首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
β-1,3-Glucan and chitin are the most prominent polysaccharides of the fungal cell wall. Covalently linked, these polymers form a scaffold that determines the form and properties of vegetative and pathogenic hyphae. While the role of chitin in plant infection is well understood, the role of β-1,3-glucan is unknown. We functionally characterized the β-1,3-glucan synthase gene GLS1 of the maize (Zea mays) pathogen Colletotrichum graminicola, employing RNA interference (RNAi), GLS1 overexpression, live-cell imaging, and aniline blue fluorochrome staining. This hemibiotroph sequentially differentiates a melanized appressorium on the cuticle and biotrophic and necrotrophic hyphae in its host. Massive β-1,3-glucan contents were detected in cell walls of appressoria and necrotrophic hyphae. Unexpectedly, GLS1 expression and β-1,3-glucan contents were drastically reduced during biotrophic development. In appressoria of RNAi strains, downregulation of β-1,3-glucan synthesis increased cell wall elasticity, and the appressoria exploded. While the shape of biotrophic hyphae was unaffected in RNAi strains, necrotrophic hyphae showed severe distortions. Constitutive expression of GLS1 led to exposure of β-1,3-glucan on biotrophic hyphae, massive induction of broad-spectrum defense responses, and significantly reduced disease symptom severity. Thus, while β-1,3-glucan synthesis is required for cell wall rigidity in appressoria and fast-growing necrotrophic hyphae, its rigorous downregulation during biotrophic development represents a strategy for evading β-glucan–triggered immunity.  相似文献   

2.
3.
4.
Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model.Both mAbs bound to fungal cell surface and to the β1,3-β1,6 glucan of the fungal cell wall skeleton, as shown by immunofluorescence, electron-microscopy and ELISA. They were also equally unable to opsonize fungal cells in a J774 macrophage phagocytosis and killing assay. However, only the IgG2b conferred substantial protection against mucosal and systemic candidiasis in passive vaccination experiments in rodents. Competition ELISA and microarray analyses using sequence-defined glucan oligosaccharides showed that the protective IgG2b selectively bound to β1,3-linked (laminarin-like) glucose sequences whereas the non-protective IgM bound to β1,6- and β1,4-linked glucose sequences in addition to β1,3-linked ones. Only the protective IgG2b recognized heterogeneous, polydisperse high molecular weight cell wall and secretory components of the fungus, two of which were identified as the GPI-anchored cell wall proteins Als3 and Hyr1. In addition, only the IgG2b inhibited in vitro two critical virulence attributes of the fungus, hyphal growth and adherence to human epithelial cells.Our study demonstrates that the isotype of anti-β-glucan antibodies may affect details of the β-glucan epitopes recognized, and this may be associated with a differing ability to inhibit virulence attributes of the fungus and confer protection in vivo. Our data also suggest that the anti-virulence properties of the IgG2b mAb may be linked to its capacity to recognize β-glucan epitope(s) on some cell wall components that exert critical functions in fungal cell wall structure and adherence to host cells.  相似文献   

