首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
How do neurons encode and store information for long periods of time? Recurring patterns of activity have been reported in various cortical structures and were suggested to play a role in information processing and memory. To study the potential role of bursts of action potentials in memory mechanisms, we investigated patterns of spontaneous multi-single-unit activity in dissociated rat cortical cultures in vitro. Spontaneous spikes were recorded from networks of approximately 50 000 neurons and glia cultured on a grid of 60 extracellular substrate- embedded electrodes (multi-electrode arrays). These networks expressed spontaneous culture- wide bursting from approximately one week in vitro. During bursts, a large portion of the active electrodes showed elevated levels of firing. Spatiotemporal activity patterns within spontaneous bursts were clustered using a correlation-based clustering algorithm, and the occurrences of these burst clusters were tracked over several hours. This analysis revealed spatiotemporally diverse bursts occurring in well-defined patterns, which remained stable for several hours. Activity evoked by strong local tetanic stimulation resulted in significant changes in the occurrences of spontaneous bursts belonging to different clusters, indicating that the dynamical flow of information in the neuronal network had been altered. The diversity of spatiotemporal structure and long-term stability of spontaneous bursts together with their plastic nature strongly suggests that such network patterns could be used as codes for information transfer and the expression of memories stored in cortical networks.  相似文献   

2.
It has been suggested that spontaneous synchronous neuronal activity is an essential step in the formation of functional networks in the central nervous system. The key features of this type of activity consist of bursts of action potentials with associated spikes of elevated cytoplasmic calcium. These features are also observed in networks of rat cortical neurons that have been formed in culture. Experimental studies of these cultured networks have led to several hypotheses for the mechanisms underlying the observed synchronized oscillations. In this paper, bursting integrate-and-fire type mathematical models for regular spiking (RS) and intrinsic bursting (IB) neurons are introduced and incorporated through a small-world connection scheme into a two-dimensional excitatory network similar to those in the cultured network. This computer model exhibits spontaneous synchronous activity through mechanisms similar to those hypothesized for the cultured experimental networks. Traces of the membrane potential and cytoplasmic calcium from the model closely match those obtained from experiments. We also consider the impact on network behavior of the IB neurons, the geometry and the small world connection scheme. Action Editor: David Golomb  相似文献   

3.
Increasing evidence supports the idea that spontaneous brain activity may have an important functional role. Cultured neuronal networks provide a suitable model system to search for the mechanisms by which neuronal spontaneous activity is maintained and regulated. This activity is marked by synchronized bursting events (SBEs)--short time windows (hundreds of milliseconds) of rapid neuronal firing separated by long quiescent periods (seconds). However, there exists a special subset of rapidly firing neurons whose activity also persists between SBEs. It has been proposed that these highly active (HA) neurons play an important role in the management (i.e. establishment, maintenance and regulation) of the synchronized network activity. Here, we studied the dynamical properties and the functional role of HA neurons in homogeneous and engineered networks, during early network development, upon recovery from chemical inhibition and in response to electrical stimulations. We found that their sequences of inter-spike intervals (ISI) exhibit long time correlations and a unimodal distribution. During the network's development and under intense inhibition, the observed activity follows a transition period during which mostly HA neurons are active. Studying networks with engineered geometry, we found that HA neurons are precursors (the first to fire) of the spontaneous SBEs and are more responsive to electrical stimulations.  相似文献   

4.
Spontaneous firing of olfactory receptor neurons (ORNs) was recently shown to be required for the survival of ORNs and the maintenance of their appropriate synaptic connections with mitral cells in the olfactory bulb. ORN spontaneous activity has never been described or characterized quantitatively in mammals. To do so we have made extracellular single unit recordings from ORNs of freely breathing (FB) and tracheotomized (TT) rats. We show that the firing behavior of TT neurons was relatively simple: they tended to fire spikes at the same average frequency according to purely random (Poisson) or simple (Gamma or Weibull) statistical laws. A minority of them were bursting with relatively infrequent and short bursts. The activity of FB neurons was less simple: their firing rates were more diverse, some of them showed trends or were driven by breathing. Although more of them were regular, only a minority could be described by simple laws; the majority displayed random bursts with more spikes than the bursts of TT neurons. In both categories bursts and isolated spikes (outside bursts) occurred completely at random. The spontaneous activity of ORNs in rats resembles that of frogs, but is higher, which may be due to a difference in body temperature. These results suggest that, in addition to the intrinsic thermal noise, spontaneous activity is provoked in part by mechanical, thermal, or chemical (odorant molecules) effects of air movements due to respiration, this extrinsic part being naturally larger in FB neurons. It is suggested that spontaneous activity may be modulated by respiration. Because natural sampling of odors is synchronized with breathing, such modulation may prepare and keep olfactory bulb circuits tuned to process odor stimuli.  相似文献   

