首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Domestic rubbish compost is a complex-polluted system, containing multiple heavy metals,which limits its application. In the present study, Cr, Mn, Ni, Cu, Zn, Cd, and Pb accumulation and ecological responses of turfgrass to rubbish compost were investigated following the addition of EDTA. The results showed that the addition of EDTA significantly increased heavy metal accumulation in Lolium perenne L.and Festuca arundinacea L. Most heavy metal concentrations in L. perenne increased with increasing EDTA supply. The concentrations of Cr, Mn, Ni, Cu, and Cd in L. perenne were highest following the addition of 30 mmol/kg EDTA and the concentrations of Cr and Ni at this point reached concentrations of1914.17 and 521.25 μg/g, respectively. When the EDTA level was < 20 mmol/kg, the accumulation of most heavy metals in F. arundinacea increased with increasing EDTA supply, but showed a tendency to decrease at EDTA concentrations >20 mmol/kg. The highest concentrations of Mn, Ni, Cu, and Zn in F.arundinacea reached 268.01, 110.94, 161.52 and 1 354.97 μg/g, respectively, following the addition of 20mmol/kg EDTA. The EDTA-induced increase in the accumulation of heavy metals in turfgrass was plantand metal-specific. L. perenne had a relatively high ability to accumulate Cr, Ni, and Zn. The highest Zn concentration was 2 979.58 μg/g and, following the addition of EDTA, the concentrations of the three metals were increased 26.23, 20.03, and 10.49-fold, respectively, compared with control. However, F. arundinacea showed a high ability to accumulate Cr, with the highest concentration (596.02 μg/g) seen following the addition of 30 mmol/kg EDTA; the concentration of Cr increased 15.51-fold compared with control. With EDTA addition, ecological responses of both turfgrass species showed that EDTA at concentrations <10mmol/kg increased seed germination and aboveground net primary production (ANP) of L. perenne and slightly inhibited those of F.arundinacea, but EDTA at concentrations >20 mmol/kg inhibited these parameters significantly for both species. Moreover, EDTA increased the chlorophyll and proline content at all concentrations tested. On the basis of the synthetic remediation index, the optimal EDTA concentration for turfgrass remediation of heavy metals in compost is approximately 10 mmol/kg.  相似文献   

2.
Influence of different pH solutions (5.0 and 7.0) on Cu2+ and Cd2+ absorption and distribution in root cells as well as effects of these metals on nitrate reductase activity (NR) in roots of cucumber seedlings were estimated. The absorption of Cu and Cd by roots measured as metal depletion in uptake solution was similar, both metal absorption was independent of the pH of solution. However, after rinsing of roots in distilled water (30 minutes), more Cu than Cd was found in protoplasts of root cells. More Cu was measured in all cell fractions when Cu was uptaken from pH 5.0 than from 7.0. The nitrate reductase activity after one hour of metal treatments was drastically decreased by Cu. The strongest reduction of enzyme activity was observed in roots treated with Cu in buffer with pH 5.0. Influence of Cd on the enzyme activity was weaker and was independent of the pH of solution. Lower concentration of Cd in solution (20 μM) increased NR activity. The data obtained prove the higher mobility of Cu than Cd into the cells of root. The mobility of Cu depends on pH of solution. Cu ions, but not Cd, influenced membrane permeability (K leakage). Cu acted more drasticly than Cd on NR activity.  相似文献   

