首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia.

Methods and Findings

Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81–9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16–9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44–9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49–9.57]); p-value for all comparisons <0.001. Severe anemia (hemoglobin <5 g/dl) was present in 8,151 (3.7%) patients. Compared to patients without malaria, those with mixed Plasmodium infection were at greatest risk of severe anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99–3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00–2.23), 1.87 (95% CI 1.74–2.01), and 2.18 (95% CI 1.76–2.67), respectively, p<0.001. Overall, 12.2% (95% CI 11.2%–13.3%) of severe anemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%–16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17–6.50]; p<0.001). Not all patients had a hemoglobin measurement, thus limitations of the study include the potential for selection bias, and possible residual confounding in multivariable analyses.

Conclusions

In Papua P. vivax is the dominant cause of severe anemia in early infancy, mixed P. vivax/P. falciparum infections are associated with a greater hematological impairment than either species alone, and in adulthood P. malariae, although rare, is associated with the lowest hemoglobin concentration. These findings highlight the public health importance of integrated genus-wide malaria control strategies in areas of Plasmodium co-endemicity. Please see later in the article for the Editors'' Summary  相似文献   

2.

Background

Mortality from severe pediatric falciparum malaria appears low in Oceania but Plasmodium vivax is increasingly recognized as a cause of complications and death. The features and prognosis of mixed Plasmodium species infections are poorly characterized. Detailed prospective studies that include accurate malaria diagnosis and detection of co-morbidities are lacking.

Methods and Findings

We followed 340 Papua New Guinean (PNG) children with PCR-confirmed severe malaria (77.1% P. falciparum, 7.9% P. vivax, 14.7% P. falciparum/vivax) hospitalized over a 3-year period. Bacterial cultures were performed to identify co-incident sepsis. Clinical management was under national guidelines. Of 262 children with severe falciparum malaria, 30.9%, 24.8% and 23.2% had impaired consciousness, severe anemia, and metabolic acidosis/hyperlactatemia, respectively. Two (0.8%) presented with hypoglycemia, seven (2.7%) were discharged with neurologic impairment, and one child died (0.4%). The 27 severe vivax malaria cases presented with similar phenotypic features to the falciparum malaria cases but respiratory distress was five times more common (P = 0.001); one child died (3.7%). The 50 children with P. falciparum/vivax infections shared phenotypic features of mono-species infections, but were more likely to present in deep coma and had the highest mortality (8.0%; P = 0.003 vs falciparum malaria). Overall, bacterial cultures were positive in only two non-fatal cases. 83.6% of the children had alpha-thalassemia trait and seven with coma/impaired consciousness had South Asian ovalocytosis (SAO).

Conclusions

The low mortality from severe falciparum malaria in PNG children may reflect protective genetic factors other than alpha-thalassemia trait/SAO, good nutrition, and/or infrequent co-incident sepsis. Severe vivax malaria had similar features but severe P. falciparum/vivax infections were associated with the most severe phenotype and worst prognosis.  相似文献   

3.

Background

Plasmodium vivax is responsible for a significant proportion of malaria cases worldwide and is increasingly reported as a cause of severe disease. The objective of this study was to characterize severe vivax disease among children hospitalized in intensive care units (ICUs) in the Western Brazilian Amazon, and to identify risk factors associated with disease severity.

Methods and Findings

In this retrospective study, clinical records of 34 children, 0–14 years of age hospitalized in the 11 public pediatric and neonatal ICUs of the Manaus area, were reviewed. P. falciparum monoinfection or P. falciparum/P. vivax mixed infection was diagnosed by microscopy in 10 cases, while P. vivax monoinfection was confirmed in the remaining 24 cases. Two of the 24 patients with P. vivax monoinfection died. Respiratory distress, shock and severe anemia were the most frequent complications associated with P. vivax infection. Ninety-one children hospitalized with P. vivax monoinfections but not requiring ICU were consecutively recruited in a tertiary care hospital for infectious diseases to serve as a reference population (comparators). Male sex (p = 0.039), age less than five years (p = 0.028), parasitemia greater than 500/mm3 (p = 0.018), and the presence of any acute (p = 0.023) or chronic (p = 0.017) co-morbidity were independently associated with ICU admission. At least one of the WHO severity criteria for malaria (formerly validated for P. falciparum) was present in 23/24 (95.8%) of the patients admitted to the ICU and in 17/91 (18.7%) of controls, making these criteria a good predictor of ICU admission (p = 0.001). The only investigated criterion not associated with ICU admission was hyperbilirubinemia (p = 0.513)].

