首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Lateral cortex is the most laterally placed of the four cortical areas in snakes. Earlier studies suggest that it is composed of several subdivisions but provide no information on their organization. This paper first investigates the structure of lateral cortex in boa constrictors (Constrictor constrictor), garter snakes (Thamnophis sirtalis), and banded water snakes (Natrix sipedon) using Nissl and Golgi preparations; and secondly examines the relation of main olfactory bulb projections to the subdivisions of lateral cortex using Fink-Heimer and electron microscopic preparations. Lateral cortex is divided on cytoarchitectonic grounds into two major parts called rostral and caudal lateral cortex. Each part is further divided into dorsal and ventral subdivisions so that lateral cortex has a total of four subdivisions: dorsal rostral lateral cortex (drL), ventral rostral lateral cortex (vrL), dorsal caudal lateral cortex (dcL) and ventral caudal lateral cortex (vcL). Systematic analyses of Golgi preparations indicate that the rostral and caudal parts each contain distinct populations of neurons. Rostral lateral cortex contains bowl cells whose dendrites arborize widely in the outer cortical layer (layer 1). The axons of some bowl cells can be traced medially into dorsal cortex, dorsomedial cortex and medial cortex. Caudal lateral cortex contains pyramidal cells whose somata occur in layers 2 and 3 and whose dendrites extend radially up to the pial surface. In addition, three populations of neurons occur in both rostral and caudal lateral cortex. Stellate cells occur in all three layers and have dendrites which arborize in all directions. Double pyramidal cells occur primarily in layer 2 and have dendrites which form two conical fields whose long axes are oriented radially. Horizontal cells occur in layer 3 and have dendrites oriented concentric with the ependyma. Fink-Heimer preparations of snakes which underwent lesions of the main olfactory bulb show that the primary olfactory projections to cortex are bilateral and restricted precisely to rostral lateral cortex. Electron microscopic degeneration experiments indicate that the olfactory bulb fibers end as terminals which have clear, spherical vesicles and asymmetric active zones. The majority are presynaptic to dendritic spines in outer layer 1. These studies establish that lateral cortex in snakes is heterogeneous and contains two major parts, each containing two subdivisions. The rostral and caudal parts have characteristic neuronal populations. Primary olfactory input is restricted to rostral lateral cortex and seems to terminate heavily on the distal dendrites of bowl cells. Axons of some of these cells leave lateral cortex, so that the rostral lateral cortex forms a direct route by which olfactory information reaches other cortical areas. The functional role of caudal lateral cortex is not clear.  相似文献   

2.
d-amino acid oxidase (d-AAO) is a peroxisomal flavoenzyme, the physiological substrate and the precise function of which are still unclear. We have investigated D-AAO distribution in rat brain, by immunocytochemistry, with an affinity-purified polyclonal antibody. Immunoreactivity occurred in both neuronal and glial cells, albeit at different densities. Glial immunostaning was strongest in the caudal brainstem and cerebellar cortex, particularly in astrocytes, Golgi-Bergmann glia, and tanycytes. Hindbrain neurons were generally more immunoreactive than those in the forebrain. Immunopositive forebrain cell populations included mitral cells in the olfactory bulb, cortical and hippocampal neurons, ventral pallidum, and septal, reticular thalamic, and paraventricular hypothalamic nuclei. Within the positive regions, not all the neuronal populations were equally immunoreactive; for example, in the thalamus, only the reticular and anterodorsal nuclei showed intense labelling. In the hindbrain, immunopositivity was virtually ubiquitous, and was especially strong in the reticular formation, pontine, ventral and dorsal cochlear, vestibular, cranial motor nuclei, deep cerebellar nuclei, and the cerebellar cortex, especially in Golgi and Purkinje cells.  相似文献   

3.
4.
The distribution of cells that express three prepro-gonadotropin-releasing hormones (GnRH), corresponding to salmon GnRH, sea bream GnRH (sbGnRH), and chicken II GnRH, was studied in the brain and pituitary of the South American cichlid fish, Cichlasoma dimerus. Although the ontogeny and distribution of GnRH neuronal systems have previously been examined immunohistochemically with antibodies and antisera against the various GnRH decapeptides, we have used antisera against various perciform GnRH-associated peptides (GAPs) and riboprobes to various perciform GnRH+GAPs. The results demonstrate that: (1) the GnRH neuronal populations in the forebrain (salmon and sea bream GAPs; sGAP and sbGAP, respectively) show an overlapping pattern along the olfactory bulbs, nucleus olfacto-retinalis, ventral telencephalon, and preoptic area; (2) projections with sGAP are mainly located in the forebrain and contribute to the pituitary innervation, with projections containing chicken GAP II being mainly distributed along the mid and hindbrain and not contributing to pituitary innervation, whereas sbGAP projections are restricted to the ventral forebrain, being the most important molecular form in relation to pituitary innervation; (3) sbGnRH (GnRH I) neurons have an olfactory origin; (4) GAP antibodies and GAP riboprobes are valuable tools for the study of various GnRH systems, by avoiding the cross-reactivity problems that occur when using GnRH antibodies and GnRH riboprobes alone.This work was supported by grants UBACYT X-217, Conicet PIP 0539/R188; NIH-HD-29186 and Fogarty International Fellowship TW00086.  相似文献   