3.
Sedum alfredii Hance is a terrestrial zinc/cadmium (Zn/Cd)-hyperaccumulating and lead (Pb)-accumulating plant. Previous studies on S. alfredii were mostly focused on its physiological mechanism of heavy metal uptake and the application in phytoextraction of metals from contaminated soils. In this study, we evaluated the application potential of S. alfredii in the cleanup of heavy metals from contaminated lake water. Our research revealed that changing pH in lake water would not make particular difference on the final accumulation amount of heavy metals, because the acidic water environment negatively affected plant growth compared with the neutral and alkaline environments, but was more conducive for heavy metal absorption and accumulation. In addition, S. alfredii showed an increase of approximately 2.2-fold in dry weight (DW) when cultured with lake water for 25 d. At the same time, it accumulated approximately 5.0 mg/kg DW of Cd and 41.4 mg/kg DW of Pb. The absorption of heavy metals was highly effective during the first 10 d of culture. Also, the quality of lake water was greatly improved after only 2-d cleanup by S. aifredii. In general, this hyperaccumulator exhibits great potential for application in the cleanup of heavy metals-polluted waters.  相似文献   

4.
In order to explore the bioleaching mechanism and improve the bioleaching efficiency,the micro-bial community in the bioleaching solution was compared with that on the surface of minerals based on the microarray analysis.Meanwhile,the elements composition in the bioleaching solution was analyzed using the ICP-AES method.Results showed that there was a high concentration of S and Cu in the leaching solution which up to 2 380 mg/L and 1 378 mg/L,respectively,after continuously bioleaching of copper-ore concen-trate for 30 days by a mixed culture associated with 12 species of bioleaching microorganisms.Based on the data of microarray,the total of cell number in the surface of minerals was far higher than that in the bi-oleaching solution.Furthermore,the dominant communities on the surface of minerals,such as Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Acidithiobacillus caldus,were similar to that in the bioleaching solution.However,the relative level of some bacteria,such as Sulfobacillus aci-dophilus and Sulfobacillus thermosulfidooxidans,showed great discrepancy with lower presence in the bi-oleaching solution with respect to the mineral surface.  相似文献   

5.
Phytochelatins (PCs) may function as a potential biomarker for metal toxicity. However, less attention has been paid to the effects of metal interactions on the production of PCs and glutathione (GSH), the most prominent cellular thiol. In the present study, the effects of interactions between cadmium (Cd) and plumbum (Pb) on the production of PCs and GSH were monitored over a period of 14 d in wheat (Triticum aestivum L.) tissues. The results showed that combination of Cd and Pb led to synergistic growth inhibition in wheat. Exposure to Cd or Pb increased levels of PCs in a concentration-, tissue-, and time-dependent manner. Cadmium was more effective that Pb in increasing PCs production. Compared with the effects of Cd or Pb alone on the production of PCs, the combination of Cd and Pb acted synergistically, resulting in an enhanced production of PCs. Cadmium also stimulated GSH production in a concentration-, tissue-, and time-dependent manner. However, Pb had no obvious effects on GSH levels. The combination of Pb and Cd antagonized GSH production over the course of the growth period. The results of the present study suggest that metal interactions should be considered in the application of PCs and GSH as potential biomarkers for the evaluation of metal toxicity.  相似文献   

6.
Pheophorbide a (PPa), a decomposition product of chlorophyll a, is a photosensitizer. The photosensitization mechanisms (Type Ⅰ and Type Ⅱ) of PPa in simple buffer solutions and in buffer solutions containing double-layered DPPC liposomes have been studied using techniques of ESR, spin-trapping, spin-counteraction and laser flash photolysis. The results showed that adding DPPC liposomes to the buffer solution caused an increase of efficiency of generating ~1O_2 and PPa~- by photoactivating PPa. The increase could be ascribed to the disaggregation of hydrophobic PPa caused by the addition of liposomes and the protective effect of liposomal media on the triplet state of PPa. It is concluded that the photosensitization of PPa in liposomal systems is different from that in simple aqueous solutions, and shows higher efficacy. The results will be useful to elucidating the mechanisms of photodynamic therapy of cancer.  相似文献   