5.
Spontaneous neuronal activity plays an important role in development. However, the mechanism that underlies the long-term spontaneous developmental change of cultured neuronal networks in vitro is not well understood. To investigate the contribution of inhibitory and excitatory connections to the development of neuronal networks, dissociated neurons from an embryonic rat hippocampal formation were cultured on a multi-electrode array plate and spontaneous activities were recorded by multi-channel system. These spontaneous activities were compared to bicuculline-induced firings, which were recorded by 60 electrodes simultaneously from 1 to 14 weeks in vitro (WIV). The phenomena showed that the spontaneous firing activities changed from an initial pattern of synchronized bursts to a later pattern of high frequency random spikes. The bicuculline-induced firing activities transformed from a pattern of synchronized bursts throughout all active sites in 3 WIV, to a pattern of local synchronized or random spikes appearing in the intervals of synchronized bursts after 11 WIV, while the firing rate hardly changed. Kynurenic acid, a broad-spectrum glutamate receptor antagonist, blocked all activities while CNQX inhibited only the local synchronized or random spikes. These suggest that the inhibitory connection was age-dependent degraded in vitro and the developmental spontaneous firing pattern was built by the homeostatic balance of the excitatory-inhibitory connection networks. Long-term cultures on MEA provided a useful tool to measure the relationship between spontaneous developmental change and pharmacological influence in vitro.  相似文献   

6.
Rhythmically active neuronal networks give rise to rhythmic motor activities but also to seemingly non-rhythmic behaviors such as sleep, arousal, addiction, memory and cognition. Many of these networks contain pacemaker neurons. The ability of these neurons to generate bursts of activity intrinsically lies in voltage- and time-dependent ion fluxes resulting from a dynamic interplay among ion channels, second messenger pathways and intracellular Ca2+ concentrations, and is influenced by neuromodulators and synaptic inputs. This complex intrinsic and extrinsic modulation of pacemaker activity exerts a dynamic effect on network activity. The nonlinearity of bursting activity might enable pacemaker neurons to facilitate the onset of excitatory states or to synchronize neuronal ensembles--an interactive process that is intimately regulated by synaptic and modulatory processes.  相似文献   

7.
With the growing recognition that rhythmic and oscillatory patterns are widespread in the brain and play important roles in all aspects of the function of our nervous system, there has been a resurgence of interest in neuronal synchronized bursting activity. Here, we were interested in understanding the development of synchronized bursts as information-bearing neuronal activity patterns. For that, we have monitored the morphological organization and spontaneous activity of neuronal networks cultured on multielectrode-arrays during their self-executed evolvement from a mixture of dissociated cells into an active network. Complex collective network electrical activity evolved from sporadic firing patterns of the single neurons. On the system (network) level, the activity was marked by bursting events with interneuronal synchronization and nonarbitrary temporal ordering. We quantified these individual-to-collective activity transitions using newly-developed system level quantitative measures of time series regularity and complexity. We found that individual neuronal activity before synchronization was characterized by high regularity and low complexity. During neuronal wiring, there was a transient period of reorganization marked by low regularity, which then leads to coemergence of elevated regularity and functional (nonstochastic) complexity. We further investigated the morphology-activity interplay by modeling artificial neuronal networks with different topological organizations and connectivity schemes. The simulations support our experimental results by showing increased levels of complexity of neuronal activity patterns when neurons are wired up and organized in clusters (similar to mature real networks), as well as network-level activity regulation once collective activity forms.  相似文献   

8.
Hippocampal CA1 neurons exposed to zero-[Ca(2+)] solutions can generate periodic spontaneous synchronized activity in the absence of synaptic function. Experiments using hippocampal slices showed that, after exposure to zero-[Ca(2+)](0) solution, CA1 pyramidal cells depolarized 5-10 mV and started firing spontaneous action potentials. Spontaneous single neuron activity appeared in singlets or was grouped into bursts of two or three action potentials. A 16-compartment, 23-variable cable model of a CA1 pyramidal neuron was developed to study mechanisms of spontaneous neuronal bursting in a calcium-free extracellular solution. In the model, five active currents (a fast sodium current, a persistent sodium current, an A-type transient potassium current, a delayed rectifier potassium current, and a muscarinic potassium current) are included in the somatic compartment. The model simulates the spontaneous bursting behavior of neurons in calcium-free solutions. The mechanisms underlying several aspects of bursting are studied, including the generation of triplet bursts, spike duration, burst termination, after-depolarization behavior, and the prolonged inactive period between bursts. We show that the small persistent sodium current can play a key role in spontaneous CA1 activity in zero-calcium solutions. In particular, it is necessary for the generation of an after-depolarizing potential and prolongs both individual bursts and the interburst interval.  相似文献   