5.
A cytoarchitectonic analysis of the telencephalon of the sea bass Dicentrarchus labrax, based on cresyl violet-stained serial transverse sections, is presented. Rostrally, the brain of the sea bass is occupied by sessile olfactory bulbs coupled to telencephalic hemispheres. The olfactory bulbs comprise an olfactory nerve fiber layer, a glomerular layer, an external cellular layer, a secondary olfactory fiber layer, and an internal cellular layer. Large terminal nerve ganglion cells are evident in the caudomedial olfactory bulbs. We recognized 22 distinct telencephalic nuclei which were classified in two main areas, the ventral telencephalon and the dorsal telencephalon. The ventral telencephalon displays four periventricular cell masses: the dorsal, ventral, supracommissural, and postcommissural nuclei; and four migrated populations: the lateral, central, intermediate, and entopeduncular nuclei. In addition, a periventricular cell population resembling the lateral septal organ reported in birds is observed in the ventral telencephalon of the sea bass. The dorsal telencephalon contains 13 nuclei, which can be organized into five major zones: the medial part, dorsal part, lateral part and its ventral, dorsal, and posterior divisions, the central part, and posterior part. Based on histological criteria, two cell masses are recognized in the ventral division of the lateral part of the dorsal telencephalon. The nucleus taenia is found in the caudal area of the dorsal telencephalon, close to the ventral area. This study represents a useful tool for the precise localization of the neuroendocrine territories and for the tracing of the neuronal systems participating in the regulation of reproduction and metabolism in this species.  相似文献   

6.
In mammals, conventional odorants are detected by OSNs located in the main olfactory epithelium of the nose. These neurons project their axons to glomeruli, which are specialized structures of neuropil in the olfactory bulb. Within glomeruli, axons synapse onto dendrites of projection neurons, the mitral and tufted (M/T) cells. Genetic approaches to visualize axons of OSNs expressing a given odorant receptor have proven very useful in elucidating the organization of these projections to the olfactory bulb. Much less is known about the development and connectivity of the lateral olfactory tract (LOT), which is formed by axons of M/T cells connecting the olfactory bulb to central neural regions. Here, we have extended our genetic approach to mark M/T cells of the main olfactory bulb and their axons in the mouse, by targeted insertion of IRES-tauGFP in the neurotensin locus. In NT-GFP mice, we find that M/T cells of the main olfactory bulb mature and project axons as early as embryonic day 11.5. Final innervation of central areas is accomplished before the end of the second postnatal week. M/T cell axons that originate from small defined areas within the main olfactory bulb, as visualized by localized injections of fluorescent tracers in wild-type mice at postnatal days 1 to 3, follow a dual trajectory: a branch of tightly packed axons along the dorsal aspect of the LOT, and a more diffuse branch along the ventral aspect. The dorsal, but not the ventral, subdivision of the LOT exhibits a topographical segregation of axons coming from the dorsal versus ventral main olfactory bulb. The NT-GFP mouse strain should prove useful in further studies of development and topography of the LOT, from E11.5 until 2 weeks after birth.  相似文献   

7.
Summary Retinopetal neurons were visualised in the telencephalon and diencephalon of an air-breathing teleost fish, Channa punctata, following administration of cobaltous lysine to the optic nerve. The labelled perikarya (n=45–50) were always located on the side contralateral to the optic nerve that had received the neuronal tracer. The rostral-most back-filled cell bodies were located in the nucleus olfactoretinalis at the junction between the olfactory bulb and the telencephalon. In the area ventralis telencephali, two groups of telencephaloretinopetal neurons were identified near the ventral margin of the telencephalon. The rostral hypothalamus exhibited retrogradely labelled cells in three discrete areas of the lateral preoptic area, which was bordered medially by the nucleus praeopticus periventricularis and nucleus praeopticus, and laterally by the lateral forebrain bundle. In addition to a dorsal and a ventral group, a third population of neurons was located ventral to the lateral forebrain bundle adjacent to the optic tract. The dorsal group of neurons exhibited extensive collaterals; a few extended laterally towards the lateral forebrain bundle, whereas others ran into the dorsocentral area of the area dorsalis telencephali. A few processes extended via the anterior commissure into the telencephalon ipsilateral to the optic nerve that had been exposed to cobaltous lysine. However, the ventral cell group did not possess collaterals. In the diencephalon, retinopetal cells were visualised in the nucleus opticus dorsolateralis located in the pretectal area; these were the largest retinopetal perikarya of the brain. The caudal-most nucleus that possessed labelled somata was the retinothalamic nucleus; it contained the largest number of retinopetal cells. The limited number of widely distributed neurons in the forebrain, some with extensive collaterals, might participate in functional integration of different brain areas involved in feeding, which in this species is influenced largely by taste, not solely by vision.  相似文献   