7.
Detached wheat shoots (ear with peduncle and flag leaf) were incubated for 4 d in a solution containing 1 mM RbCl and 1 mM SrCl2 as well as 10, 40 or 160 μM NiCl2 and CoCl2. The phloem of some plants was interrupted by steam-girdling the stem below the ear to distinguish between xylem and phloem transport. The phloem-immobile Sr flowed mainly to the leaf lamina and to the glumes via the xylem. The Sr transport was not sensitive to steam-girdling. In contrast, the phloem-mobile Rb accumulated during the incubation time mainly in the stem and the leaf sheath. The Rb transport to the grains was impaired by steam-girdling as well as by elevated Ni and Co concentrations in the incubation solution indicating that Rb was transported via the phloem to the maturing grains and that this transport was affected by the heavy metals. Ni was removed more efficiently from the xylem in the peduncle than Co (but far less efficiently than Rb). It became evident that the two heavy metals can also be transferred from the xylem to the phloem in the stem of wheat and reach the maturing grains via the phloem. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Non-mycorrhizal Brassica does not produce specialized root structures such as cluster or dauciform roots but is an effective user of P compared with other crops. In addition to P-uptake, utilization and remobilization activity, acquisition of orthophosphate (Pi) from extracellular sparingly P-sources or unavailable bound P-forms can be enhanced by biochemical rescue mechanisms such copious H+-efflux and/or carboxylates exudation into rhizosphere by roots via plasmalemma H+ ATPase and anion channels triggered by P-starvation. To visualize the dissolution of sparingly soluble Ca-phosphate (Ca-P), newly formed Ca-P was suspended in agar containing other essential nutrients. With NH4+ applied as the N source, the precipitate dissolved in the root vicinity can be ascribed to rhizosphere acidification, whereas no dissolution occurred with nitrate nutrition. To observe in situ rhizospheric pH changes, images were recorded after embedding the roots in agar containing bromocresol purple as a pH indicator. P-tolerant cultivar showed a greater decrease in pH than the sensitive cultivar in the culture media (the appearance of typical patterns of various colors of pH indicator in the root vicinity), and at stress P-level this acidification was more prominent. In experiment 2, low P-tolerant class-I cultivars (Oscar and Con-II) showed a greater decrease in solution media pH than low P-sensitive class-II (Gold Rush and RL-18) cultivars, and P-contents of the cultivars was inversely related to decrease in culture media pH. To elucidate P-stress- induced remodeling and redesigning in a root architectural system, cultivars were grown in rhizoboxes in experiment 3. The elongation rates of primary roots increased as P-supply increased, but the elongation rates of the branched zones of primary roots decreased. The length of the lateral roots and topological index values increased when cultivars were exposed to a P-stress environment. To elucidate Pi-uptake kinetics, parameters related to P influx: maximal  相似文献   

9.
Effects of copper and cadmium on photosynthesis in cucumber cotyledons   总被引:9,自引:3,他引:6  
The effects of 20 and 50 μM concentrations of Cu and Cd on photosynthesis in cucumber (Cucumis sativus L.) cotyledons were studied by the measurements of gas exchange characteristics, chlorophyll (Chl) fluorescence parameters, photosynthetic pigment contents, and two Calvin cycle enzymes activities: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 3-phosphoglyceric acid kinase (PGK). To minimize indirect metal action, seedlings were treated with metals in the stage of green, fully developed cotyledons. The metals reached the cotyledon tissue after 48 h of treatments, though symptoms of metal action were not visible at that time. The effect of metals on the light phase of the photosynthesis parameters such as potential efficiency of photosystem 2 (PS2; Fv/Fm), and photochemical and nonphotochemical quenching of Chl fluorescence (qP and qNP) was negligible. In contrast, a decrease of PS2 quantum efficiency (ΦPS2) was much more noticeable. Changes in the pigment contents were slight, as only 50 μM Cd decreased Chl a and b contents in small extent. On the contrary, metals in both concentrations drastically decreased (50 and more % of control) the net photosynthetic rate and the stomatal conductance, but not the internal CO2 concentration. The activities of both GAPDH and PGK were also decreased by metals, although the effect on PGK was more prominent, particularly on its potential activity (dithiothreitol in extraction and incubation media). Hence Cu and Cd affected the synthesis of enzyme proteins rather than they influenced their modifications. The effects of both metals on most of the measured photosynthesis parameters were similar, but the accumulation of Cd in the cotyledons was significantly higher than Cu accumulation. Thus Cu was more toxic for the photosynthesis of cucumber cotyledons than Cd.  相似文献   