5.
Paneth cells are a secretory epithelial lineage that release dense core granules rich in host defense peptides and proteins from the base of small intestinal crypts. Enteric α-defensins, termed cryptdins (Crps) in mice, are highly abundant in Paneth cell secretions and inherently resistant to proteolysis. Accordingly, we tested the hypothesis that enteric α-defensins of Paneth cell origin persist in a functional state in the mouse large bowel lumen. To test this idea, putative Crps purified from mouse distal colonic lumen were characterized biochemically and assayed in vitro for bactericidal peptide activities. The peptides comigrated with cryptdin control peptides in acid-urea-PAGE and SDS-PAGE, providing identification as putative Crps. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry experiments showed that the molecular masses of the putative α-defensins matched those of the six most abundant known Crps, as well as N-terminally truncated forms of each, and that the peptides contain six Cys residues, consistent with identities as α-defensins. N-terminal sequencing definitively revealed peptides with N termini corresponding to full-length, (des-Leu)-truncated, and (des-Leu-Arg)-truncated N termini of Crps 1–4 and 6. Crps from mouse large bowel lumen were bactericidal in the low micromolar range. Thus, Paneth cell α-defensins secreted into the small intestinal lumen persist as intact and functional forms throughout the intestinal tract, suggesting that the peptides may mediate enteric innate immunity in the colonic lumen, far from their upstream point of secretion in small intestinal crypts.Antimicrobial peptides (AMPs)2 are released by epithelial cells onto mucosal surfaces as effectors of innate immunity (15). In mammals, most AMPs derive from two major families, the cathelicidins and defensins (6). The defensins comprise the α-, β-, and θ-defensin subfamilies, which are defined by the presence of six cysteine residues paired in characteristic tridisulfide arrays (7). α-Defensins are highly abundant in two primary cell lineages: phagocytic leukocytes, primarily neutrophils, of myeloid origin and Paneth cells, which are secretory epithelial cells located at the base of the crypts of Lieberkühn in the small intestine (810). Neutrophil α-defensins are stored in azurophilic granules and contribute to non-oxidative microbial cell killing in phagolysosomes (11, 12), except in mice whose neutrophils lack defensins (13). In the small bowel, α-defensins and other host defense proteins (1418) are released apically as components of Paneth cell secretory granules in response to cholinergic stimulation and after exposure to bacterial antigens (19). Therefore, the release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells from colonization by potential pathogens and confer protection against enteric infection (7, 20, 21).Under normal, homeostatic conditions, Paneth cells are not found outside the small bowel, although they may appear ectopically in response to local inflammation throughout the gastrointestinal tract (22, 23). Paneth cell numbers increase progressively throughout the small intestine, occurring at highest numbers in the distal ileum (24). Mouse Paneth cells express numerous α-defensin isoforms, termed cryptdins (Crps) (25), that have broad spectrum antimicrobial activities (6, 26). Collectively, α-defensins constitute approximately seventy percent of the bactericidal peptide activity in mouse Paneth cell secretions (19), selectively killing bacteria by membrane-disruptive mechanisms (2730). The role of Paneth cell α-defensins in gastrointestinal mucosal immunity is evident from studies of mice transgenic for human enteric α-defensin-5, HD-5, which are immune to infection by orally administered Salmonella enterica sv. typhimurium (S. typhimurium) (31).The biosynthesis of mature, bactericidal α-defensins from their inactive precursors requires activation by lineage-specific proteolytic convertases. In mouse Paneth cells, inactive ∼8.4-kDa Crp precursors are processed intracellularly into microbicidal ∼4-kDa Crps by specific cleavage events mediated by matrix metalloproteinase-7 (MMP-7) (32, 33). MMP-7 null mice exhibit increased susceptibility to systemic S. typhimurium infection and decreased clearance of orally administered non-invasive Escherichia coli (19, 32). Although the α-defensin proregions are sensitive to proteolysis, the mature, disulfide-stabilized peptides resist digestion by their converting enzymes in vitro, whether the convertase is MMP-7 (32), trypsin (34), or neutrophil serine proteinases (35). Because α-defensins resist proteolysis in vitro, we hypothesized that Paneth cell α-defensins resist degradation and remain in a functional state in the large bowel, a complex, hostile environment containing varied proteases of both host and microbial origin.Here, we report on the isolation and characterization of a population of enteric α-defensins from the mouse colonic lumen. Full-length and N-terminally truncated Paneth cell α-defensins were identified and are abundant in the distal large bowel lumen.  相似文献   

6.
Plant pathogenic fungi deploy secreted effectors to suppress plant immunity responses. These effectors operate either in the apoplast or within host cells, so they are putatively glycosylated, but the posttranslational regulation of their activities has not been explored. In this study, the ASPARAGINE-LINKED GLYCOSYLATION3 (ALG3)-mediated N-glycosylation of the effector, Secreted LysM Protein1 (Slp1), was found to be essential for its activity in the rice blast fungus Magnaporthe oryzae. ALG3 encodes an α-1,3-mannosyltransferase for protein N-glycosylation. Deletion of ALG3 resulted in the arrest of secondary infection hyphae and a significant reduction in virulence. We observed that Δalg3 mutants induced massive production of reactive oxygen species in host cells, in a similar manner to Δslp1 mutants, which is a key factor responsible for arresting infection hyphae of the mutants. Slp1 sequesters chitin oligosaccharides to avoid their recognition by the rice (Oryza sativa) chitin elicitor binding protein CEBiP and the induction of innate immune responses, including reactive oxygen species production. We demonstrate that Slp1 has three N-glycosylation sites and that simultaneous Alg3-mediated N-glycosylation of each site is required to maintain protein stability and the chitin binding activity of Slp1, which are essential for its effector function. These results indicate that Alg3-mediated N-glycosylation of Slp1 is required to evade host innate immunity.  相似文献   

