首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIM: To identify non-quinazoline kinase inhibitors effective against drug resistant mutants of epidermal growth factor receptor (EGFR).METHODS: A kinase inhibitor library was subjected to screening for specific inhibition pertaining to the in vitro kinase activation of EGFR with the gatekeeper mutation T790M, which is resistant to small molecular weight tyrosine kinase inhibitors (TKIs) for EGFR in non-small cell lung cancers (NSCLCs). This inhibitory effect was confirmed by measuring autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells, an NSCLC cell line harboring the gatekeeper mutation. The effects of a candidate compound, Janus kinase 3 (JAK3) inhibitor VI, on cell proliferation were evaluated using the MTT assay and were compared between T790M-positive and -negative lung cancer cell lines. JAK3 inhibitor VI was modeled into the ATP-binding pocket of EGFR T790M/L858R. Potential physical interactions between the compound and kinase domains of wild-type (WT) or mutant EGFRs or JAK3 were estimated by calculating binding energy. The gatekeeper residues of EGFRs and JAKs were aligned to discuss the similarities among EGFR T790M and JAKs.RESULTS: We found that JAK3 inhibitor VI, a known inhibitor for JAK3 tyrosine kinase, selectively inhibits EGFR T790M/L858R, but has weaker inhibitory effects on the WT EGFR in vitro. JAK3 inhibitor VI also specifically reduced autophosphorylation of EGFR T790M/L858R in NCI-H1975 cells upon EGF stimulation, but did not show the inhibitory effect on WT EGFR in A431 cells. Furthermore, JAK3 inhibitor VI suppressed the proliferation of NCI-H1975 cells, but showed limited inhibitory effects on the WT EGFR-expressing cell lines A431 and A549. A docking simulation between JAK3 inhibitor VI and the ATP-binding pocket of EGFR T790M/L858R predicted a potential binding status with hydrogen bonds. Estimated binding energy of JAK3 inhibitor VI to EGFR T790M/L858R was more stable than its binding energy to the WT EGFR. Amino acid sequence alignments revealed that the gatekeeper residues of JAK family kinases are methionine in WT, similar to EGFR T790M, suggesting that TKIs for JAKs may also be effective for EGFR T790M.CONCLUSION: Our findings demonstrate that JAK3 inhibitor VI is a gatekeeper mutant selective TKI and offer a strategy to search for new EGFR T790M inhibitors.  相似文献   

2.
3.
Human bronchial epithelial cells exposed to synthetic double-stranded RNA (poly I:C) exhibited increased IL-6 and RANTES secretion and TLR2 expression that was inhibited following TLR3 silencing. Increased NF-κB and Stat3 phosphorylation were detected after poly I:C exposure and pretreatment with neutralizing antibody targeting IL-6 receptor α (IL-6Rα -nAb) or blocking Jak2 and Stat3 activity inhibited Stat3 phosphorylation. TLR2 up-regulation by poly I:C was also reduced by IL-6Rα-nAb and inhibitors of Jak2, Stat3 and NF-κB phosphorylation, whereas RANTES secretion was unaffected, but abolished following NF-κB inhibition. Treatment with exogenous IL-6 failed to increase TLR2. These findings demonstrate that TLR3 activation differentially regulates TLR expression through autocrine signaling involving IL-6 secretion, IL-6Rα activation and subsequent phosphorylation of Stat3. The results also indicate that NF-κB and Stat3 are required for TLR3-dependent up-regulation of TLR2 and that its delayed expression was due to a requirement for IL-6-dependent Stat3 activation.  相似文献   

4.
Little is known about lung carcinoma epidermal growth factor (EGF) kinase pathway signaling within the context of the tissue microenvironment. We quantitatively profiled the phosphorylation and abundance of signal pathway proteins relevant to the EGF receptor within laser capture microdissected untreated, human non-small cell lung cancer (NSCLC) (n = 25) of known epidermal growth factor receptor (EGFR) tyrosine kinase domain mutation status. We measured six phosphorylation sites on EGFR to evaluate whether EGFR mutation status in vivo was associated with the coordinated phosphorylation of specific multiple phosphorylation sites on the EGFR and downstream proteins. Reverse phase protein array quantitation of NSCLC revealed simultaneous increased phosphorylation of EGFR residues Tyr-1148 (p < 0.044) and Tyr-1068 (p < 0.026) and decreased phosphorylation of EGFR Tyr-1045 (p < 0.002), HER2 Tyr-1248 (p < 0.015), IRS-1 Ser-612 (p < 0.001), and SMAD Ser-465/467 (p < 0.011) across all classes of mutated EGFR patient samples compared with wild type. To explore which subset of correlations was influenced by ligand induction versus an intrinsic phenotype of the EGFR mutants, we profiled the time course of 115 cellular signal proteins for EGF ligand-stimulated (three dosages) NSCLC mutant and wild type cultured cell lines. EGFR mutant cell lines (H1975 L858R) displayed a pattern of EGFR Tyr-1045 and HER2 Tyr-1248 phosphorylation similar to that found in tissue. Persistence of phosphorylation for AKT Ser-473 following ligand stimulation was found for the mutant. These data suggest that a higher proportion of the EGFR mutant carcinoma cells may exhibit activation of the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (MTOR) pathway through Tyr-1148 and Tyr-1068 and suppression of IRS-1 Ser-612, altered heterodimerization with ERBB2, reduced response to transforming growth factor beta suppression, and reduced ubiquitination/degradation of the EGFR through EGFR Tyr-1045, thus providing a survival advantage. This is the first comparison of multiple, site-specific phosphoproteins with the EGFR tyrosine kinase domain mutation status in vivo.  相似文献   