10.
Seedlings of two cultivars of zucchini (Cucurbita pepo L.) Courgette d'Italie (CI) and Courgette d'Alger (CA) were pre-treated with various concentrations of cadmium, copper and zinc for 30 d. High accumulation of heavy metals especially in the roots was showed. Peroxidase activity was affected according to the type of metal added, concentration, and the plant cultivar used. In leaves and roots of the CI control plants peroxidase activities were 50 and 17 % higher than in the CA control plants. Treatment with Cd (5 μg g−1), Cu (200 μg g−1), and Zn (500 μg g−1) increased peroxidase activities in CA but decreased it in CI both in leaves and roots. Heavy metals tested lead also to some qualitative changes characterized by appearance of new isoforms of peroxidase. The results show the possibility to use the activities of peroxidase as biomarkers for Cd, Cu and Zn stresses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Effects of various concentrations of two heavy metals, namely Cd and Cu, on gametophytes of Laminariajaponica Aresch were determined by recording morphological changes of gametophytes, determining pH values and the heavy metal content of the culture solution, calculating the germination rate of sporophytes, and observing heavy metal (Cd) distribution using a fluorescence microscope. The results showed that heavy metals damaged the gametophytes, and were even lethal, and that the higher the concentration of heavy metal ions, the greater the injury to gametophytes. Gametophytes could not survive in culture solutions containing more than 100 mg/L Cd and 50 mg/L Cu and were only able to survive in culture solution containing a mixture of Cd and Cu up to a concentration of 10 mg/L, which indicates that gametophytes have a higher tolerance to Cd than Cu and that multiple heavy metal ions in solution markedly aggravate the damage to gametophytes compared with individual heavy metal ions. With increases in the concentration of the heavy metal, the burgeoning rate of sporophytes decreased acutely, and solutions containing multiple heavy metal ions caused even more marked harm to sporophytes than solutions containing a single heavy metal ion, because most sporophytes died in mixed solutions. The pH value of the culture medium dropped immediately at the beginning (the first day) of treatment, increased over the following days, and then decreased again. The pH of culture media containing multiple heavy metal ions showed greater variation than media containing a single heavy metal ion, with the extent of the decrease in pH of culture media containing multiple ions being greatest during the last period of the experiment. With increases in the concentration of heavy metals, the capacity of gametophytes to accumulate these ions increased. The blue fluorescent light emitted by the Cd- and Cd-binding protein complex existing in gametophytes in media containing different concentrations of Cd showed clearly the distribution of the ion in gametophytes and the results obtained were consistent with distribution determined using other methods.All results of the present study showed that gametophytes of L. japonica play a remarkable role as heavy metal decontaminators, especially with regard to Cd.  相似文献   

12.
谢斐  张朝晖 《植物研究》2011,31(1):117-120
通过对湘西茶田钒矿废弃冶炼厂矿渣上葫芦藓的野外生态调查和采集,利用原子吸收光谱仪、电感耦合等离子发射光谱仪和原子荧光光谱仪分析了葫芦藓配子体和孢子体及其基质重金属含量。结果表明葫芦藓配子体和孢子体富集了大量的重金属,各重金属元素在配子体和孢子体间的富集存在较大的差异,配子体比孢子体显著富集重金属元素(p<0.05),Zn和Mn在葫芦藓植物体中比其他重金属元素更高。同时也讨论了重金属在苔藓植物中的富集及生物阻抗的作用。  相似文献   