7.
The β-glucans derived from yeast cell walls have been reported for having many immunomodulatory activities in vivo and in vitro. In this study, Aureobasidium-derived soluble branched (1,3-1,6) β-glucan (Sophy β-glucan) was checked for natural killer (NK) activity and for the production of IFN-γ and IL-4 in Leishmania amazonensis infection. The main experiment was performed with a group of female C57BL/6 and BALB/c mice, orally supplemented with 5% of Sophy β-glucan and infected with promastogotes of L. amazonensis (1 × 107) into the footpad. Increase in the footpad thickness with time was observed in BALB/c mice in spite of the oral Sophy β-glucan supplement, but it was less in C57BL/6 mice. The difference in overall mean footpad thickness between ''infection only'' versus ''infection + glucan'' groups was statistically significant (P < 0.001). High NK activity in C57BL/6 than BALB/c mice was observed in ''glucan only'' group compared to the control group and also in ''infection + glucan'' group compared to ''infection only'' group. The difference in the NK activity among these groups was significant (P < 0.05). The IFN-γ level increased at weeks 7 and 8 post-infection in C57BL/6 mice and was significantly high in ''infection + glucan'' group compared to the ''infection only'' group (P < 0.05). IL-4 levels did not increase up to detectable levels throughout the study. The results led a conclusion that Sophy β-glucan enhances NK activity and cellular immunity in L. amazonensis-infected mice.  相似文献   

8.
《Experimental mycology》1993,17(2):130-141
Awald, P., Zugel, M., Monks, C., Frost, D., and Selitrennikoff, C. P. 1993. Purification of 1,3-β-glucan synthase from Neurospora crassa by product entrapment. Experimental Mycology, 17, 130-141. 1,3-β-Glucan synthase activity of the ascomycete Neurospora crassa was purified ∼700-fold from hyphae. Hyphae were disrupted by bead-beating, and membrane-enriched fractions were obtained by high-speed centrifugation. Membranes were treated with (3-[(3-cholamidopropyl)dimethyl-ammoniol]I-propanesulfonate) and octyl-β-D-glucoside to solubilize enzyme activity. Soluble glucan synthase activity was incubated with substrate (UDP-glucose) and purified by centrifugation of enzyme associated with glucan (product entrapment). Purification was specific for UDP-glucose, the optimal concentration being 0.25 mM; no other nucleotide diphosphate sugar was able to significantly product-entrap enzyme activity. Partially purified enzyme activity formed β(1,3)-linked glucan, had a mean specific activity of 1900 nmol glucose incorporated/min/mg protein, a Km,app of 0.7 mM, and a Vmax of 0.5 nmol glucose incorporated/min. Separation of partially purified enzyme activity by SDS-PAGE showed a number of proteins copurifying with enzyme activity; computer analysis of digitized gel images revealed that proteins of 21, 25, 28, 45, 53, and 78 kDa were enriched. These results reinforce the view that 1,3-β-glucan synthase activity of fungi is a multimeric enzyme.  相似文献   

9.
Although α-1,3-glucan is one of the major cell wall polysaccharides in filamentous fungi, the physiological roles of α-1,3-glucan remain unclear. The model fungus Aspergillus nidulans possesses two α-1,3-glucan synthase (AGS) genes, agsA and agsB. For functional analysis of these genes, we constructed several mutant strains in A. nidulans: agsA disruption, agsB disruption, and double-disruption strains. We also constructed several CagsB strains in which agsB expression was controlled by the inducible alcA promoter, with or without the agsA-disrupting mutation. The agsA disruption strains did not show markedly different phenotypes from those of the wild-type strain. The agsB disruption strains formed dispersed hyphal cells under liquid culture conditions, regardless of the agsA genetic background. Dispersed hyphal cells were also observed in liquid culture of the CagsB strains when agsB expression was repressed, whereas these strains grew normally in plate culture even under the agsB-repressed conditions. Fractionation of the cell wall based on the alkali solubility of its components, quantification of sugars, and 13C-NMR spectroscopic analysis revealed that α-1,3-glucan was the main component of the alkali-soluble fraction in the wild-type and agsA disruption strains, but almost no α-1,3-glucan was found in the alkali-soluble fraction derived from either the agsB disruption strain or the CagsB strain under the agsB-repressed conditions, regardless of the agsA genetic background. Taken together, our data demonstrate that the two AGS genes are dispensable in A. nidulans, but that AgsB is required for normal growth characteristics under liquid culture conditions and is the major AGS in this species.  相似文献   

