首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Immune senescence, defined as the age-associated dysregulation and dysfunction of the immune system, is characterised by impaired protective immunity and decreased efficacy of vaccines. Recent clinical, epidemiological and immunological studies suggest that Cytomegalovirus (CMV) infection may be associated with accelerated immune senescence, possibly by restricting the naïve T cell repertoire. However, direct evidence whether and how CMV-infection is implicated in immune senescence is still lacking. In this study, we have investigated whether latent mouse CMV (MCMV) infection with or without thymectomy (Tx) alters antiviral immunity of young and aged mice. After infection with lymphocytic choriomeningitis virus (LCMV) or Vaccinia virus, specific antiviral T cell responses were significantly reduced in old, old MCMV-infected and/or Tx mice compared to young mice. Importantly, control of LCMV replication was more profoundly impaired in aged MCMV-infected mice compared to age-matched MCMV-naïve or young mice. In addition, latent MCMV infection was associated with slightly reduced vaccination efficacy in old Tx mice. In contrast to the prevailing hypothesis of a CMV-mediated restriction of the naïve T cell repertoire, we found similar naïve T cell numbers in MCMV-infected and non-infected mice, whereas ageing and Tx clearly reduced the naïve T cell pool. Instead, MCMV-infection expanded the total CD8+ T cell pool by a massive accumulation of effector memory T cells. Based on these results, we propose a new model of increased competition between CMV-specific memory T cells and any ‘de novo’ immune response in aged individuals. In summary, our results directly demonstrate in a mouse model that latent CMV-infection impairs immunity in old age and propagates immune senescence.  相似文献   

2.
CD4 T-cell help is required for the induction of efficient CD8 T-cells responses and the generation of memory cells. Lack of CD4 T-cell help may contribute to an exhausted CD8 phenotype and viral persistence. Little is known about priming of CD4 T-cells by liver-derived antigen. We used TF-OVA mice expressing ovalbumin in hepatocytes to investigate CD4 T-cell priming by liver-derived antigen and the impact of CD4 T-cell help on CD8 T-cell function. Naïve and effector CD4 T-cells specific for ovalbumin were transferred into TF-OVA mice alone or together with naïve ovalbumin-specific CD8 T-cells. T-cell activation and function were analyzed. CD4 T-cells ignored antigen presented by liver antigen-presenting cells (APCs) in vitro and in vivo but were primed in the liver-draining lymph node and the spleen. No priming occurred in the absence of bone-marrow derived APCs capable of presenting ovalbumin in vivo. CD4 T-cells primed in TF-OVA mice displayed defective Th1-effector function and caused no liver damage. CD4 T-cells were not required for the induction of hepatitis by CD8 T-cells. Th1-effector but not naïve CD4 T-cells augmented the severity of liver injury caused by CD8 T-cells. Our data demonstrate that CD4 T-cells fail to respond to liver-derived antigen presented by liver APCs and develop defective effector function after priming in lymph nodes and spleen. The lack of CD4 T-cell help may be responsible for insufficient CD8 T-cell function against hepatic antigens.  相似文献   

3.

Background

We examined the effect of cytomegalovirus (CMV) co-infection and viremia on reconstitution of selected CD4+ and CD8+ T-cell subsets in perinatally HIV-infected (PHIV+) children ≥ 1-year old who participated in a partially randomized, open-label, 96-week combination antiretroviral therapy (cART)-algorithm study.

Methods

Participants were categorized as CMV-naïve, CMV-positive (CMV+) viremic, and CMV+ aviremic, based on blood, urine, or throat culture, CMV IgG and DNA polymerase chain reaction measured at baseline. At weeks 0, 12, 20 and 40, T-cell subsets including naïve (CD62L+CD45RA+; CD95-CD28+), activated (CD38+HLA-DR+) and terminally differentiated (CD62L-CD45RA+; CD95+CD28-) CD4+ and CD8+ T-cells were measured by flow cytometry.

Results

Of the 107 participants included in the analysis, 14% were CMV+ viremic; 49% CMV+ aviremic; 37% CMV-naïve. In longitudinal adjusted models, compared with CMV+ status, baseline CMV-naïve status was significantly associated with faster recovery of CD8+CD62L+CD45RA+% and CD8+CD95-CD28+% and faster decrease of CD8+CD95+CD28-%, independent of HIV VL response to treatment, cART regimen and baseline CD4%. Surprisingly, CMV status did not have a significant impact on longitudinal trends in CD8+CD38+HLA-DR+%. CMV status did not have a significant impact on any CD4+ T-cell subsets.