13.
Summary An ion exchange and chelating resin system was developed to buffer the activities of selected free cations and phosphate in hydroponic solutions at concentrations similar to those that occur naturally in soil solutions. Free-ion activities of Cd, Cu, Ni, Zn, Mn, H, Ca, Mg, and K were maintained by ion exchange and chelating resins in a controlled ionic strength system. Iron was controlled by EDDHA and chelating resin, and P by a cation-exchange resin containing adsorbed polynuclear hydroxyaluminum. This mixed-resin hydroponic system was used to establish a range of ionic Cd activities similar to that found in soil solutions of soils amended with sewage sludge. Activities of other nutrients were maintained at realistic soil-solution levels. A metal complexing agent (EDTA) was used to increase total metal concentration in the hydroponic solutions without significantly altering the ionic activities of the metals maintained in solution. This allowed differentiation of the effects of free ions and complexed metals on metal uptake. Concentrations of metal complexes in solution were controlled by the ion activities of the metals maintained and the concentrations and selectivities of the complexing agent. The mixed-resin system supplied sufficient nutrients for the growth of tomato plants (Lycopersicon esculentum, cv. Wisconsin-55) in hydroponic culture. Research supported by the College of Agricultural and Life Sciences, University of Wisonsin-Madison and by United States Environmental Protection Agency through Grant CR807270010.  相似文献   

14.
The technique of differential pulse polarography is shown here to be applicable to the monitoring directly the biosorption of metal ions from solution by live bacteria from mixed metal solutions. Biosorption of Cd(II), Zn(II) and Ni(II) by P. cepacia was followed using data obtained at the potential which is characteristic of the metal ion in the absence and presence of cells. Hepes buffer (pH 7.4, 50 mM) was used as a supporting electrolyte in the polarographic chamber and metal ion peaks in the presence of cells of lower amplitude were obtained due to metal-binding by the cells. Well defined polarographic peaks were obtained in experiments involving mixtures of metal ions of Cd(II)-Zn(II), Cu(II)-Zn(II), Cu(II)-Cd(II) and Cd(II)-Ni(II). Biosorption of Cd(II), Zn(II) increased with solution pH. The method was also tested as a rapid technique for assessing removal of metal ions by live bacteria and the ability of the polarographic technique in measuring biosorption of metal ions from mixed metal solutions is demonstrated. Cu(II) was preferentially bound and removal of metals was in the order Cu(II) > Ni(II) > Zn(II), Cd(II) by intact cells of P. cepacia. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
【背景】道路重金属污染问题日益严峻,寻找高效的微生物资源用于环境修复已迫在眉睫。【目的】从乌鲁木齐市道路林带土壤中筛选抗重金属菌株,并对其重金属去除能力进行探究。【方法】使用含5种重金属离子(铅、镉、锌、铜、镍)的4种培养基进行抗性菌株筛选,通过形态学特征和16S rRNA基因序列进行鉴定,采用电感耦合等离子体发射光谱仪(inductively coupled plasma optical emission spectrometer,ICP-OES)检测分离株对重金属离子的去除情况。【结果】4种分离培养基中,TSA是抗重金属菌株筛选的最适培养基,共筛选出16株抗重金属菌,其中4株抗Pb菌、4株抗Cd菌、4株抗Zn菌、3株抗Cu菌和1株抗Ni菌,其抗性分别高达3 000、800、600、300和400mg/L,16株菌中以芽孢杆菌属(Bacillus)数量最多。在初始浓度为700mg/L Pb2+下,菌株Pb6的去除率高达92.48%,菌株Pb11、Pb3和Pb9的去除率分别为27.70%、40.37%和58.88%;在200mg/L Cd2+...  相似文献   

16.
Summary The migration of common bio-toxic heavy metals in two typical soils of Japan under the influence of various leaching solutions was investigated.The results of the present study have indicated that the Pb and Cu ions were less mobile than those on Zn and Cd. Thus, the former two ions have largely been concentrated in the surface horizon while the latter two have been localised in the sub-surface layers. Ni has exhibited greater mobility than other heavy metals under all the leaching stress in both the soils. It is clear from the present study that Ni, Cd and Zn might pose a greater threat of ground water pollution than Cu and Pb. The specific migration properties of each metal ion varied depending on the nature of the ion and leaching solutions. The major soil factors governing the mobility of heavy metals in the soils have been discussed in the light of the results of the present investigation.  相似文献   

