共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of OxLDLs (oxidized low density lipoproteins) by CD36-expressing macrophages in the arterial intima and the subsequent 'foam cell' formation represents a crucial step in the initiation and development of atherosclerotic plaques. The present study has addressed the function of the CD36 N-terminal cytoplasmic domain in the binding and internalization of OxLDL. A selection of CD36 N-terminal cytoplasmic domain mutants were generated and stably expressed in HEK-293 (human embryonic kidney) cells. The capacity of three mutants [CD36_C3/7-A (CD36-C3A/C7A), CD36_D4/R5-A (CD36-D4A/R5A) and CD36_nCPD(-) (CD36 lacking the N-terminal cytoplasmic domain)] to bind and endocytose OxLDL was then studied using immunofluorescence microscopy and quantitative fluorimetry. Each of the CD36 constructs was expressed at differing levels at the cell surface, as measured by flow cytometry and Western blotting. Following incubation with DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-OxLDL, cells bearing the CD36_wt (wild-type CD36), CD36_C3/7-A, CD36_D4/R5-A and CD36_nCPD(-) constructs all internalized DiI-OxLDL into endosomal structures, whereas empty-vector-transfected cells failed to do so, indicating that, unlike the C-terminal cytoplasmic domain, the N-terminal cytoplasmic domain is not essential for the endocytosis of OxLDL. In conclusion, the uptake of OxLDL by CD36 is not reliant on the presence of the CD36 N-terminal cytoplasmic domain. However, the N-terminal cytoplasmic domain may conceivably be implicated in the maturation of CD36. 相似文献
2.
Shortened cytoplasmic domain affects intracellular transport but not nuclear localization of a viral glycoprotein 总被引:9,自引:0,他引:9
Herpes simplex virus (HSV) buds from the inner nuclear membrane of the infected cells. The glycoprotein gB-1 of HSV contains a stretch of 69 hydrophobic amino acids near the COOH terminus and a 109-amino acid cytoplasmic domain. By oligonucleotide-directed mutagenesis, five gB-1 mutants were constructed which either lack a cytoplasmic tail or contained 3, 6, 22, or 43 amino acids in the cytoplasmic tail. When expressed in COS cells all of the mutant glycoproteins were synthesized but the rate of intracellular transport and the appearance at the cell surface of the mutant gB-1 protein lacking the cytoplasmic tail or containing 3 and 6 amino acids in the cytoplasmic domain was drastically reduced. The wild-type gB-1 as well as all of the mutants in the cytoplasmic tail were, however, located on the nuclear envelope. These results suggest that the cytoplasmic domain of the glycoprotein gB may play a role in intracellular transport but not in the nuclear localization. 相似文献
3.
Signal transduction in cell growth and proliferation involves regulation of kinases through long-range allostery between remote protein regions. Molecular dynamics free energy calculations are used to clarify the coupling between the catalytic domain of Src kinase Hck and its N-terminal end connecting to the regulatory SH2 and SH3 modules. The N-terminal end is stable in the orientation required for the regulatory modules to remain properly bound only in the inactive catalytic domain. In the active catalytic domain, the N-terminal end prefers a different conformation consistent with dissociation of the regulatory modules. The free energy surface shows that the N-terminal end acts as a reversible two-state conformational switch coupling the catalytic domain to the regulatory modules. Structural analogy with insulin receptor kinase and c-Src suggests that such reversible conformational switching in a critical hinge region could be a common mechanism in long-range allosteric regulation of protein kinase activity. 相似文献
4.
5.