Conclusions

In this cohort of PHIV+ children, the normalization of naïve and terminally differentiated CD8+ T-cell subsets in response to cART was detrimentally affected by the presence of CMV co-infection. These findings may have implications for adjunctive treatment strategies targeting CMV co-infection in PHIV+ children, especially those that are now adults or reaching young adulthood and may have accelerated immunologic aging, increased opportunistic infections and aging diseases of the immune system.  相似文献   

4.
Cytomegalovirus (CMV) has been suggested as a contributing force behind the impaired immune responsiveness in the elderly, with decreased numbers of naïve T-cells and an increased proportion of effector T-cells. Immunological impairment is also implicated as a part of the pathogenesis in Alzheimer’s disease (AD). The aim of this study was to investigate whether AD patients present with a different CMV-specific CD8 immune profile compared to non-demented controls. Blood samples from 50 AD patients and 50 age-matched controls were analysed for HLA-type, CMV serostatus and systemic inflammatory biomarkers. Using multi-colour flow cytometry, lymphocytes from peripheral blood mononuclear cells were analysed for CMV-specific CD8 immunity with MHC-I tetramers A01, A02, A24, B07, B08 and B35 and further classified using CD27, CD28, CD45RA and CCR7 antibodies. Among CMV seropositive subjects, patients with AD had significantly lower proportions of CMV-specific CD8 T-cells compared to controls, 1.16 % vs. 4.13 % (p=0.0057). Regardless of dementia status, CMV seropositive subjects presented with a lower proportion of naïve CD8 cells and a higher proportion of effector CD8 cells compared to seronegative subjects. Interestingly, patients with AD showed a decreased proportion of CMV-specific CD8 cells but no difference in general CD8 differentiation.  相似文献   

5.
6.

Background

HIV infection is characterized by ineffective anti-viral T-cell responses and impaired dendritic cell (DC) functions, including response to Toll-Like Receptor (TLR) ligands. Because TLR responsiveness may affect a host''s response to virus, we examined TLR ligand induced Myeloid and Plasmacytoid DC (MDC and PDC) activation of naïve T-cells in HIV+ subjects.

Methods

Freshly purified MDC and PDC obtained from HIV+ subjects and healthy controls were cultured in the presence and absence of TLR ligands (poly I∶C or R-848). We evaluated indices of maturation/activation (CD83, CD86, and HLA-DR expression), cytokine secretion (IFN-alpha and IL-6), and ability to activate allogeneic naïve CD4 T-cells to secrete IFN-gamma and IL-2.

Results

MDC from HIV+ subjects had increased spontaneous IL-6 production and increased CD83 and CD86 expression when compared to MDC of controls. MDC IL-6 expression was associated with plasma HIV level. At the same time, poly I∶C induced HLA-DR up-regulation on MDC was reduced in HIV+ persons when compared to controls. The latter finding was associated with impaired ability of MDC from HIV+ subjects to activate allogeneic naïve CD4 T-cells. PDC from HIV+ persons had increased spontaneous and TLR ligand induced IL-6 expression, and increased HLA-DR expression at baseline. The latter was associated with an intact ability of HIV PDC to activate allogeneic naïve CD4 T-cells.

Conclusion

These results have implications for the ability of the HIV+ host to form innate and adaptive responses to HIV and other pathogens.  相似文献   

7.
8.

Aim

HIV infection is associated with distortion of T-cell homeostasis and the IL-7/IL7R axis. Progressive infection results in loss of CD127+132− and gains in CD127−132+ CD4+ and CD8+ T-cells. We investigated the correlates of loss of CD127 from the T-cell surface to understand mechanisms underlying this homeostatic dysregulation.

Methods

Peripheral and cord blood mononuclear cells (PBMCs; CBMC) from healthy volunteers and PBMC from patients with HIV infection were studied. CD127+132−, CD127+132+ and CD127−132+ T-cells were phenotyped by activation, differentiation, proliferation and survival markers. Cellular HIV-DNA content and signal-joint T-cell receptor excision circles (sjTRECs) were measured.