17.
Biosorptive capacity of Pb(II), Cd(II) and Cu(II) by lyophilized cells of Pseudomonas stutzeri was investigated based on Langmuir and Freundlich isotherms. Biosorptive capacity for Pb(II), Cd(II) and Cu(II) decreased with an increase of metal concentration, reaching 142, 43.5 and 36.2 mg/g at initial concentration of 300 mg/l, respectively. Biosorption capacity for metal ions increased with increasing pH. The optimum pH for biosorption rate of Cd(II) and Cu(II) were 5.0, and 6.0 for Pb(II) biosorption. The experimental data showed a better fit with the Langmuir model over the Freundlich model for metal ions throughout the range of initial concentrations. The maximum sorptive capacity (q max) obtained from the Langmuir equation for Pb(II), Cd(II) and Cu(II) were 153.3 (r 2  = 0.998), 43.86 (r 2  = 0.995), and 33.16 (r 2  = 0.997) for metal ions, respectively. The selectivity order for metal ions towards the biomass of P. stutzeri was Pb(II) > Cd(II) > Cu(II) for a given initial metal ions concentration. The interactions between heavy metals and functional groups on the cell wall surface of bacterial biomass were confirmed by FTIR analysis. The results of this study indicate the possible removal of heavy metals from the environment by using lyophilized cells of P. stutzeri.  相似文献   

18.
Three by-products of fermentations containing Bacillus lentus, Aspergillus oryzae or Saccharomyces cerevisiae biomass were tested for the capacity to absorb Cu, Cd and Zn. The composition of the three biomasses was first determined and showed high contents of ashes in both B. lentus and A. oryzae biomass and high amounts of lipids in the bacterial biomass. Metal ion binding experiments were performed by contact of 0.1 g of biomass (protonated for all the metal tests and not protonated only for the Cd test) with 50 ml of solutions containing each of the metals in the concentration range from 10 to 500 mg/ml, at pH 4.5, 3.5 and 2.5. The final metal ion concentrations were determined using a plasma absorption spectrometer, and the metal removal levels for isotherm plots were determined using the Langmuir model. The results showed that B. lentus protonated biomass had the best sorption capacity for Cu and Cd, followed by protonated A. oryzae and S. cerevisiae biomass. The sorption of Zn was low for all tested biomasses, as also was the binding of all metals at acidic pH (2.5 and 3.5). A significant increase in Cd sorption was obtained using non-protonated biomass from B. lentus and A. oryzae.  相似文献   

19.

Heavy metal tolerance of two marine strains of Yarrowia lipolytica was tested on solid yeast extract peptone dextrose agar plates. Based on minimum inhibitory concentration esteems, it is inferred that the two strains of Y. lipolytica were tolerant to heavy metals such as Pb(II), Cr(III), Zn(II), Cu(II), As(V), and Ni(II) ions. The impact of various heavy metal concentrations on the growth kinetics of Y. lipolytica was likewise assessed. With increased heavy metal concentration, the specific growth rate was reduced with delayed doubling time. Furthermore, biofilm development of both yeasts on the glass surfaces and in microtitre plates was assessed in presence of different heavy metals. In microtitre plates, a short lag phase of biofilm formation was noticed without the addition of heavy metals in yeast nitrogen base liquid media. A lag phase was extended over increasing metal concentrations of media. Heavy metals like Cr(VI), Cd(II), and As(V) are contrastingly influenced on biofilms’ formation of microtitre plates. Other heavy metals did not much influence on biofilms development. Thus, biofilm formation is a strategy of Y. lipolytica under stress of heavy metals has significance in bioremediation process for recovery of heavy metals from contaminated environment.

  相似文献   

20.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号