9.
Li Y  Zhou W  Li X  Zeng S  Liu M  Luo Q 《Biosensors & bioelectronics》2007,22(12):2976-2982
Spontaneous synchronized bursts seem to play a key role in brain functions such as learning and memory. Still controversial is the characterization of spontaneous synchronized bursts in neuronal networks after learning training, whether depression or promotion. By taking advantages of the main features of the microelectrode array (MEA) technology (i.e. multisite recordings, stable and long-term coupling with the biological preparation), we analyzed changes of spontaneous synchronized bursts in cultured hippocampal neuronal networks after learning training. And for this purpose, a learning model at networking level on MEA system was constructed, and analysis of spontaneous synchronized burst activity modulation was presented. Preliminary results show that, the number of burst was increased by 154%, burst duration was increased by 35%, and the number of spikes per burst was increased by 124%, while interburst interval decreased by 44% with learning. In particular, correlation and synchrony of neuronal activities in networks were enhanced by 51% and 36%, respectively, with learning. In contrast, dynamic properties of neuronal networks were not changed much when the network was under “non-learning” condition. These results indicate that firing, association and synchrony of spontaneous bursts in neuronal networks were promoted by learning. Furthermore, from these observations, we are encouraged to think of a more engineered system based on in vitro hippocampal neurons, as a novel sensitive system for electrophysiological evaluations.  相似文献   

10.
Bursting as well as tonic firing patterns have been described in various sensory systems. In the olfactory system, spontaneous bursts have been observed in neurons distributed across several synaptic levels, from the periphery, to the olfactory bulb (OB) and to the olfactory cortex. Several in vitro studies indicate that spontaneous firing patterns may be viewed as "fingerprints" of different types of neurons that exhibit distinct functions in the OB. It is still not known, however, if and how neuronal burstiness is correlated with the coding of natural olfactory stimuli. We thus conducted an in vivo study to probe this question in the OB equivalent structure of insects, the antennal lobe (AL) of the tobacco hornworm Manduca sexta. We found that in the moth's AL, both projection (output) neurons (PNs) and local interneurons (LNs) are spontaneously active, but PNs tend to produce spike bursts while LNs fire more regularly. In addition, we found that the burstiness of PNs is correlated with the strength of their responses to odor stimulation--the more bursting the stronger their responses to odors. Moreover, the burstiness of PNs was also positively correlated with the spontaneous firing rate of these neurons, and pharmacological reduction of bursting resulted in a decrease of the neurons' responsiveness. These results suggest that neuronal burstiness reflects a physiological state of these neurons that is directly linked to their response characteristics.  相似文献   

11.
All higher order central nervous systems exhibit spontaneous neural activity, though the purpose and mechanistic origin of such activity remains poorly understood. We quantitatively analyzed the ignition and spread of collective spontaneous electrophysiological activity in networks of cultured cortical neurons growing on microelectrode arrays. Leader neurons, which form a mono-synaptically connected primary circuit, and initiate a majority of network bursts were found to be a small subset of recorded neurons. Leader/follower firing delay times formed temporally stable positively skewed distributions. Blocking inhibitory synapses usually resulted in shorter delay times with reduced variance. These distributions are characterizations of general aspects of internal network dynamics and provide estimates of pair-wise synaptic distances. The resulting analysis produced specific quantitative constraints and insights into the activation patterns of collective neuronal activity in self-organized cortical networks, which may prove useful for models emulating spontaneously active systems.  相似文献   

12.
Collective rhythmic dynamics from neurons is vital for cognitive functions such as memory formation but how neurons self-organize to produce such activity is not well understood. Attractor-based computational models have been successfully implemented as a theoretical framework for memory storage in networks of neurons. Additionally, activity-dependent modification of synaptic transmission is thought to be the physiological basis of learning and memory. The goal of this study is to demonstrate that using a pharmacological treatment that has been shown to increase synaptic strength within in vitro networks of hippocampal neurons follows the dynamical postulates theorized by attractor models. We use a grid of extracellular electrodes to study changes in network activity after this perturbation and show that there is a persistent increase in overall spiking and bursting activity after treatment. This increase in activity appears to recruit more “errant” spikes into bursts. Phase plots indicate a conserved activity pattern suggesting that a synaptic potentiation perturbation to the attractor leaves it unchanged. Lastly, we construct a computational model to demonstrate that these synaptic perturbations can account for the dynamical changes seen within the network.  相似文献   