Conclusions

Our study points to the importance of P. vivax-associated severe disease in children, causing 72.5% of the malaria admissions to pediatric ICUs. WHO severity criteria demonstrated good sensitivity in predicting severe P. vivax infection in this small case series.  相似文献   

4.
5.

Background

Plasmodium vivax is one of the major species of malaria infecting humans. Although emphasis on P. falciparum is appropriate, the burden of vivax malaria should be given due attention. This study aimed to synthesize the evidence on severe malaria in P. vivax infection compared with that in P. falciparum infection.

Methods/Principal Findings

We searched relevant studies in electronic databases. The main outcomes required for inclusion in the review were mortality, severe malaria (SM) and severe anaemia (SA). The methodological quality of the included studies was assessed using the Newcastle-Ottawa Scale. Overall, 26 studies were included. The main meta-analysis was restricted to the high quality studies. Eight studies (n = 27490) compared the incidence of SM between P. vivax infection and P. falciparum mono-infection; a comparable incidence was found in infants (OR: 0.45, 95% CI:0.04–5.68, I 2:98%), under 5 year age group (OR: 2.06, 95% CI: 0.83–5.1, I 2:83%), the 5–15 year-age group (OR: 0.6, 95% CI: 0.31–1.16, I 2:81%) and adults (OR: 0.83, 95% CI: 0.67–1.03, I 2:25%). Six studies reported the incidences of SA in P. vivax infection and P. falciparum mono-infection; a comparable incidence of SA was found among infants (OR: 3.47, 95%:0.64–18.94, I 2: 92%), the 5–15 year-age group (OR:0.71, 95% CI: 0.06–8.57, I 2:82%). This was significantly lower in adults (OR:0.75, 95% CI: 0.62–0.92, I 2:0%). Five studies (n = 71079) compared the mortality rate between vivax malaria and falciparum malaria. A lower rate of mortality was found in infants with vivax malaria (OR:0.61, 95% CI:0.5–0.76, I 2:0%), while this was comparable in the 5–15 year- age group (OR: 0.43, 95% CI:0.06–2.91, I 2:84%) and the children of unspecified-age group (OR: 0.77, 95% CI:0.59–1.01, I 2:0%).

Conclusion

Overall, the present analysis identified that the incidence of SM in patients infected with P. vivax was considerable, indicating that P. vivax is a major cause of SM. Awareness of the clinical manifestations of vivax malaria should prompt early detection. Subsequent treatment and monitoring of complications can be life-saving.  相似文献   

6.

Background

When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax (molFOB, i.e. the number of genetically distinct blood-stage infections over time), and compared it to previously reported values for P. falciparum.

Methods

P. vivax molFOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1–4.5 years.

Results

On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with molFOB (incidence rate ratio (IRR) = 1.99, 95% confidence interval (CI95) [1.80, 2.19]), molFOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p<0.001) compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02).

Conclusion

P. vivax molFOB is considerably higher than P. falciparum molFOB (5.5 clones/child/year-at-risk). The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria.  相似文献   

7.

Background

New antimalarials are needed for P. vivax and P. falciparum malaria. This study compared the efficacy and safety of pyronaridine-artesunate with that of chloroquine for the treatment of uncomplicated P. vivax malaria.