8.
The ontogeny of two gonadotropin-releasing-hormone (GnRH) systems, salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II), was investigated in zebrafish (Danio rerio). In situ hybridization (ISH) first detected sGnRH mRNA-expressing cells at 1 day post-fertilization (pf) anterior to the developing olfactory organs. Subsequently, cells were seen along the ventral olfactory organs and the olfactory bulbs, reaching the terminal nerve (TN) ganglion at 5–6 days pf. Some cells were detected passing posteriorly through the ventral telencephalon (10–25 days pf), and by 25–30 days pf, sGnRH cells were found in the hypothalamic/preoptic area. Continuous documentation in live zebrafish was achieved by a promoter-reporter expression system. The expression of enhanced green fluorescent protein (EGFP) driven by the sGnRH promoter allowed the earlier detection of cells and projections and the migration of sGnRH neurons. This expression system revealed that long leading processes, presumably axons, preceded the migration of the sGnRH neuron somata. cGnRH-II mRNA expressing cells were initially detected (1 day pf) by ISH analysis at lateral aspects of the midbrain and later on (starting at 5 days pf) at the midline of the midbrain tegmentum. Detection of red fluorescent protein (DsRed) driven by the cGnRH-II promoter confirmed the midbrain expression domain and identified specific hindbrain and forebrain cGnRH-II-cells that were not identified by ISH. The forebrain DsRed-expressing cells seemed to emerge from the same site as the sGnRH-EGFP-expressing cells, as revealed by co-injection of both constructs. These studies indicate that zebrafish TN and hypothalamic sGnRH cell populations share a common embryonic origin and migratory path, and that midbrain cGnRH-II cells originate within the midbrain. This study was supported by the US-Israel Bi-national Agricultural Research and Development (BARD) Foundation (grant 3428-03).  相似文献   

9.
The olfactory epithelium in vertebrates generates the olfactory sensory neurons and several migratory cell types. Prominent among the latter are the gonadotropin-releasing hormone (GnRH) neurons that differentiate within the olfactory epithelium during embryogenesis and migrate along the olfactory nerve to the central nervous system. We initiated studies to characterize additional neuronal phenotypes of olfactory epithelial derivation. Neuropeptide Y (NPY) neurons are functionally related to the reproductive axis, modulating the release of GnRH and directly enhancing GnRH-induced luteinizing hormone (LH) secretion from gonadotrophs. We demonstrate that a population of migratory NPY neurons originates within the olfactory epithelium of the chick. At stage 25, NPY-positive fibers, but not cells, were detected in the epithelium and the nerve. By stages 28–34, NPY neurons and processes were present in the olfactory epithelium, olfactory nerve, and at the junction of the olfactory nerve and forebrain. In these regions the number of NPY neurons increased until stage 30 and then declined as development progressed. Electron microscopic immunocytochemistry confirmed the neuronal phenotype of the NPY-positive cells. The origin and migratory nature of some of these NPY cells was confirmed by double-label immunocytochemical detection of NPY and GnRH. A large percentage of the NPY-cells coexpressed the GnRH peptide. Between stages 28 and 34 single- and double-labeled NPY and GnRH neurons were found side by side along the GnRH migratory route emanating from the nasal epithelium, along the olfactory nerve, and into the ventral forebrain. These data suggest that an NPY population originates in the olfactory epithelium and migrates into the central nervous system during embryogenesis. By stage 42, no NPY/GnRH double-labeled cells were detected. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
To direct Cre-mediated recombination to differentiated medium-size spiny neurons (MSNs) of the striatum, we generated transgenic mice that express Cre recombinase under the regulation of DARPP-32 genomic fragments. In this reported line, recombination of an R26R reporter allele occurred postnatally in the majority of medium-size spiny neurons of the dorsal and ventral striatum (caudate nucleus and nucleus accumbens/olfactory tubercle), as well as in the piriform cortex and choroid plexus. Although regulatory fragments were selected to target MSNs, low levels of Cre-recombinase expression, as detected by beta-galactosidase activity from the R26R reporter gene, were also apparent in widely dispersed areas or cells of the forebrain and hindbrain. These included the primary and secondary motor cortex, and association cortex, as well as in the olfactory bulb and cerebellar Purkinje cells. Notably, expression in these regions was well below that of endogenous DARPP-32. Analysis of colocalization of beta-galactosidase, as detected either by histochemistry or immunocytochemistry, and DARPP-32 revealed double-labeling in almost all DARPP-32-expressing MSNs in the postnatal striatum, but not in extrastriatal regions. The DARPP-32Cre transgenic mouse line thus provides a useful tool to specifically express and/or inactivate genes in mature MSNs of the striatum.  相似文献   

