaiotaomicron to Escherichia coli. In this report, we show that NBU1 can integrate in E. coli. Whereas integration of NBU1 in B. thetaiotaomicron is site specific, integration of NBU1 in E. coli was relatively random, and the insertion frequency of NBU1 into the E. coli chromosome was 100 to 1,000 times lower than the frequency of integration in B. thetaiotaomicron. The frequency of NBU1 integration in E. coli could be increased about 10- to 70-fold, to a value close to that seen with B. thetaiotaomicron, if the primary integration site from B. thetaiotaomicron, BT1-1, was provided on a plasmid in the E. coli recipient or the NBU1 integrase gene, intN1, was provided on a high-copy-number plasmid to increase the amount of integrase available in the recipient. When the primary integration site was available in the recipient, NBU1 integrated site specifically in E. coli. Our results show that NBUs have a very broad host range and are capable of moving from Bacteroides spp. to distantly related species such as E. coli. Moreover, sequence analysis of NBU1 integration sites provided by integration events in E. coli has helped to identify some regions of the NBU1 attachment site that may play a role in the integration process.  相似文献   

14.
Sequence analysis revealed that the integrase of the Bacteroides conjugative transposon CTnDOT (IntDOT) might be a member of the tyrosine recombinase family because IntDOT has five of six highly conserved residues found in the catalytic domains of tyrosine recombinases. Yet, IntDOT catalyses a reaction that appears to differ in some respects from well-studied tyrosine recombinases such as that of phage lambda. To assess the importance of the conserved residues, we changed residues in IntDOT that align with conserved residues in tyrosine recombinases. Some substitutions resulted in a complete loss or significant decrease of integration activity in vivo. The ability of the mutant proteins to cleave and ligate CTnDOT attachment site (attDOT) DNA in vitro in general paralleled the in vivo results, but the H345A mutant, which had a wild-type level of integration in vivo, exhibited a slightly lower level of cleavage and ligation in vitro. Our results confirm the hypothesis that IntDOT belongs to the tyrosine recombinase family, but the catalytic core of the protein seems to have somewhat different organization. Previous DNA sequence analyses showed that CTnDOT att sites contain 5 bp non-homologous coupling sequences which were assumed to define the putative staggered sites of cleavage. However, cleavage assays showed that one of the cleavage sites is 2 bp away from the junction of CTnDOT and coupling sequence DNA. The site is in a region of homology that is conserved in CTnDOT att sites.  相似文献   

15.
Mycobacteriophage Bxb1 is a temperate phage of Mycobacterium smegmatis and forms stable lysogens in which the Bxb1 genome is integrated into the host chromosome. Bxb1 encodes an integrase of the large serine recombinase family that catalyses integration and excision of the Bxb1 genome. We show here that Bxb1 integrates into a chromosomal attB site located within the 3' end of the groEL1 gene such that integration results in alteration of the C-terminal 21 amino acid residues. An integration-proficient plasmid vector containing the Bxb1 integrase gene and flanking DNA sequences efficiently transforms M. smegmatis via integration at attB. Bxb1-integrated recombinants are stable and fully compatible with L5 integration vectors. Strand exchange occurs within an 8 bp common core sequence present in attB and within an attP site situated immediately upstream of the phage integrase gene. Establishment of a defined in vitro system for Bxb1 integration shows that recombination occurs efficiently without requirement for high-energy cofactors, divalent metals, DNA supercoiling or additional proteins.  相似文献   

16.
Mutant lambda integrases catalyze site-specific DNA recombination in the absence of accessory factors IHF, XIS, and negative DNA supercoiling. Here we investigate the effects that a human cellular environment exerts on these reactions in order to (i) gain further insights into mechanistic aspects of recombination in eukaryotic cells and (ii) to further develop the Int system for biotechnological applications. First, we compared intra- and intermolecular integrative as well as excisive recombination pathways on episomal substrates after co-transfection with recombinase expression vectors. Our results demonstrate that, within 24 hours after transfection, intermolecular recombination by mutant integrase is at least as efficient as intramolecular recombination. Second, a significant intermolecular recombination activity was observed between two copies of a recombination site containing only the 21 bp comprising core-type DNA sequence. This basic activity was stimulated several-fold when arm-type DNA sequences were present in addition to core sites. Therefore, one recombination pathway in human cells involves mutant integrases bound solely at core sites, which is reminiscent of the Flp/FRT and Cre/loxP pathways. The stimulatory effect of arm-type sequences could be explained by an increase in integrase concentration in the vicinity of core sites. We show, in addition, that an N-terminal truncated mutant integrase exhibited only a very weak recombinogenic activity in a eukaryotic background. This result strengthens a functional role for the N-terminal domain in recombination in addition to its arm-type DNA-binding activity. Finally, we demonstrate that low level integrative recombination by wild-type integrase is stimulated when purified integration host factor is co-transfected. This corroborates our previous conclusion that sufficient amounts of eukaryotic protein co-factors, which could functionally replace IHF, are not present in human cells. It also provides a potential means to control site-specific recombination in eukaryotic cells.  相似文献   