Methods and Findings

This phase III randomized, double-blind, non-inferiority trial included five centers across Cambodia, Thailand, India, and Indonesia. In a double-dummy design, patients (aged >3–≤60 years) with microscopically confirmed P. vivax mono-infection were randomized (1∶1) to receive pyronaridine-artesunate (target dose 7.2∶2.4 mg/kg to 13.8∶4.6 mg/kg) or chloroquine (standard dose) once daily for three days. Each treatment group included 228 randomized patients. Outcomes for the primary endpoint, Day-14 cure rate in the per-protocol population, were 99.5%, (217/218; 95%CI 97.5, 100) with pyronaridine-artesunate and 100% (209/209; 95%CI 98.3, 100) with chloroquine. Pyronaridine was non-inferior to chloroquine: treatment difference −0.5% (95%CI −2.6, 1.4), i.e., the lower limit of the 2-sided 95%CI for the treatment difference was greater than −10%. Pyronaridine-artesunate cure rates were non-inferior to chloroquine for Days 21, 28, 35 and 42. Parasite clearance time was shorter with pyronaridine-artesunate (median 23.0 h) versus chloroquine (32.0 h; p<0.0001), as was fever clearance time (median 15.9 h and 23.8 h, respectively; p = 0.0017). Kaplan-Meier estimates of post-baseline P. falciparum infection incidence until Day 42 were 2.5% with pyronaridine-artesunate, 6.1% with chloroquine (p = 0.048, log-rank test). Post-baseline P. vivax or P. falciparum infection incidence until Day 42 was 6.8% and 12.4%, respectively (p = 0.022, log rank test). There were no deaths. Adverse events occurred in 92/228 (40.4%) patients with pyronaridine-artesunate and 72/228 (31.6%) with chloroquine. Mild and transient increases in hepatic enzymes were observed for pyronaridine-artesunate.

Conclusion

Pyronaridine-artesunate efficacy in acute uncomplicated P. vivax malaria was at least that of chloroquine. As pyronaridine-artesunate is also efficacious against P. falciparum malaria, this combination has potential utility as a global antimalarial drug.

Trial registration

Clinicaltrials.gov NCT00440999  相似文献   

8.
9.

Background

Severe malaria (SM) is classically associated with Plasmodium falciparum infection. Little information is available on the contribution of P. vivax to severe disease. There are some epidemiological indications that P. vivax or mixed infections protect against complications and deaths. A large morbidity surveillance conducted in an area where the four species coexist allowed us to estimate rates of SM among patients infected with one or several species.

Methods and Findings

This was a prospective cohort study conducted within the framework of the Malaria Vaccine Epidemiology and Evaluation Project. All presumptive malaria cases presenting at two rural health facilities over an 8-y period were investigated with history taking, clinical examination, and laboratory assessment. Case definition of SM was based on the World Health Organization (WHO) criteria adapted for the setting (i.e., clinical diagnosis of malaria associated with asexual blood stage parasitaemia and recent history of fits, or coma, or respiratory distress, or anaemia [haemoglobin < 5 g/dl]). Out of 17,201 presumptive malaria cases, 9,537 (55%) had a confirmed Plasmodium parasitaemia. Among those, 6.2% (95% confidence interval [CI] 5.7%–6.8%) fulfilled the case definition of SM, most of them in children <5 y. In this age group, the proportion of SM was 11.7% (10.4%–13.2%) for P. falciparum, 8.8% (7.1%–10.7%) for P. vivax, and 17.3% (11.7%–24.2%) for mixed P. falciparum and P. vivax infections. P. vivax SM presented more often with respiratory distress than did P. falciparum (60% versus 41%, p = 0.002), but less often with anaemia (19% versus 41%, p = 0.0001).

Conclusion

P. vivax monoinfections as well as mixed Plasmodium infections are associated with SM. There is no indication that mixed infections protected against SM. Interventions targeted toward P. falciparum only might be insufficient to eliminate the overall malaria burden, and especially severe disease, in areas where P. falciparum and P. vivax coexist.  相似文献   

10.

Background

Several studies have shown a prolonged or increased susceptibility to malaria in the post-partum period. A matched cohort study was conducted to evaluate prospectively the susceptibility to malaria of post-partum women in an area where P.falciparum and P.vivax are prevalent.

Methods

In an area of low seasonal malaria transmission on the Thai-Myanmar border pregnant women attending antenatal clinics were matched to a non-pregnant, non-post-partum control and followed up prospectively until 12 weeks after delivery.

Results

Post-partum women (n = 744) experienced significantly less P.falciparum episodes than controls (hazard ratio (HR) 0.39 (95%CI 0.21–0.72) p = 0.003) but significantly more P.vivax (HR 1.34 (1.05–1.72) p = 0.018). The reduced risk of falciparum malaria was accounted for by reduced exposure, whereas a history of P.vivax infection during pregnancy was a strong risk factor for P.vivax in post-partum women (HR 13.98 (9.13–21.41), p<0.001). After controlling for effect modification by history of P.vivax, post-partum women were not more susceptible to P.vivax than controls (HR: 0.33 (0.21–0.51), p<0.001). Genotyping of pre-and post-partum infections (n⊕ = ⊕10) showed that each post-partum P.falciparum was a newly acquired infection.