10.
In this study, B cell function in protective TH2 immunity against N. brasiliensis infection was investigated. Protection against secondary infection depended on IL-4Rα and IL-13; but not IL-4. Protection did not associate with parasite specific antibody responses. Re-infection of B cell-specific IL-4Rα−/− mice resulted in increased worm burdens compared to control mice, despite their equivalent capacity to control primary infection. Impaired protection correlated with reduced lymphocyte IL-13 production and B cell MHC class II and CD86 surface expression. Adoptive transfer of in vivo N. brasiliensis primed IL-4Rα expressing B cells into naïve BALB/c mice, but not IL-4Rα or IL-13 deficient B cells, conferred protection against primary N. brasiliensis infection. This protection required MHC class II compatibility on B cells suggesting cognate interactions by B cells with CD4+ T cells were important to co-ordinate immunity. Furthermore, the rapid nature of these protective effects by B cells suggested non-BCR mediated mechanisms, such as via Toll Like Receptors, was involved, and this was supported by transfer experiments using antigen pulsed Myd88−/− B cells. These data suggest TLR dependent antigen processing by IL-4Rα-responsive B cells producing IL-13 contribute significantly to CD4+ T cell-mediated protective immunity against N. brasiliensis infection.  相似文献   

11.
The µO-conotoxins MrVIA and MrVIB are 31-residue peptides from Conus marmoreus, belonging to the O-superfamily of conotoxins with three disulfide bridges. They have attracted attention because they are inhibitors of tetrodotoxin-insensitive voltage-gated sodium channels (NaV1.8) and could therefore serve as lead structure for novel analgesics. The aim of this study was to elucidate the molecular mechanism by which µO-conotoxins affect NaV channels. Rat NaV1.4 channels and mutants thereof were expressed in mammalian cells and were assayed with the whole-cell patch-clamp method. Unlike for the M-superfamily µ-conotoxin GIIIA from Conus geographus, channel block by MrVIA was strongly diminished after activating the NaV channels by depolarizing voltage steps. Searching for the source of this voltage dependence, the gating charges in all four voltage sensors were reduced by site-directed mutagenesis showing that alterations of the voltage sensor in domain-2 have the strongest impact on MrVIA action. These results, together with previous findings that the effect of MrVIA depends on the structure of the pore-loop in domain-3, suggest a functional similarity with scorpion β-toxins. In fact, MrVIA functionally competed with the scorpion β-toxin Ts1 from Tityus serrulatus, while it did not show competition with µ-GIIIA. Ts1 and µ-GIIIA did not compete either. Thus, similar to scorpion β-toxins, µO-conotoxins are voltage-sensor toxins targeting receptor site-4 on NaV channels. They \"block\" Na+ flow most likely by hindering the voltage sensor in domain-2 from activating and, hence, the channel from opening.  相似文献   