5.
6.
Activating mutations in the kinase domain of the EGF receptor have been reported in non-small cell lung cancer. The majority of tumors expressing these mutants are sensitive to ATP mimetics that inhibit the EGFR tyrosine kinase. The effect of antibodies that bind to the ectodomain of the receptor is less clear. We report herein the effects and mechanisms of action of the antibody cetuximab in lung cancer cells that naturally express receptor mutations and in ErbB-null 32D hematopoietic cells transfected with mutant EGFR. Treatment with cetuximab down-regulated EGFR levels and inhibited cell growth both in vitro and in vivo. This was associated with inhibition of ligand-independent EGFR signaling. These effects were seen in 32D cells arguing the growth inhibitory action was not because of the blockade of autocrine ligand action. Both antibody-induced EGFR down-regulation and inhibition of growth required receptor dimerization as monovalent Fab fragments only eliminated receptor levels or reduced cell proliferation in the presence of antihuman IgG. Finally, cetuximab inhibited growth of H1975 lung cancer cells and xenografts, which expressed L858R/T790M EGFR and were resistant to EGFR tyrosine kinase inhibitors. These data suggest that cetuximab is an effective therapy against mutant EGFR-expressing cancer cells and thus can be considered in combination with other anti-EGFR molecules.  相似文献   

7.
8.
TAE226, a bis-anilino pyrimidine compound, has been developed as an inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor-I receptor (IGF-IR). In this study, we investigated the effect of TAE226 on non-small-cell lung cancer (NSCLC), especially focusing on the EGFR mutational status. TAE226 was more effective against cells with mutant EGFR, including the T790M mutant, than against cells with wild-type one. TAE226 preferentially inhibited phospho-EGFR and its downstream signaling mediators in the cells with mutant EGFR than in those with wild-type one. Phosphorylation of FAK and IGF-IR was not inhibited at the concentration at which the proliferation of EGFR-mutant cells was inhibited. Results of the in vitro binding assay indicated significant differences in the affinity for TAE226 between the wild-type and L858R (or delE746_A750) mutant, and the reduced affinity of ATP to the L858R (or delE746_A750) mutant resulted in good responsiveness of the L858R (or delE746_A750) mutant cells to TAE226. Of interest, the L858R/T790M or delE746_A750/T790M mutant enhanced the binding affinity for TAE226 compared with the L858R or delE746_A750 mutant, resulting in the effectiveness of TAE226 against T790M mutant cells despite the T790M mutation restoring the ATP affinity for the mutant EGFR close to that for the wild-type. TAE226 also showed higher affinity of about 15-fold for the L858R/T790M mutant than for the wild-type one by kinetic interaction analysis. The anti-tumor effect against EGFR-mutant tumors including T790M mutation was confirmed in mouse models without any significant toxicity. In summary, we showed that TAE226 inhibited the activation of mutant EGFR and exhibited anti-proliferative activity against NSCLCs carrying EGFR mutations, including T790M mutation.  相似文献   

9.
Even though the interaction between epithelial growth factor receptor (EGFR) and interleukin-6 receptor (IL-6R) has been found in many tumors, there is a lack of relevant in-depth study of lung cancer. The following study investigates the interaction of EGFR and IL-6R in lung cancer. In the current study, EGFR, IL-6, and glycoprotein 130 (GP130) were highly expressed in non–small cell lung cancer (NSCLC) tissue samples and were associated with clinicopathological features and poor prognosis of patients with NSCLC. Furthermore, the effect of EGF and IL-6 on biological behavior of lung cancer cells (cell proliferation, invasion, cycle, and apoptosis) and the expression of EGFR, GP130, p-protein kinase B (p-AKT), and p-p44/42 mitogen-activated protein kinase (p-p44/42 MAPK) was significantly stronger compared with other treatment groups (all P < 0.05). These results suggest that EGFR and IL-6R have synergistic effects on NSCLC progression. This could help to solve the problem of EGFR inhibitors in the treatment of lung cancer resistance and improve the efficacy of current treatment for lung cancer through a combination of EGFR and IL-6R signaling pathways.  相似文献   

10.
11.
YK Bae  JY Sung  YN Kim  S Kim  KM Hong  HT Kim  MS Choi  JY Kwon  J Shim 《PloS one》2012,7(9):e42441
The epidermal growth factor receptor (EGFR) is a well-established target for cancer treatment. EGFR tyrosine kinase (TK) inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK), a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R]), or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R]) in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv) phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor) and U0126 (a MEK inhibitor) were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.  相似文献   