Conclusions

In this area of low seasonal malaria transmission post-partum women were less likely to develop falciparum malaria but more likely to develop vivax malaria than controls. This was explained by reduced risk of exposure and increased risk of relapse, respectively. There was no evidence for altered susceptibility to malaria in the post-partum period. The treatment of vivax malaria during and immediately after pregnancy needs to be improved.  相似文献   

11.

Background

Amhara Regional State of Ethiopia has a population of approximately 19.6 million, is prone to unstable and epidemic malaria, and is severely affected by trachoma. An integrated malaria and trachoma control program is being implemented by the Regional Health Bureau. To provide baseline data, a survey was conducted during December 2006 to estimate malaria parasite prevalence, malaria indicators, prevalence of trachoma, and trachoma risk factors in households and people of all ages in each of the ten zones of the state, excluding three urban centers (0.4% of the population).

Methodology/Principal Findings

The study was designed to provide prevalence estimates at zone and state levels. Using multi-stage cluster random sampling, 16 clusters of 25 households were randomly selected in each of the ten zones. Household heads were interviewed for malaria indicators and trachoma risk factors (N = 4,101). All people were examined for trachoma signs (N = 17,242), and those in even-numbered households provided blood films for malaria parasite detection (N = 7,745); both thick and thin blood films were read.Zonal malaria parasite prevalence ranged from 2.4% to 6.1%, with the overall state-wide prevalence being 4.6% (95% confidence interval (CI): 3.8%–5.6%). The Plasmodium falciparum: Plasmodium vivax ratio ranged from 0.9–2.1 with an overall regional ratio of 1.2. A total of 14.8% of households reported indoor residual spraying in the past year, 34.7% had at least one mosquito net, and 16.1% had one or more long-lasting insecticidal net. Zonal trachoma prevalence (trachomatous inflammation follicular [WHO grade TF] in children aged 1–9 years) ranged from 12.6% to 60.1%, with the overall state-wide prevalence being 32.7% (95% CI: 29.2%–36.5%). State-wide prevalence of trachomatous trichiasis (TT) in persons aged over fifteen was 6.2% (95% CI: 5.3–7.4), and 0.3% (95% CI: 0.2–0.5) in children aged 0–14 years. Overall, an estimated 643,904 persons (lower bound 419,274, upper bound 975,635) have TT and require immediate corrective surgery.

Conclusions/Significance

The results provide extensive baseline data to guide planning, implementation, and evaluation of the integrated malaria and trachoma control program in Amhara. The success of the integrated survey is the first step towards demonstration that control of priority neglected tropical diseases can be integrated with one of the “big three” killer diseases.  相似文献   

12.

Background

Intermittent preventive treatment of malaria in children (IPTc) is a promising new approach to the control of malaria in areas of seasonal malaria transmission but it is not known if IPTc adds to the protection provided by an insecticide-treated net (ITN).

Methods and Findings

An individually randomised, double-blind, placebo-controlled trial of seasonal IPTc was conducted in Burkina Faso in children aged 3 to 59 months who were provided with a long-lasting insecticide-treated bednet (LLIN). Three rounds of treatment with sulphadoxine pyrimethamine plus amodiaquine or placebos were given at monthly intervals during the malaria transmission season. Passive surveillance for malaria episodes was established, a cross-sectional survey was conducted at the end of the malaria transmission season, and use of ITNs was monitored during the intervention period. Incidence rates of malaria were compared using a Cox regression model and generalized linear models were fitted to examine the effect of IPTc on the prevalence of malaria infection, anaemia, and on anthropometric indicators. 3,052 children were screened and 3,014 were enrolled in the trial; 1,505 in the control arm and 1,509 in the intervention arm. Similar proportions of children in the two treatment arms were reported to sleep under an LLIN during the intervention period (93%). The incidence of malaria, defined as fever or history of fever with parasitaemia ≥5,000/µl, was 2.88 (95% confidence interval [CI] 2.70–3.06) per child during the intervention period in the control arm versus 0.87 (95% CI 0.78–0.97) in the intervention arm, a protective efficacy (PE) of 70% (95% CI 66%–74%) (p<0.001). There was a 69% (95% CI 6%–90%) reduction in incidence of severe malaria (p = 0.04) and a 46% (95% CI 7%–69%) (p = 0.03) reduction in the incidence of all-cause hospital admissions. IPTc reduced the prevalence of malaria infection at the end of the malaria transmission season by 73% (95% CI 68%–77%) (p<0.001) and that of moderately severe anaemia by 56% (95% CI 36%–70%) (p<0.001). IPTc reduced the risks of wasting (risk ratio [RR] = 0.79; 95% CI 0.65–1.00) (p = 0.05) and of being underweight (RR = 0.84; 95% CI 0.72–0.99) (p = 0.03). Children who received IPTc were 2.8 (95% CI 2.3–3.5) (p<0.001) times more likely to vomit than children who received placebo but no drug-related serious adverse event was recorded.