12.
13.
14.
Recurrent respiratory papillomatosis (RRP) is a rare, chronic disease caused by human papillomaviruses (HPVs) types 6 and 11 that is characterized by the polarization of adaptive immune responses that support persistent HPV infection. Respiratory papillomas express elevated mRNA levels of IL-36γ, a proinflammatory cytokine in comparison to autologous clinically normal laryngeal tissues; however there is no evidence of inflammation in these lesions. Consistent with this, respiratory papillomas do not contain TH1-like CD4+ T-cells or cytotoxic CD8+ T-cells, but instead contain a predominance of TH2-like and T regulatory cells (Tregs). In addition, papillomas also are infiltrated with immature Langerhans cells (iLCs). In this study, we show that papilloma cells express IL-36γ protein, and that human keratinocytes transduced with HPV11 have reduced IL-36γ secretion. We now provide the first evidence that peripheral blood-derived iLCs respond to IL-36γ by expressing inflammatory cytokines and chemokines. When stimulated with IL-36γ, iLCs from patients with RRP had lower expression levels of the TH2-like chemokine CCL-20 as compared with controls. Patients’ iLCs also had decreased steady state levels of CCL-1, which is a proinflammatory chemokine. Moreover, CCL-1 levels in iLCs inversely correlated with the severity of RRP. The combined decrease of TH1- and a TH2-like chemokines by iLCs from patients could have consequences in the priming of IFN-γ expression by CD8+ T-cells. Taken together, our results suggest that, in RRP, there is a defect in the proinflammatory innate immune responses made by iLCs in response to IL-36γ. The consequence of this defect may lead to persistent HPV infection by failing to support an effective HPV-specific, TH1-like and/or Tc1-like adaptive response, thus resulting in the predominant TH2-like and/or Treg micromilieu present in papillomas.  相似文献   

15.
16.
17.
The Western Honeybee is a key pollinator for natural as well as agricultural ecosystems. In the last decade massive honeybee colony losses have been observed worldwide, the result of a complex syndrome triggered by multiple stress factors, with the RNA virus Deformed Wing Virus (DWV) and the mite Varroa destructor playing crucial roles. The mite supports replication of DWV to high titers, which exert an immunosuppressive action and correlate with the onset of the disease.The aim of this study was to investigate the effect of 1,3–1,6 β-glucan, a natural innate immune system modulator, on honeybee response to low-titer natural and high-titer experimental DWV infection. As the effects exerted by ß-glucans can be remarkably different, depending on the target organism and the dose administered, two parallel experiments were performed, where 1,3–1,6 ß-glucan at a concentration of 0.5% and 2% respectively, was added to the diet of three cohorts of newly emerged honeybees, which were sampled from a Varroa-free apiary and harboured a low endogenous DWV viral titer. Each cohort was subjected to one of the following experimental treatments: no injection, injection of a high-copy number DWV suspension into the haemocel (experimental DWV infection) or injection of PBS into the haemocoel (physical injury). Control bees fed a ß-glucan-free diet were subjected to the same treatments. Viral load, survival rate, haemocyte populations and phenoloxidase activity of each experimental group were measured and compared. The results indicated that oral administration of 0.5% ß-glucan to naturally infected honeybees was associated with a significantly decrease of the number of infected bees and viral load they carried, and with a significant increase of the survival rate, suggesting that this natural immune modulator molecule might contribute to increase honeybee resistance to viral infection.  相似文献   