Polysialic acid in human milk. CD36 is a new member of mammalian polysialic acid-containing glycoprotein 总被引:1,自引:0,他引:1
The neural cell adhesion molecule and the voltage-sensitive sodium channel alpha-subunit are the only two molecules in mammals known to be modified by alpha-2,8-linked polysialic acid (polySia). We found a new polySia-containing glycoprotein in human milk and identified it as CD36, a member of the B class of the scavenger receptor superfamily. The polySia-containing glycan chain(s) were removed by alkaline treatment but not by peptide:N-glycanase F digestion, indicating that milk CD36 contained polySia on O-linked glycan chain(s). Polysialylation of CD36 occurs not only in human milk but also in mouse milk. However, CD36 in human platelets is not polysialylated. PolySia CD36 is secreted in milk at any lactation stage and reaches peak level at 1 month after parturition. Thus, it is suggested that polySia of milk CD36 is significant for neonatal development in terms of protection and nutrition. 相似文献
6.
Malin Andersen Boris Lenhard Carl Whatling Per Eriksson Jacob Odeberg 《BMC molecular biology》2006,7(1):8
Background
CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. 相似文献7.
Malin Andersen Boris Lenhard Carl Whatling Per Eriksson Jacob Odeberg 《BMC molecular biology》2006,7(1):1-14
Background
The premature aging and cancer-prone Werner and Bloom syndromes are caused by defects in the RecQ helicase enzymes WRN and BLM, respectively. Recently, both WRN and BLM (as well as several other RecQ members) have been shown to possess a strand annealing activity in addition to the requisite DNA unwinding activity. Since an annealing function would appear to directly oppose the action of a helicase, we have examined in this study the dynamic equilibrium between unwinding and annealing mediated by either WRN or BLM. 相似文献8.
Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons 总被引:1,自引:0,他引:1
Different types of cargo vesicles containing presynaptic proteins are transported from the nerve cell body to the nerve terminal, and participate in the formation of active zones. However, the identity of the membranous cargoes and the nature of the motor-cargo interactions remain unsolved. Here, we report the identification of a syntaxin-1-binding protein named syntabulin. Syntabulin attaches syntaxin-containing vesicles to microtubules and migrates with syntaxin within the processes of hippocampal neurons. Knock-down of syntabulin expression with targeted small interfering RNAs (siRNAs) or interference with the syntabulin-syntaxin interaction inhibit attachment of syntaxin-cargo vesicles to microtubules and reduce syntaxin-1 distribution in neuronal processes. Furthermore, conventional kinesin I heavy chain binds to syntabulin and associates with syntabulin-linked syntaxin vesicles in vivo. These findings suggest that syntabulin functions as a linker molecule that attaches syntaxin-cargo vesicles to kinesin I, enabling the transport of syntaxin-1 to neuronal processes. 相似文献
9.
10.
Posttranslational modification and intracellular transport of a trypanosome variant surface glycoprotein 总被引:15,自引:7,他引:15 下载免费PDF全文
After synthesis on membrane-bound ribosomes, the variant surface glycoprotein (VSG) of Trypanosoma brucei is modified by: (a) removal of an N-terminal signal sequence, (b) addition of N-linked oligosaccharides, and (c) replacement of a C-terminal hydrophobic peptide with a complex glycolipid that serves as a membrane anchor. Based on pulse-chase experiments with the variant ILTat-1.3, we now report the kinetics of three subsequent processing reactions. These are: (a) conversion of newly synthesized 56/58-kD polypeptides to mature 59-kD VSG, (b) transport to the cell surface, and (c) transport to a site where VSG is susceptible to endogenous membrane-bound phospholipase C. We found that the t 1/2 of all three of these processes is approximately 15 min. The comparable kinetics of these processes is compatible with the hypotheses that transport of VSG from the site of maturation to the cell surface is rapid and that VSG may not reach a phospholipase C-containing membrane until it arrives on the cell surface. Neither tunicamycin nor monensin blocks transport of VSG, but monensin completely inhibits conversion of 58-kD VSG to the mature 59-kD form. In the presence of tunicamycin, VSG is synthesized as a 54-kD polypeptide that is subsequently processed to a form with a slightly higher Mr. This tunicamycin-resistant processing suggests that modifications unrelated to N-linked oligosaccharides occur. Surprisingly, the rate of VSG transport is reduced, but not abolished, by dropping the chase temperature to as low as 10 degrees C. 相似文献
11.