Conclusions

IPT of malaria provides substantial protection against malaria in children who sleep under an ITN. There is now strong evidence to support the integration of IPTc into malaria control strategies in areas of seasonal malaria transmission.

Trial Registration

ClinicalTrials.gov NCT00738946 Please see later in the article for the Editors'' Summary  相似文献   

13.

Background

Artemisinin combination therapies (ACTs) with broad efficacy are needed where multiple Plasmodium species are transmitted, especially in children, who bear the brunt of infection in endemic areas. In Papua New Guinea (PNG), artemether-lumefantrine is the first-line treatment for uncomplicated malaria, but it has limited efficacy against P. vivax. Artemisinin-naphthoquine should have greater activity in vivax malaria because the elimination of naphthoquine is slower than that of lumefantrine. In this study, the efficacy, tolerability, and safety of these ACTs were assessed in PNG children aged 0.5–5 y.

Methods and Findings

An open-label, randomized, parallel-group trial of artemether-lumefantrine (six doses over 3 d) and artemisinin-naphthoquine (three daily doses) was conducted between 28 March 2011 and 22 April 2013. Parasitologic outcomes were assessed without knowledge of treatment allocation. Primary endpoints were the 42-d P. falciparum PCR-corrected adequate clinical and parasitologic response (ACPR) and the P. vivax PCR-uncorrected 42-d ACPR. Non-inferiority and superiority designs were used for falciparum and vivax malaria, respectively. Because the artemisinin-naphthoquine regimen involved three doses rather than the manufacturer-specified single dose, the first 188 children underwent detailed safety monitoring. Of 2,542 febrile children screened, 267 were randomized, and 186 with falciparum and 47 with vivax malaria completed the 42-d follow-up. Both ACTs were safe and well tolerated. P. falciparum ACPRs were 97.8% and 100.0% in artemether-lumefantrine and artemisinin-naphthoquine-treated patients, respectively (difference 2.2% [95% CI −3.0% to 8.4%] versus −5.0% non-inferiority margin, p = 0.24), and P. vivax ACPRs were 30.0% and 100.0%, respectively (difference 70.0% [95% CI 40.9%–87.2%], p<0.001). Limitations included the exclusion of 11% of randomized patients with sub-threshold parasitemias on confirmatory microscopy and direct observation of only morning artemether-lumefantrine dosing.

Conclusions

Artemisinin-naphthoquine is non-inferior to artemether-lumefantrine in PNG children with falciparum malaria but has greater efficacy against vivax malaria, findings with implications in similar geo-epidemiologic settings within and beyond Oceania.

Trial registration

Australian New Zealand Clinical Trials Registry ACTRN12610000913077 Please see later in the article for the Editors'' Summary  相似文献   

14.

Background

Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention.

Methods and Findings

Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR)  =  2.7 (95% CI 1.42, 5.01, P  =  0.002) but not in those without detectable parasitaemia (HR  =  1.0 (95% CI 0.74, 1.42, P  =  0.9).

Conclusions

We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual''s capacity to mount an effective immune response to P. falciparum infection.  相似文献   

15.

Background

Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs) showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability.

Methodology/Principal Findings

This study was undertaken in four forested districts of central India (July, 2011– March, 2012). All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9–98.8) and lowest sensitivity was 76% (95% CI; 71.7–79.6). For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9) and 20% (95% CI; 15.6–24.5) respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6–0.9).

Conclusion

This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.  相似文献   

16.

Background

Malaria in pregnancy can expose the fetus to malaria-infected erythrocytes or their soluble products, thereby stimulating T and B cell immune responses to malaria blood stage antigens. We hypothesized that fetal immune priming, or malaria exposure in the absence of priming (putative tolerance), affects the child''s susceptibility to subsequent malaria infections.