18.
19.
20.
Associations between house dust-associated β-(1,3)-glucan exposure and airway inflammatory reactions have been reported, while such exposures in early childhood have been suggested to protect against asthma and wheezing. Most epidemiological studies have used reservoir dust samples and an inhibition enzyme immunoassay (EIA) for β-(1,3)-glucan exposure assessment. The objective of this study was to develop inexpensive but highly sensitive enzyme immunoassays to measure airborne β-(1,3)-glucans in low-exposure environments, like homes. Specificities of available anti-β-(1,3)-glucan antibodies were defined by direct and inhibition experiments. Three suitable antibody combinations were selected for sandwich EIAs. β-(1,3)-Glucans in passive airborne dust collected with an electrostatic dust fall collector (EDC) and floor dust from seven homes were measured with the three EIAs. Floor dust samples were additionally analyzed in the inhibition EIA. The sandwich EIAs were sensitive enough for airborne glucan measurement and showed different specificities for commercial glucans, while the β-(1,3)-glucan levels in house dust samples correlated strongly. The feasibility of measuring glucans in airborne dust with the recently introduced EDC method was further investigated by selecting the most suitable of the three EIAs to measure and compare β-(1,3)-glucan levels in the EDC and in floor and actively collected airborne dust samples of the previously performed EDC validation study. The EDC β-(1,3)-glucan levels correlated moderately with β-(1,3)-glucans in actively collected airborne dust and floor dust samples, while the glucan levels in the airborne dust and floor dust samples did not correlate. The combination of the newly developed β-(1,3)-glucan sandwich EIA with EDC sampling now allows assessment in large-scale population studies of exposure to airborne β-(1,3)-glucans in homes or other low-exposure environments.β-(1,3)-Glucans are polysaccharides produced by plants, bacteria, and fungi. Their chain lengths, their degrees of branching, and the numbers and positions of their other glycosidic linkages, like β-(1,4)- and/or β-(1,6)-linkages, may vary largely. While β-(1,3)-(1,4)-glucan structures are typically found in plant material, β-(1,3)-(1,6)-chains are more prevalent in fungi and bacteria (31). Because they are typical microbe-associated molecular patterns (MAMPs), β-(1,3)-glucans activate cells of the innate immune system by binding to glucan-specific receptors like dectin-1 (1, 4, 6) and other cellular membrane receptors (5, 21). Associations between indoor β-(1,3)-glucan exposure and inflammatory reactions of the respiratory system have been reported (3, 10, 25, 33, 34, 40), but protective effects of glucan exposure in early childhood against the development of asthma and allergy have also been suggested (9, 13, 15, 29). β-(1,3)-Glucans are less potent inducers of inflammatory reactions than bacterial endotoxins (16, 30, 35), but since their total amounts in our environment may be much higher—glucans are measured in micrograms per milligram of house dust, whereas endotoxins are measured in nanograms per milligram of house dust (10, 14, 29, 37)—their proinflammatory impact may be similar to that of endotoxin exposure.An inexpensive and relatively simple β-(1,3)-glucan-specific inhibition immunoassay was introduced in the mid-1990s by Douwes et al. (8). This assay has found wide application in large-scale population studies in which glucans have been routinely measured in dust from mattresses and living room and/or bedroom floors (9, 10, 12, 13, 29). However, while useful for quantification of β-(1,3)-glucans in extracts with >1 to 2% (wt/vol) floor or mattress dust, the sensitivity of the assay is usually too low for airborne measurements. Even in environments with high microbial contaminations, like the household waste recycling industry (36), β-(1,3)-glucan levels in airborne dust samples may often remain under the limit of detection. Until recently, the only published methods sensitive enough to measure β-(1,3)-glucans in airborne dust samples were the modified Limulus amebocyte lysate (LAL) assay (a modification of the endotoxin assay with which glucans can be specifically detected [11]) and two sandwich enzyme immunoassays (EIAs) (2, 23, 27). Due to its high cost, which is at least 5-fold higher than that of the inhibition EIA, the LAL assay has thus far hardly been used in epidemiological studies. The assay developed by Sander et al. (27) has been applied to only a limited number of samples from the work environment, and the EIA described by Blanc et al. (2) and Rao et al. (23) has been used only to analyze reservoir and airborne dust samples from heavily mold-contaminated houses in New Orleans after the hurricanes Katrina and Rita. A third sensitive EIA makes use of galactosyl ceramide, a receptor specific for β-(1,3)-glucans (41), as the capture reagent and of a monoclonal antibody specific for β-(1,3)-(1,6)-glucans as the detecting antibody (20). Application of this EIA in population studies has, however, not yet been reported.Apart from the low sensitivity of the inhibition EIA and/or high cost of the modified LAL assay, the time, equipment, and budget needed for active sampling of airborne dust are reasons why epidemiological studies have relied mainly on β-(1,3)-glucan analyses of reservoir dust samples from floors or mattresses. β-(1,3)-Glucan levels in airborne dust samples may, however, be more representative of real inhalatory exposures.The aim of this study was to develop new sensitive but inexpensive assays for β-(1,3)-glucans in airborne dust from homes or other locations with low exposure levels. We combined methods and reagents from three laboratories that previously developed and applied β-glucan EIAs (2, 8, 23, 27). The specificities of available antibodies to a panel of 13 different glucans were determined to assess whether it is possible to develop sandwich assays that would show clear differences in specificities toward glucans from different taxonomic sources—bacterial, fungal, or plant derived—and/or between glucans with different chemical structures.Another objective of the present study was to explore the feasibility of using our recently developed passive airborne dust sampling method, the electrostatic dust fall collector (EDC) (22), for assessing exposure to glucans in airborne dust in the home environment, when combined with the new sensitive immunoassays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号