Results

CD127+132− T-cells were enriched for naïve cells while CD127−132+ T-cells were enriched for activated/terminally differentiated T-cells in CD4+ and CD8+ subsets in health and HIV infection. HIV was associated with increased proportions of activated/terminally differentiated CD127−132+ T-cells. In contrast to CD127+132− T-cells, CD127−132+ T-cells were Ki-67+Bcl-2low and contained increased levels of HIV-DNA. Naïve CD127+132− T-cells contained a higher proportion of sjTRECs.

Conclusion

The loss of CD127 from the T-cell surface in HIV infection is driven by activation of CD127+132− recent thymic emigrants into CD127−132+ activated/terminally differentiated cells. This process likely results in an irreversible loss of CD127 and permanent distortion of T-cell homeostasis.  相似文献   

9.
In spite of the present belief that latent cytomegalovirus (CMV) infection drives CD8+ T-cell differentiation and induces premature immune senescence, no systematic studies have so far been performed to compare phenotypical and functional changes in the CD8+ T-cell repertoire in CMV-infected and noninfected persons of different age groups. In the present study, number, cytokine production, and growth potential of naive (CD45RA+ CD28+), memory (CD45RA- CD28+), and effector (CD45RA+ CD28- or CD45RA- CD28-) CD8+ T cells were analyzed in young, middle-aged, and elderly clinically healthy persons with a positive or negative CMV antibody serology. Numbers and functional properties of CMVpp65(495-503)-specific CD8+ T cells were also studied. We demonstrate that aging as well as CMV infection lead to a decrease in the size of the naive CD8+ T-cell pool but to an increase in the number of CD8+ effector T cells, which produce gamma interferon but lack substantial growth potential. The size of the CD8+ memory T-cell population, which grows well and produces interleukin-2 (IL-2) and IL-4, also increases with aging, but this increase is missing in CMV carriers. Life-long latent CMV infection seems thus to diminish the size of the naive and the early memory T-cell pool and to drive a Th1 polarization within the immune system. This can lead to a reduced diversity of CD8 responses and to chronic inflammatory processes which may be the basis of severe health problems in elderly persons.  相似文献   

10.

Background

Although effective antiretroviral therapy(ART) increases CD4+ T-cell count, responses to ART vary considerably and only a minority of patients normalise their CD4+/CD8+ ratio. Although retention of naïve CD4+ T-cells is thought to predict better immune responses, relationships between CD4+ and CD8+ T-cell subsets and CD4+/CD8+ ratio have not been well described.

Methods

A cross-sectional study in a cohort of ambulatory HIV+ patients. We used flow cytometry on fresh blood to determine expanded CD4+ and CD8+ T-cell subsets; CD45RO+CD62L+(central memory), CD45RO+CD62L-(effector memory) and CD45RO-CD62L+(naïve) alongside routine T-cell subsets(absolute, percentage CD4+ and CD8+ counts), HIVRNA and collected demographic and treatment data. Relationship between CD4+/CD8+ T-cell ratio and expanded T-cell subsets was determined using linear regression analysis. Results are median[IQR] and regression coefficients unless stated.

Results

We recruited 190 subjects, age 42(36–48) years, 65% male, 65.3% Caucasian, 91% on ART(52.6% on protease inhibitors), 78.4% with HIVRNA<40cps/ml and median ART duration 6.8(2.6–10.2) years. Nadir and current CD4+ counts were 200(112–309) and 465(335–607) cells/mm3 respectively. Median CD4+/CD8+ ratio was 0.6(0.4–1.0), with 26.3% of subjects achieving CD4+/CD8+ ratio>1. Of the expanded CD4+ T-cell subsets, 27.3(18.0–38.3)% were naïve, 36.8(29.0–40.0)% central memory and 27.4(20.0–38.5)% effector memory. Of the CD8+ T-cells subsets, 16.5(10.2–25.5)% were naïve, 19.9(12.7–26.6)% central memory and 41.0(31.8–52.5)% effector memory. In the multivariable adjusted analysis, total cumulative-ART exposure(+0.15,p = 0.007), higher nadir CD4+ count(+0.011,p<0.001) and higher %CD8+ naive T-cells(+0.0085,p<0.001) were associated with higher CD4+/CD8+ ratio, higher absolute CD8+ T-cell(-0.0044,p<0.001) and higher %CD4+ effector memory T-cells(-0.004,p = 0.0036) were associated with lower CD4+/CD8+ ratio. Those with CD4+/CD8+ ratio>1 had significantly higher median %CD8+ naive T-cells; 25.4(14.0–36.0)% versus 14.4(9.4–21.6)%, p<0.0001, but significantly lower absolute CD8+ count; 464(384.5–567) versus 765(603–1084) cells/mm3, p<0.001.