13.
Rhythmic bursting is the most striking behavior of cultured cortical networks and may start in the second week after plating. In this study, we focus on the intervals between spontaneously occurring bursts, and compare experimentally recorded values with model simulations. In the models, we use standard neurons and synapses, with physiologically plausible parameters taken from literature. All networks had a random recurrent architecture with sparsely connected neurons. The number of neurons varied between 500 and 5,000. We find that network models with homogeneous synaptic strengths produce asynchronous spiking or stable regular bursts. The latter, however, are in a range not seen in recordings. By increasing the synaptic strength in a (randomly chosen) subset of neurons, our simulations show interburst intervals (IBIs) that agree better with in vitro experiments. In this regime, called weakly synchronized, the models produce irregular network bursts, which are initiated by neurons with relatively stronger synapses. In some noise-driven networks, a subthreshold, deterministic, input is applied to neurons with strong synapses, to mimic pacemaker network drive. We show that models with such "intrinsically active neurons" (pacemaker-driven models) tend to generate IBIs that are determined by the frequency of the fastest pacemaker and do not resemble experimental data. Alternatively, noise-driven models yield realistic IBIs. Generally, we found that large-scale noise-driven neuronal network models required synaptic strengths with a bimodal distribution to reproduce the experimentally observed IBI range. Our results imply that the results obtained from small network models cannot simply be extrapolated to models of more realistic size. Synaptic strengths in large-scale neuronal network simulations need readjustment to a bimodal distribution, whereas small networks do not require such changes.  相似文献   

14.
It was often reported and suggested that the synchronization of spikes can occur without changes in the firing rate. However, few theoretical studies have tested its mechanistic validity. In the present study, we investigate whether changes in synaptic weights can induce an independent modulation of synchrony while the firing rate remains constant. We study this question at the level of both single neurons and neuronal populations using network simulations of conductance based integrate-and-fire neurons. The network consists of a single layer that includes local excitatory and inhibitory recurrent connections, as well as long-range excitatory projections targeting both classes of neurons. Each neuron in the network receives external input consisting of uncorrelated Poisson spike trains. We find that increasing this external input leads to a linear increase of activity in the network, as well␣as an increase in the peak frequency of oscillation. In␣contrast, balanced changes of the synaptic weight of␣excitatory long-range projections for both classes of postsynaptic neurons modulate the degree of synchronization without altering the firing rate. These results demonstrate that, in a simple network, synchronization and firing rate can be modulated independently, and thus, may be used as independent coding dimensions. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

15.
During brain development, before sensory systems become functional, neuronal networks spontaneously generate repetitive bursts of neuronal activity, which are typically synchronized across many neurons. Such activity patterns have been described on the level of networks and cells, but the fine-structure of inputs received by an individual neuron during spontaneous network activity has not been studied. Here, we used calcium imaging to record activity at many synapses of hippocampal pyramidal neurons simultaneously to establish the activity patterns in the majority of synapses of an entire cell. Analysis of the spatiotemporal patterns of synaptic activity revealed a fine-scale connectivity rule: neighboring synapses (<16?μm intersynapse distance) are more likely to be coactive than synapses that are farther away from each other. Blocking spiking activity or NMDA receptor activation revealed that the clustering of synaptic inputs required neuronal activity, demonstrating a role of developmentally expressed spontaneous activity for connecting neurons with subcellular precision.  相似文献   

16.
Sparse representation of sounds in the unanesthetized auditory cortex   总被引:2,自引:0,他引:2  
How do neuronal populations in the auditory cortex represent acoustic stimuli? Although sound-evoked neural responses in the anesthetized auditory cortex are mainly transient, recent experiments in the unanesthetized preparation have emphasized subpopulations with other response properties. To quantify the relative contributions of these different subpopulations in the awake preparation, we have estimated the representation of sounds across the neuronal population using a representative ensemble of stimuli. We used cell-attached recording with a glass electrode, a method for which single-unit isolation does not depend on neuronal activity, to quantify the fraction of neurons engaged by acoustic stimuli (tones, frequency modulated sweeps, white-noise bursts, and natural stimuli) in the primary auditory cortex of awake head-fixed rats. We find that the population response is sparse, with stimuli typically eliciting high firing rates (>20 spikes/second) in less than 5% of neurons at any instant. Some neurons had very low spontaneous firing rates (<0.01 spikes/second). At the other extreme, some neurons had driven rates in excess of 50 spikes/second. Interestingly, the overall population response was well described by a lognormal distribution, rather than the exponential distribution that is often reported. Our results represent, to our knowledge, the first quantitative evidence for sparse representations of sounds in the unanesthetized auditory cortex. Our results are compatible with a model in which most neurons are silent much of the time, and in which representations are composed of small dynamic subsets of highly active neurons.  相似文献   