Methods and Findings

We conducted a prospective birth cohort study of 586 newborns residing in a malaria-holoendemic area of Kenya who were examined biannually to age 3 years for malaria infection, and whose malaria-specific cellular and humoral immune responses were assessed. Newborns were classified as (i) sensitized (and thus exposed), as demonstrated by IFNγ, IL-2, IL-13, and/or IL-5 production by cord blood mononuclear cells (CBMCs) to malaria blood stage antigens, indicative of in utero priming (n = 246), (ii) exposed not sensitized (mother Plasmodium falciparum [Pf]+ and no CBMC production of IFNγ, IL-2, IL-13, and/or IL-5, n = 120), or (iii) not exposed (mother Pf−, no CBMC reactivity, n = 220). Exposed not sensitized children had evidence for prenatal immune experience demonstrated by increased IL-10 production and partial reversal of malaria antigen-specific hyporesponsiveness with IL-2+IL-15, indicative of immune tolerance. Relative risk data showed that the putatively tolerant children had a 1.61 (95% confidence interval [CI] 1.10–2.43; p = 0.024) and 1.34 (95% CI 0.95–1.87; p = 0.097) greater risk for malaria infection based on light microscopy (LM) or PCR diagnosis, respectively, compared to the not-exposed group, and a 1.41 (95%CI 0.97–2.07, p = 0.074) and 1.39 (95%CI 0.99–2.07, p = 0.053) greater risk of infection based on LM or PCR diagnosis, respectively, compared to the sensitized group. Putatively tolerant children had an average of 0.5 g/dl lower hemoglobin levels (p = 0.01) compared to the other two groups. Exposed not sensitized children also had 2- to 3-fold lower frequency of malaria antigen-driven IFNγ and/or IL-2 production (p<0.001) and higher IL-10 release (p<0.001) at 6-month follow-ups, when compared to sensitized and not-exposed children. Malaria blood stage–specific IgG antibody levels were similar among the three groups.

Conclusions

These results show that a subset of children exposed to malaria in utero acquire a tolerant phenotype to blood-stage antigens that persists into childhood and is associated with an increased susceptibility to malaria infection and anemia. This finding could have important implications for malaria vaccination of children residing in endemic areas. Please see later in the article for Editors'' Summary  相似文献   

17.

Background

The emergence of artemisinin-resistant P. falciparum malaria in South-East Asia highlights the need for continued global surveillance of the efficacy of artemisinin-based combination therapies.

Methods

On the Kenyan coast we studied the treatment responses in 474 children 6–59 months old with uncomplicated P. falciparum malaria in a randomized controlled trial of dihydroartemisinin-piperaquine vs. artemether-lumefantrine from 2005 to 2008. (ISRCTN88705995)

Results

The proportion of patients with residual parasitemia on day 1 rose from 55% in 2005–2006 to 87% in 2007–2008 (odds ratio, 5.4, 95%CI, 2.7–11.1; P<0.001) and from 81% to 95% (OR, 4.1, 95%CI, 1.7–9.9; P = 0.002) in the DHA-PPQ and AM-LM groups, respectively. In parallel, Kaplan-Meier estimated risks of apparent recrudescent infection by day 84 increased from 7% to 14% (P = 0.1) and from 6% to 15% (P = 0.05) with DHA-PPQ and AM-LM, respectively. Coinciding with decreasing transmission in the study area, clinical tolerance to parasitemia (defined as absence of fever) declined between 2005–2006 and 2007–2008 (OR body temperature >37.5°C, 2.8, 1.9–4.1; P<0.001). Neither in vitro sensitivity of parasites to DHA nor levels of antibodies against parasite extract accounted for parasite clearance rates or changes thereof.

Conclusions

The significant, albeit small, decline through time of parasitological response rates to treatment with ACTs may be due to the emergence of parasites with reduced drug sensitivity, to the coincident reduction in population-level clinical immunity, or both. Maintaining the efficacy of artemisinin-based therapy in Africa would benefit from a better understanding of the mechanisms underlying reduced parasite clearance rates.

Trial Registration

Controlled-Trials.com ISRCTN88705995  相似文献   

18.

Background

RTS,S/AS01E is the lead candidate pre-erythrocytic malaria vaccine. In Phase IIb field trials the safety profile was acceptable and the efficacy was 53% (95%CI 31%–72%) for protecting children against clinical malaria caused by P. falciparum. We studied CS-specific T cell responses in order to identify correlates of protection.