Conclusions

Study suggests important role for naïve CD8+ T-cell populations in normalisation of the immune response to HIV-infection. How these findings relate to persistent immune activation on ART requires further study.  相似文献   

11.
Highly active antiretroviral therapy (HAART) can suppress HIV-1 replication and normalize the chronic immune activation associated with infection, but restoration of naïve CD4+ T cell populations is slow and usually incomplete for reasons that have yet to be determined. We tested the hypothesis that damage to the lymphoid tissue (LT) fibroblastic reticular cell (FRC) network contributes to naïve T cell loss in HIV-1 infection by restricting access to critical factors required for T cell survival. We show that collagen deposition and progressive loss of the FRC network in LTs prior to treatment restrict both access to and a major source of the survival factor interleukin-7 (IL-7). As a consequence, apoptosis within naïve T cell populations increases significantly, resulting in progressive depletion of both naïve CD4+ and CD8+ T cell populations. We further show that the extent of loss of the FRC network and collagen deposition predict the extent of restoration of the naïve T cell population after 6 month of HAART, and that restoration of FRC networks correlates with the stage of disease at which the therapy is initiated. Because restoration of the FRC network and reconstitution of naïve T cell populations are only optimal when therapy is initiated in the early/acute stage of infection, our findings strongly suggest that HAART should be initiated as soon as possible. Moreover, our findings also point to the potential use of adjunctive anti-fibrotic therapies to avert or moderate the pathological consequences of LT fibrosis, thereby improving immune reconstitution.  相似文献   

12.
Clinical outcomes are inferior for individuals with HIV having suboptimal CD4 T-cell recovery during antiretroviral therapy (ART). We investigated if the levels of infection and the response to homeostatic cytokines of CD4 T-cell subsets contributed to divergent CD4 T-cell recovery and HIV reservoir during ART by studying virologically-suppressed immunologic responders (IR, achieving a CD4 cell count >500 cells/μL on or before two years after ART initiation), and virologically-suppressed suboptimal responders (ISR, did not achieve a CD4 cell count >500 cells/μL in the first two years after ART initiation). Compared to IR, ISR demonstrated higher levels of HIV-DNA in naïve, central (CM), transitional (TM), and effector (EM) memory CD4 T-cells in blood, both pre- and on-ART, and specifically in CM CD4 T-cells in LN on-ART. Furthermore, ISR had higher pre-ART plasma levels of IL-7 and IL-15, cytokines regulating T-cell homeostasis. Notably, pre-ART PD-1 and TIGIT expression levels were higher in blood CM and TM CD4 T-cells for ISR; this was associated with a significantly lower fold-changes in HIV-DNA levels between pre- and on-ART time points exclusively on CM and TM T-cell subsets, but not naïve or EM T-cells. Finally, the frequency of CM CD4 T-cells expressing PD-1 or TIGIT pre-ART as well as plasma levels of IL-7 and IL-15 predicted HIV-DNA content on-ART. Our results establish the association between infection, T-cell homeostasis, and expression of PD-1 and TIGIT in long-lived CD4 T-cell subsets prior to ART with CD4 T-cell recovery and HIV persistence on-ART.  相似文献   