17.
Although the integrase (IntDOT) of the Bacteroides conjugative transposon CTnDOT has been classified as a member of the tyrosine recombinase family, the reaction it catalyzes appears to differ in some features from reactions catalyzed by other tyrosine recombinases. We tested the ability of IntDOT to cleave and ligate activated attDOT substrates in the presence of mismatches. Unlike other tyrosine recombinases, the results revealed that IntDOT is able to perform ligation reactions even when all the bases within the crossover region are mispaired. We also show that there is a strong bias in the order of strand exchanges during integrative recombination. The top strands are exchanged first in reactions that appear to require 2 bp of homology between the partner sites adjacent to the sites of cleavage. The bottom strands are exchanged next in reactions that do not require homology between the partner sites. This mode of coordination of strand exchanges is unique among tyrosine recombinases.  相似文献   

18.
We report identification of a novel site-specific DNA recombination system that functions in both in vivo and in vitro, derived from lysogenic Staphylococcus aureus phage phiMR11. In silico analysis of the phiMR11 genome indicated orf1 as a putative integrase gene. Phage and bacterial attachment sites (attP and attB, respectively) and attachment junctions were determined and their nucleotide sequences decoded. Sequences of attP and attB were mostly different to each other except for a two bp common core that was the crossover point. We found several inverted repeats adjacent to the core sequence of attP as potential protein binding sites. The precise and efficient integration properties of phiMR11 integrase were shown on attP and attB in Escherichia coli and the minimum size of attP was found to be 34bp. In in vitro assays using crude or purified integrase, only buffer and substrate DNAs were required for the recombination reaction, indicating that other bacterially encoded factors are not essential for activity.  相似文献   

19.
The site-specific integrase of actinophage R4 belongs to the serine recombinase family. During the lysogenization process, it catalyzes site-specific recombination between the phage genome and the chromosome of Streptomyces parvulus 2297. An in vivo assay using Escherichia coli cells revealed that the minimum lengths of the recombination sites attB and attP are 50-bp and 49-bp, respectively, for efficient intramolecular recombination. The in vitro assay using overproduced R4 integrases as a hexahistidine (His(6))-glutathione-S-transferase (GST)-R4 integrase fusion protein, showed that the purified protein preparation retains the site-specific recombination activity which catalyzes the site-specific recombination between attP and attB in the intermolecular reaction. It also revealed that the inverted repeat within attP is essential for efficient in vitro intermolecular recombination. In addition, a gel shift assay showed that His(6)-GST-R4 integrase bound to the 50-bp attB and 49-bp attP specifically. Moreover, based on a detailed comparison analysis of amino acid sequences of serine integrases, we found the DNA binding region that is conserved in the serine recombinase containing the large C-terminal domain. Based on the results presented on this report, attachment sites needed in vitro and in vivo for site-specific recombination by the R4 integrase have been defined more precisely. This knowledge is useful for developing new genetic manipulation tools in the future.  相似文献   

20.
Like most temperate bacteriophages, phage Mx8 integrates into a preferred locus on the genome of its host, Myxococcus xanthus, by a mechanism of site-specific recombination. The Mx8 int-attP genes required for integration map within a 2.2-kilobase-pair (kb) fragment of the phage genome. When this fragment is subcloned into a plasmid vector, it facilitates the site-specific integration of the plasmid into the 3' ends of either of two tandem tRNAAsp genes, trnD1 and trnD2, located within the attB locus of the M. xanthus genome. Although Int-mediated site-specific recombination occurs between attP and either attB1 (within trnD1) or attB2 (within trnD2), the attP x attB1 reaction is highly favored and often is accompanied by a deletion between attB1 and attB2. The int gene is the only Mx8 gene required in trans for attP x attB recombination. The int promoter lies within the 106-bp region immediately upstream of one of two alternate GTG start codons, GTG-5208 (GTG at bp 5208) and GTG-5085, for integrase and likely is repressed in the prophage state. All but the C-terminal 30 amino acid residues of the Int protein are required for its ability to mediate attP x attB recombination efficiently. The attP core lies within the int coding sequence, and the product of integration is a prophage in which the 3' end of int is replaced by host sequences. The prophage intX gene is predicted to encode an integrase with a different C terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号