Methods and Findings

We used intracellular cytokine staining (for IL2, IFNγ, and TNFα), ex-vivo ELISPOTs (IFNγ and IL2) and IFNγ cultured ELISPOT assays to characterize the CS-specific cellular responses in 407 children (5–17 months of age) in a phase IIb randomized controlled trial of RTS,S/AS01E (NCT00380393). RTS,S/ AS01E vaccinees had higher frequencies of CS-specific CD4+ T cells producing IFNγ, TNFα or IL2 compared to control vaccinees. In a multivariable analysis TNFα+ CD4+ T cells were independently associated with a reduced risk for clinical malaria among RTS,S/AS01E vaccinees (HR = 0.64, 95%CI 0.49–0.86, p = 0.002). There was a non-significant tendency towards reduced risk among control vaccinees (HR = 0.80, 95%CI 0.62–1.03, p = 0.084), albeit with lower CS-specific T cell frequencies and higher rates of clinical malaria. When data from both RTS,S/AS01E vaccinees and control vaccinees were combined (with adjusting for vaccination group), the HR was 0.74 (95%CI 0.62–0.89, p = 0.001). After a Bonferroni correction for multiple comparisons (n-18), the finding was still significant at p = 0.018. There was no significant correlation between cultured or ex vivo ELISPOT data and protection from clinical malaria. The combination of TNFα+ CD4+ T cells and anti-CS antibody statistically accounted for the protective effect of vaccination in a Cox regression model.

Conclusions

RTS,S/AS01E induces CS-specific Th1 T cell responses in young children living in a malaria endemic area. The combination of anti-CS antibody concentrations titers and CS-specific TNFα+ CD4+ T cells could account for the level of protection conferred by RTS,S/AS01E. The correlation between CS-specific TNFα+ CD4+ T cells and protection needs confirmation in other datasets.  相似文献   

19.

Background

Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria.

Methods

A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories.

Results

Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition.

Conclusion

Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.  相似文献   

20.

Background

The Shoklo Malaria Research Unit has been working on the Thai–Myanmar border for 25 y providing early diagnosis and treatment (EDT) of malaria. Transmission of Plasmodium falciparum has declined, but resistance to artesunate has emerged. We expanded malaria activities through EDT and evaluated the impact over a 12-y period.

Methods and Findings

Between 1 October 1999 and 30 September 2011, the Shoklo Malaria Research Unit increased the number of cross-border (Myanmar side) health facilities from two to 11 and recorded the number of malaria consultations. Changes in malaria incidence were estimated from a cohort of pregnant women, and prevalence from cross-sectional surveys. In vivo and in vitro antimalarial drug efficacy were monitored. Over this period, the number of malaria cases detected increased initially, but then declined rapidly. In children under 5 y, the percentage of consultations due to malaria declined from 78% (95% CI 76–80) (1,048/1,344 consultations) to 7% (95% CI 6.2–7.1) (767/11,542 consultations), p<0.001. The ratio of P. falciparum/P. vivax declined from 1.4 (95% CI 1.3–1.4) to 0.7 (95% CI 0.7–0.8). The case fatality rate was low (39/75,126; 0.05% [95% CI 0.04–0.07]). The incidence of malaria declined from 1.1 to 0.1 episodes per pregnant women-year. The cumulative proportion of P. falciparum decreased significantly from 24.3% (95% CI 21.0–28.0) (143/588 pregnant women) to 3.4% (95% CI 2.8–4.3) (76/2,207 pregnant women), p<0.001. The in vivo efficacy of mefloquine-artesunate declined steadily, with a sharp drop in 2011 (day-42 PCR-adjusted cure rate 42% [95% CI 20–62]). The proportion of patients still slide positive for malaria at day 3 rose from 0% in 2000 to reach 28% (95% CI 13–45) (8/29 patients) in 2011.

Conclusions

Despite the emergence of resistance to artesunate in P. falciparum, the strategy of EDT with artemisinin-based combination treatments has been associated with a reduction in malaria in the migrant population living on the Thai–Myanmar border. Although limited by its observational nature, this study provides useful data on malaria burden in a strategically crucial geographical area. Alternative fixed combination treatments are needed urgently to replace the failing first-line regimen of mefloquine and artesunate. Please see later in the article for the Editors'' Summary  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号