13.
BackgroundDespite successful treatment and CD4+ T-cell recovery, HIV-infected individuals often experience a profound immune dysregulation characterized by a persistently low CD4:CD8 T-cell ratio. This residual immune dysregulation is reminiscent of the Immune Risk Phenotype (IRP) previously associated with morbidity and mortality in the uninfected elderly (>85 years). The IRP consists of laboratory markers that include: a low CD4:CD8 T-cell ratio, an expansion of CD8+CD28- T-cells and cytomegalovirus (CMV) seropositivity. Despite the significant overlap in immunological phenotypes between normal aging and HIV infection, the IRP has never been evaluated in HIV-infected individuals. In this pilot study we characterized immune changes associated with the IRP in a sample of successfully treated HIV-infected subjects.Methods18 virologically suppressed HIV-infected subjects were categorized into 2 groups based on their IRP status; HIV+IRP+, (n = 8) and HIV+IRP-, (n = 10) and compared to 15 age-matched HIV uninfected IRP negative controls. All individuals were assessed for functional and phenotypic immune characteristics including: pro-inflammatory cytokine production, antigen-specific proliferation capacity, replicative senescence, T-cell differentiation and lymphocyte telomere length.ResultsCompared to HIV-infected subjects without an IRP, HIV+IRP+ subjects exhibited a higher frequency of TNF-α-producing CD8+ T-cells (p = 0.05) and a reduced proportion of CD8+ naïve T-cells (p = 0.007). The IRP status was also associated with a marked up-regulation of the replicative senescence markers CD57 and KLGR1, on the surface of CD8+T-cells (p = 0.004). Finally, HIV+IRP+ individuals had a significantly shorter mean lymphocyte telomere length than their non-IRP counterparts (p = 0.03).ConclusionsOur findings suggest that, despite similar levels of treatment-mediated viral suppression, the phenotypic and functional immune characteristics of HIV+IRP+ individuals are distinct from those observed in non-IRP individuals. The IRP appears to identify a subset of treated HIV-infected individuals with a higher degree of immune senescence.  相似文献   

14.
HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection in older persons can have detrimental immunological effects that are not completely reversed by ART. As naïve T-cells are critically important in responses to neoantigens, we first analyzed two subsets (CD45RA+CD31+ and CD45RA+CD31-) within the naïve CD4+ T-cell compartment in young (20–32 years old) and older (39–58 years old), ART-naïve, HIV-1 seropositive individuals within 1–3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA+CD31+CD4+ and CD45RA+CD31-CD4+ T-cell subsets in comparison to age-matched seronegative controls, changes that resembled seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and reconstitution of CD45RA+CD31+CD4+ T-cells two years post-ART, but minimal reconstitution of the CD45RA+CD31-CD4+ subset, which could impair de novo immune responses. For both ART-naïve and ART-treated HIV-1-infected adults, a renewable pool of thymic emigrants is necessary to maintain CD4+ T-cell homeostasis. Overall, these results offer a partial explanation both for the faster disease progression of older adults and the observation that viral responders to ART present with clinical diseases associated with older adults.  相似文献   

15.
Foxp3+ T-regulatory cells (Tregs) normally serve to attenuate immune responses and are key to maintenance of immune homeostasis. Over the past decade, Treg cells have become a major focus of research for many groups, and various functional subsets have been characterized. Recently, the Ikaros family member, Helios, was reported as a marker to discriminate naturally occurring, thymic-derived Tregs from those peripherally induced from naïve CD4+ T cells. We investigated Helios expression in murine and human T cells under resting or activating conditions, using well-characterized molecules of naïve/effector/memory phenotypes, as well as a set of Treg-associated markers. We found that Helios-negative T cells are enriched for naïve T cell phenotypes and vice versa. Moreover, Helios can be induced during T cell activation and proliferation, but regresses in the same cells under resting conditions. We demonstrated comparable findings using human and murine CD4+Foxp3+ Tregs, as well as in CD4+ and CD8+ T cells. Since Helios expression is associated with T cell activation and cellular division, regardless of the cell subset involved, it does not appear suitable as a marker to distinguish natural and induced Treg cells.  相似文献   

16.
Cytomegalovirus (CMV) is a β-herpesvirus that establishes a lifelong latent or persistent infection. A hallmark of chronic CMV infection is the lifelong persistence of large numbers of virus-specific CD8+ effector/effector memory T cells, a phenomenon called "memory inflation". How the virus continuously stimulates these T cells without being eradicated remains an enigma. The prevailing view is that CMV establishes a low grade "smoldering" infection characterized by tiny bursts of productive infection which are rapidly extinguished, leaving no detectable virus but replenishing the latent pool and leaving the immune system in a highly charged state. However, since abortive reactivation with limited viral gene expression is known to occur commonly, we investigated the necessity for virus reproduction in maintaining the inflationary T cell pool. We inhibited viral replication or spread in vivo using two different mutants of murine CMV (MCMV). First, famcyclovir blocked the replication of MCMV encoding the HSV Thymidine Kinase gene, but had no impact on the CD8+ T cell memory inflation once the infection was established. Second, MCMV that lacks the essential glycoprotein L, and thus is completely unable to spread from cell to cell, also drove memory inflation if the virus was administered systemically. Our data suggest that CMV which cannot spread from the cells it initially infects can repeatedly generate viral antigens to drive memory inflation without suffering eradication of the latent genome pool.  相似文献   