Membrane integration and intracellular transport of the coronavirus glycoprotein E1, a class III membrane glycoprotein 总被引:11,自引:0,他引:11
The E1-glycoprotein (Mr = 26,014; 228 amino acids) of mouse hepatitis virus A59 is a class III membrane glycoprotein which has been used in this study as a model system in the study of membrane integration and protein transport. The protein lacks an NH2-terminal cleavable signal sequence and spans the viral membrane three times. Hydrophobic domains I and III could serve as signal sequences for cotranslational membrane integration. Domain I alone was sufficient to translocate the hydrophilic NH2 terminus of E1 across the membranes as evidenced by glycosylation of a newly introduced N-glycosylation site. The COOH-terminal part of E1 involving amino acids Leu124 to Thr228 was found to associate tightly with membranes at the post-translational level, although this part of the molecule lacks pronounced hydrophobic sequences. Membrane protection assays with proteinase K showed that a 2-kDa hydrophilic fragment was removed from the COOH terminus of E1 indicating that the protein is largely embedded into the membrane. Microinjection of in vitro transcribed capped and polyadenylated mRNA into CV-1 cells or into secretory AtT20 pituitary tumor cells showed that the E1-protein accumulated in the Golgi but was not detectable at the plasma membrane or in secretory granules. The 28 NH2-terminal hydrophilic amino acid residues play no role in membrane assembly or in intracellular targeting. Various NH2-terminal portions of E1 were fused to Ile145 of the cytoplasmic N-protein of mouse hepatitis virus. The resulting hybrid proteins were shown to assemble into membranes in vitro and were detected either in the rough endoplasmic reticulum or transient vesicles of microinjected cells. 相似文献
12.
Langevin C Jaaro H Bressanelli S Fainzilber M Tuffereau C 《The Journal of biological chemistry》2002,277(40):37655-37662
Rabies virus glycoprotein (RVG) is a trimeric and surface-exposed viral coat protein that has been shown to interact with the murine p75 neurotrophin receptor. We have investigated binding of RVG to p75 and describe several features that distinguish the p75-RVG interaction from conventional neurotrophin binding to p75. RVG binds mammalian but not avian p75 and does not bind to any of the Trk neurotrophin receptors. The mammalian p75 specificity of RVG binding may partly explain the phyletic specificity of rabies infection. Radioiodinated nerve growth factor (NGF) and RVG both bind to rat p75 but do not compete with each other's binding site. Although neurotrophins bind to the second and third cysteine-rich domains (CRD) of p75, RVG specifically interacts with high affinity (K(d) 30-35 pm) with the first CRD (CRD1). Substitution of Gln(33) in p75-CRD1 by Glu completely abolishes RVG binding. Our data therefore firmly establish RVG as a trimeric high affinity ligand for a non-neurotrophin binding site on p75. Interestingly, the CRD1 in another TNF/NGF family receptor was recently shown to be involved in the binding of the herpes virus glycoprotein gD, suggesting that the CRD1 of TNF/NGF family members may be a widely used binding domain for viral glycoproteins. 相似文献
13.
Mathilde Francin Monika Kaminska Pierre Kerjan Marc Mirande 《The Journal of biological chemistry》2002,277(3):1762-1769
Lysyl-tRNA synthetase from higher eukaryotes possesses a lysine-rich N-terminal polypeptide extension appended to a classical prokaryotic-like LysRS domain. Band shift analysis showed that this extra domain provides LysRS with nonspecific tRNA binding properties. A N-terminally truncated derivative of LysRS, LysRS-DeltaN, displayed a 100-fold lower apparent affinity for tRNA(3)Lys and a 3-fold increase in K(m) for tRNA(3)Lys in the aminoacylation reaction, as compared with the native enzyme. The isolated N-domain of LysRS also displayed weak affinity for tRNA, suggesting that the catalytic and N-domains of LysRS act synergistically to provide a high affinity binding site for tRNA. A more detailed analysis revealed that LysRS binds and specifically aminoacylates an RNA minihelix mimicking the amino acid acceptor stem-loop structure of tRNA(3)Lys, whereas LysRS-DeltaN did not. As a consequence, merging an additional RNA-binding domain into a bacterial-like LysRS increases the catalytic efficiency of the enzyme, especially at the low concentration of deacylated tRNA prevailing in vivo. Our results provide new insights into tRNA(Lys) channeling in eukaryotic cells and shed new light on the possible requirement of native LysRS for triggering tRNA(3)Lys packaging into human immunodeficiency virus, type 1 viral particles. 相似文献
14.