17.
One of the most specific and exhibited features in the electrical activity of dissociated cultured neural networks (NNs) is the phenomenon of synchronized bursts, whose profiles vary widely in shape, width and firing rate. On the way to understanding the organization and behavior of biological NNs, we reproduced those features with random connectivity network models with 5,000 neurons. While the common approach to induce bursting behavior in neuronal network models is noise injection, there is experimental evidence suggesting the existence of pacemaker-like neurons. In our simulations noise did evoke bursts, but with an unrealistically gentle rising slope. We show that a small subset of ‘pacemaker’ neurons can trigger bursts with a more realistic profile. We found that adding pacemaker-like neurons as well as adaptive synapses yield burst features (shape, width, and height of the main phase) in the same ranges as obtained experimentally. Finally, we demonstrate how changes in network connectivity, transmission delays, and excitatory fraction influence network burst features quantitatively.  相似文献   

18.
Spike-timing-dependent plasticity (STDP) is believed to structure neuronal networks by slowly changing the strengths (or weights) of the synaptic connections between neurons depending upon their spiking activity, which in turn modifies the neuronal firing dynamics. In this paper, we investigate the change in synaptic weights induced by STDP in a recurrently connected network in which the input weights are plastic but the recurrent weights are fixed. The inputs are divided into two pools with identical constant firing rates and equal within-pool spike-time correlations, but with no between-pool correlations. Our analysis uses the Poisson neuron model in order to predict the evolution of the input synaptic weights and focuses on the asymptotic weight distribution that emerges due to STDP. The learning dynamics induces a symmetry breaking for the individual neurons, namely for sufficiently strong within-pool spike-time correlation each neuron specializes to one of the input pools. We show that the presence of fixed excitatory recurrent connections between neurons induces a group symmetry-breaking effect, in which neurons tend to specialize to the same input pool. Consequently STDP generates a functional structure on the input connections of the network.  相似文献   

19.
Burst firings are functionally important behaviors displayed by neural circuits, which plays a primary role in reliable transmission of electrical signals for neuronal communication. However, with respect to the computational capability of neural networks, most of relevant studies are based on the spiking dynamics of individual neurons, while burst firing is seldom considered. In this paper, we carry out a comprehensive study to compare the performance of spiking and bursting dynamics on the capability of liquid computing, which is an effective approach for intelligent computation of neural networks. The results show that neural networks with bursting dynamic have much better computational performance than those with spiking dynamics, especially for complex computational tasks. Further analysis demonstrate that the fast firing pattern of bursting dynamics can obviously enhance the efficiency of synaptic integration from pre-neurons both temporally and spatially. This indicates that bursting dynamic can significantly enhance the complexity of network activity, implying its high efficiency in information processing.  相似文献   

20.
1.  Coordinated movements of the wings during flight in the locust result from coordinated activity of flight neurons in the thoracic ganglia. Many flight interneurons and motoneurons fire synchronous bursts of action potentials during the expression of the flight motor pattern. The mechanisms which underlie this synchronous firing were investigated in a deafferented preparation of Locusta migratoria.
2.  Simultaneous intracellular recordings were taken from flight neurons in the mesothoracic ganglion using glass microelectrodes filled with fluorescent dye.
3.  Three levels of synchronous activity between synergistic motoneurons and between the right and left partners of bilaterally symmetrical pairs of interneurons were observed: bursting which was loosely in phase but which showed little correlation between the temporal parameters of individual bursts in the two neurons; bursting which showed synchrony of the beginning and end of bursts; and bursts which showed highly synchronous spike-for-spike activity.
4.  Direct interactions between the neurons had little or no part to play in maintaining any of the levels of synchrony, even in instances of very close synchrony (spikes in different neurons occurring within 1 ms of each other). Highly synchronous firing was a consequence of common synaptic input impinging on neurons with similar morphological and physiological properties.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号