12.
13.
Steroid hormones are expressed at low levels in mesenchymal cells and are highly expressed in soft tissue sarcoma. In human soft tissue fibrosarcoma cell line (HT-1080), the epidermal growth factor (EGF) stimulates the express of matrix metal (MMPs) expression through a Src-dependent mechanism. In human fibrosarcomas, increased expression of MMPs correlates with the metastatic progression. Our recent data in human breast cancer cell line MCF-7, demonstrates that EGF stimulates estradiol receptor (ER) phosphorylation on tyrosine at position 537 thereby promoting the association of a complex among EGF receptor (EGFR), androgen receptor (AR), ER, and Src that activates EGF-dependent signaling pathway. In the present study, we demonstrate that, in HT-1080 cells, the Src kinase activity is involved in EGFR phosphorylation and this activity is regulated by an interplay between Src, steroid receptors, and EGFR. In these cells, estradiol (E(2) )/ER and synthetic androgen (R1881)/AR trans-activate EGFR leading to the downstream signaling and to ERK activation. Indeed, the association between ER/AR and EGFR enhances metastatic progression of fibrosarcoma tumors. A population pilot study performed on 16 patients with soft tissue neoplasias highlights that MMPs expression correlates with progression of anaplastic sarcoma as well as overexpression of EGFR. These findings suggest that there is a crosstalk among AR, ER, and EGFR that lead to src activation also in fibrosarcoma cells.  相似文献   

14.
Activating mutants of EGFR have been identified in a subset of non-small-cell lung cancers. To investigate mutant-driven signaling, we focused on Y869, a residue in the same activation loop where the L858R and L861Q mutations are located. We observed ligand-independent phosphorylation of Y869 in 32D cells EGFR(L858R) and EGFR(L861Q). The EGFR tyrosine kinase inhibitor (TKI) erlotinib inhibited Y869 P-EGFR in intact cells as well as in a cell-free kinase reaction. Expression of kinase domain of EGFR(L858R) and EGFR(L861Q) exhibited auto-phosphorylation of Y869; this was inhibited by EGFR TKIs but not by Src kinase inhibitor. P-Y859 of EGFR-mediated downstream component, STAT5, was also analyzed. Y694 P-STAT5 was eliminated by erlotinib treatment. Analysis of immune-complexes showed constitutive association of mutant EGFRs with STAT5 and Src which was unaffected by erlotinib or PP1. On the other hand, 32D-EGFR(WT) exhibited constitutive STAT5 phosphorylation and association of EGFR with JAK2. In these cells, a JAK2 inhibitor abrogated P-STAT5 whereas mutant EGFRs did not associate with JAK2. Expression of c-myc was regulated by EGFR/STAT5 signaling in cells expressing EGFR(L858R) and EGFR(L861Q). Our results suggest that ligand-independent and Src activity-independent phosphorylation of Y869 in mutant EGFR regulates STAT5 activation and c-myc expression.  相似文献   

15.
Epidermal growth factor receptor (EGFR) is a valid drug target for development of target-based therapeutics against non-small-cell lung cancer. In this study, we established a high-throughput cell-based assay to screen for compounds that may inhibit EGFR activation and/or EGFR-mediated downstream signaling pathway. This drug screening platform is based on the characterization of an EGFR-transfected 32D cell line (32D-EGFR). The expression of EGFR in 32D cells allowed cell proliferation in the presence of either epidermal growth factor (EGF) or interleukin 3 (IL-3) and provided a system for both screening and counterscreening of EGFR pathway-inhibitory compounds. After the completion of primary and secondary screenings in which 32D-EGFR cells were grown under the stimulation of either EGF or IL-3, 9 of 20,000 compounds were found to selectively inhibit the EGF-dependent proliferation, but not the IL-3-dependent proliferation, of 32D-EGFR cells. Subsequent analysis showed that 3 compounds of the 9 initial hits directly inhibited the kinase activity of recombinant EGFR in vitro and the phosphorylation of EGFR in H1299 cells transfected with EGFR. Thus, this 32D-EGFR assay system provides a promising approach for identifying novel EGFR and EGFR signaling pathway inhibitors with potential antitumor activity.  相似文献   

16.
17.
18.
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.  相似文献   

19.
20.
Through a receptor-based and ligand-based combined virtual screening protocol, 21 novel compounds covering 15 scaffolds were identified as novel inhibitors for EGFR-T790M/L858R, among which, 12 of them were identified as selective inhibitors for EGFR-T790M/L858R to wild-type EGFR, and 5 of them exhibited 'dual-effective' to wild-type and mutant EGFR. Meanwhile, their antiproliferative effects toward EGFR high-expressing human lung cancer cell (A549), epidermoid carcinoma cell (A431), and the mutant EGFR-dependent cell (NCI-H1975) were also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号