Effects of mutations in the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B on intracellular transport and infectivity 下载免费PDF全文
Herpes simplex virus type 1 (HSV-1) is a human pathogen of the alphaherpesvirus family which infects and spreads in the nervous system. Glycoproteins play a key role in the process of assembly and maturation of herpesviruses, which is essential for neuroinvasion and transneuronal spread. Glycoprotein B (gB) is a main component of the HSV-1 envelope and is necessary for the production of infectious particles. The cytoplasmic domain of gB, the longest one among HSV-1 glycoproteins, contains several highly conserved peptide sequences homologous to motifs involved in intracellular sorting. To determine the specific roles of these motifs in processing, subcellular localization, and the capacity of HSV-1 gB to complement a gB-null virus, we generated truncated or point mutated forms of a green fluorescent protein (GFP)-tagged gB. GFP-gB with a deletion in the acidic cluster DGDADEDDL (amino acids [aa] 896 to 904) behaved the same as the parental form. Deletion or disruption of the YTQV motif (aa 889 to 892) abolished internalization and reduced complementation by 60%. Disruption of the LL motif (aa 871 to 872) impaired the return of the protein to the trans-Golgi network (TGN) while enhancing its recycling to the plasma membrane. Truncations from residue E 857 abolished transport and processing of the truncated proteins, which had null complementation activity, through the Golgi complex. Altogether, our results favor a model in which HSV-1 gets its final envelope in the TGN, and they suggest that endocytosis, albeit not necessary, might play a role in infectivity. 相似文献
15.
2.9 A resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei 总被引:4,自引:0,他引:4
D Freymann J Down M Carrington I Roditi M Turner D Wiley 《Journal of molecular biology》1990,216(1):141-160
The variant surface glycoprotein (VSG) of Trypanosoma brucei forms a coat on the surface of the parasite; by the expression of a series of antigenically distinct VSGs in the surface coat the parasite escapes the host immune response. The 2.9 A resolution crystal structure of the N-terminal domain of one variant, MITat 1.2, has been determined. The structure was solved using data collected from two crystal forms. Initially a partial model was built into an electron density map based on multiple isomorphous replacement phases and improved by phase combination methods. Subsequently this model was used to obtain the molecular replacement solution for a second crystal form, providing starting phases which were refined using 2-fold non-crystallographic symmetry averaging. The current model includes 362 residues and has been refined using X-PLOR to an R value of 0.22 for data between 7 and 2.9 A. The molecule is a dimer, approximately 100 A long, having an asymmetrical cross section with maximum dimensions of approximately 40 A x 60 A. Two long, approximately 70 A, alpha-helices from each monomer pack together to form, with several other helices, a core helix bundle that extends nearly the full length of the molecule. The "top" of the protein, which in the surface coat may be exposed to the external environment, is formed from the ends of the two long helices, a short three-stranded beta-sheet, and a strand having irregular conformation that packs above these secondary structure elements. Two conserved disulfide bridges are in this part of the molecule. Several elements of the MITat 1.2 sequence, which contribute to the formation of the helix bundle structure, have been identified. These elements can be found in the sequences of several different VSGs, suggesting that to some extent the VSG structure is conserved in those variants. 相似文献
16.