17.
Large cytomegalovirus (CMV)-specific CD8 T-cell responses are observed in both young and, somewhat more often, old people. Frequent CMV reactivation is thought to exhaust these cells and render them dysfunctional so that larger numbers of them are needed to control CMV. Expansions of CMV-specific CD4 T cells are also seen but are less well studied. In this study, we examined the T-cell response to the dominant CMV pp65 and IE-1 antigens in healthy CMV-infected people across a wide age range (20 to 84 years) by using multicolor flow cytometry. CMV-specific T cells were characterized by the activation markers CD40 ligand (CD40L), interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) and the memory markers CD27 and CD45RA. The proportions of effector memory T cells increased in large responses, as did the proportions of polyfunctional CD8 (IFN-γ+ IL-2+/− TNF-α+) and CD4 (CD40L+/− IFN-γ+ IL-2+ TNF-α+) T-cell subsets, while the proportion of naïve T cells decreased. The bigger the CD4 or CD8 T-cell response to pp65, the larger was the proportion of T cells with an advanced memory phenotype in the entire (including non-CMV-specific) T-cell compartment. In addition, the number of activation markers per cell correlated with the degree of T-cell receptor downregulation, suggesting increased antigen sensitivity in polyfunctional cells. In summary, our findings show that polyfunctional CMV-specific T cells were not superseded by dysfunctional cells, even in very large responses. At the same time, however, the memory subset composition of the entire T-cell compartment correlated with the size of the T-cell response to CMV pp65, confirming a strong effect of CMV infection on the immune systems of some, but not all, infected people.  相似文献   

18.
The array of phagocytic receptors expressed by macrophages make them very efficient at pathogen clearance, and the phagocytic process links innate with adaptive immunity. Primary macrophages modulate antigen cross-presentation and T-cell activation. We assessed ex vivo the putative role of different phagocytic receptors in immune synapse formation with CD8 naïve T-cells from OT-I transgenic mice and compared this with the administration of antigen as a soluble peptide. Macrophages that have phagocytosed antigen induce T-cell microtubule-organizing center and F-actin cytoskeleton relocalization to the contact site, as well as the recruitment of proximal T-cell receptor signals such as activated Vav1 and PKCθ. At the same doses of loaded antigen (1 μM), “phagocytic” macrophages were more efficient than peptide-antigen–loaded macrophages at forming productive immune synapses with T-cells, as indicated by active T-cell TCR/CD3 conformation, LAT phosphorylation, IL-2 production, and T-cell proliferation. Similar T-cell proliferation efficiency was obtained when low doses of soluble peptide (3–30 nM) were loaded on macrophages. These results suggest that the pathway used for antigen uptake may modulate the antigen density presented on MHC-I, resulting in different signals induced in naïve CD8 T-cells, leading either to CD8 T-cell activation or anergy.  相似文献   

19.
T cell memory is a cornerstone of protective immunity, and is the key element in successful vaccination. Upon encountering the relevant pathogen, memory T cells are thought to initiate cell division much more rapidly than their naïve counterparts, and this is thought to confer a significant biological advantage upon an immune host. Here, we use traceable TCR-transgenic T cells to evaluate this proposed characteristic in CD4+ and CD8+ memory T cells. We find that, even in the presence of abundant antigen that was sufficient to induce in vivo IFNγ production by memory T cells, both memory and naïve T cells show an extended, and indistinguishable, delay in the onset of proliferation. Although memory cells can detect, and respond to, virus infection within a few hours, their proliferation did not begin until ∼3 days after infection, and occurred simultaneously in all anatomical compartments. Thereafter, cell division was extraordinarily rapid for both naïve and memory cells, with the latter showing a somewhat accelerated accumulation. We propose that, by permitting memory T cells to rapidly exert their effector functions while delaying the onset of their proliferation, evolution has provided a safeguard that balances the risk of infection against the consequences of severe T cell–mediated immunopathology.  相似文献   

20.
Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8+ T-cells and the use of an in vitro model of naïve CD8+ T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8+ T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8+ T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8+ and CD4+ T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号