Nakamura A Komori H Kobayashi G Kita A Wada C Miki K 《Biochemical and biophysical research communications》2004,315(1):10-15
The initiator protein RepE of the mini-F plasmid in Escherichia coli plays an essential role in DNA replication, which is regulated by the molecular chaperone-dependent oligomeric state (monomer or dimer). Crosslinking, ultracentrifugation, and gel filtration analyses showed that the solely expressed N-terminal domain (residues 1-144 or 1-152) exists in the dimeric state as in the wild-type RepE protein. This result indicates that the N-terminal domain functions as a dimerization domain of RepE and might be important for the interaction with the molecular chaperones. The N-terminal domain dimer has been crystallized in order to obtain structural insight into the regulation of the monomer/dimer conversion of RepE. 相似文献
17.
Wojtyra UA Thibault G Tuite A Houry WA 《The Journal of biological chemistry》2003,278(49):48981-48990
Clp ATPases are unique chaperones that promote protein unfolding and subsequent degradation by proteases. The mechanism by which this occurs is poorly understood. Here we demonstrate that the N-terminal domain of ClpX is a C4-type zinc binding domain (ZBD) involved in substrate recognition. ZBD forms a very stable dimer that is essential for promoting the degradation of some typical ClpXP substrates such as lambdaO and MuA but not GFP-SsrA. Furthermore, experiments indicate that ZBD contains a primary binding site for the lambdaO substrate and for the cofactor SspB. Removal of ZBD from the ClpX sequence renders the ATPase activity of ClpX largely insensitive to the presence of ClpP, substrates, or the SspB cofactor. All these results indicate that ZBD plays an important role in the ClpX mechanism of function and that ATP binding and/or hydrolysis drives a conformational change in ClpX involving ZBD. 相似文献
18.
Suzuki-Inoue K Tulasne D Shen Y Bori-Sanz T Inoue O Jung SM Moroi M Andrews RK Berndt MC Watson SP 《The Journal of biological chemistry》2002,277(24):21561-21566
The glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex, a key activatory receptor for collagen on platelet surface membranes, is constitutively associated with the Src family kinases Fyn and Lyn. Molecular cloning of GPVI has revealed the presence of a proline-rich domain in the sequence of GPVI cytoplasmic tail which has the consensus for interaction with the Src homology 3 (SH3) domains of Fyn and Lyn. A series of in vitro experiments demonstrated the ability of the SH3 domains of both Src kinases to bind the proline-rich domain of GPVI. Furthermore, depletion of the proline-rich domain in GPVI (Pro(-)-GPVI) prevented binding of Fyn and Lyn and markedly reduced phosphorylation of FcR gamma-chain in transiently transfected COS-7 cells, but did not affect the association of the gamma-chain with GPVI. Jurkat cells stably transfected with wild type GPVI show robust increases in tyrosine phosphorylation and intracellular Ca2+ in response to the snake venom convulxin that targets GPVI. Importantly, convulxin is not able to activate cells transfected with Pro(-)-GPVI, even though the association with the immunoreceptor tyrosine-based activation motif-containing chains is maintained. These findings demonstrate that the proline-rich domain of GPVI mediates the association with Fyn/Lyn via their SH3 domain and that this interaction initiates activation signals through GPVI. 相似文献
19.
20.
We have altered the structure of the COOH-terminus of the vesicular stomatitis virus (VSV) glycoprotein (G) by introducing deletions into a cDNA clone encoding G protein. We examined the effects of these deletions on intracellular transport of G protein after expression of the deleted genes in eucaryotic cells under control of the SV40 late promoter. To prevent readthrough of translation into vector sequences, we introduced synthetic DNA linkers containing translation stop codons at the site of the deletion. G proteins that lacked the cytoplasmic domain and most of the transmembrane domain were secreted slowly from the cells. Deletion mutants affecting the structure of the cytoplasmic domain fell into two classes. The first class completely arrested transport of the protein to the cell surface at a stage prior to acquisition of complex oligosaccharides. The second class showed severely reduced rates of complex sugar addition although the proteins were eventually transported to the cell surface. Indirect immunofluorescence microscopy suggested that mutant proteins in both classes may accumulate in the rough endoplasmic reticulum. 相似文献