11.
Price  Joseph L. 《Chemical senses》1985,10(2):239-258
The extrinsic projections from the primary olfactory cortexto other areas of the forebrain in the rat are described, onthe basis of experiments using anterograde and retrograde axonaltracers, as well as electrophysiological recording of unit activity.The areas shown to receive olfactory inputs are (i) in the neocortex:the lateral and ventrolateral orbital areas, and the ventralagranular insular area, all of which are in the dorsal bankof the rhinal sulcus; (ii) in the thalamus: the central segmentof the mediodorsal nucleus and the ventral part of the submedicalnucleus; (iii) in the hypothalamus: the lateral hypothalamicarea, especially its caudal half, and probably the nucleus gemiru,with some input also to more medial hypothalamic structures;(iv) the hippocampus and dentate gyrus; and (v) the deep nucleiof the amygdala. Anterograde and retrograde axonal tracing experimentshave shown that all of these areas receive fibers from cellsin or closely related to the primary olfactory cortex, and cellsin all of them except the nucleus gemini and the deep nucleiof the amygdala have been shown to be driven by electrical stimulationof the olfactory bulb.  相似文献   

12.
A prolific neuronal progenitor cell population in the anterior portion of the neonatal rat forebrain subventricular zone, the SVZa, is specialized for the production of olfactory bulb interneurons. At all ages, SVZa-derived cells traverse a tangential migratory pathway, the rostral migratory stream (RMS), while en route to the olfactory bulb. Unlike other neuronal progenitor cells of the forebrain, migrating progeny of SVZa progenitors express neuronal-specific proteins and continue to divide into adulthood. Recent studies indicate that in the adult, migrating SVZa-derived cells are ensheathed by astrocytes, although the function of these astrocytes has not been determined. To explore the possible role(s) of astrocytes in the rat SVZa and RMS, we examined the expression of astroglial-specific genes in the postnatal SVZa and RMS using RT-PCR, in situ hybridization, and immunohistochemistry during (Postnatal Days 1-10) and after the period of peak olfactory bulb interneuron generation. We also examined the expression of neuronal-specific genes throughout the rostral-caudal extent of the postnatal subventricular zone to determine if differential cell type-specific gene expression could distinguish the neurogenic SVZa as a region distinct from the remainder of the SVZ. We found little to no astrocyte-specific gene expression in the P0-P7 SVZa, although the neuron-specific isoforms of tubulin (T alpha 1 and beta-III tubulin) were expressed abundantly in the SVZa and RMS. In contrast, astrocyte-specific genes were strongly expressed in the SVZ posterior to the SVZa. GFAP expressions begins to appear in some restricted areas of the rostral migratory stream after the first postnatal week. These data suggest that astroglia are not involved in the generation or migration of most olfactory bulb interneurons. Moreover, the scarcity of glial markers in the neonatal SVZa indicates that the forebrain subventricular zone includes a distinct neurogenic anterior region containing predominantly committed neuronal progenitor cells.  相似文献   

13.
Olfactory placodes, that give rise to the olfactory and respiratory epithelia during ontogenesis, are a source of many neurons migrating into forebrain in the direction of growth along the olfactory nerves. The neurons expressing gonadotropin releasing hormone (GnRH) are among the best studied in the population in question. This hormone is responsible for the central regulation of reproduction in adult animals. It was already shown that, in addition to the GnRH-immunoreactive neurons, a small amount of neurons expressing tyrosine hydroxylase (TH), the first enzyme of catecholamine synthesis, migrates into the forebrain. Such a transient population of TH-immunoreactive neurons was shown by means of single and double immmunohistochemical labeling. The TH neurons were first found on branches of the olfactory, terminal, and vomeronasal nerves, along the trajectory of migration of GnRH-immunoreactive neurons on day 15 of embryogenesis, which preceded the appearance of GnRH-immunoreactive neurons. On days 17–21 of embryogenesis, both populations of neurons were found in almost the same areas and on day 21 single neurons contained both GnRH and TH. There were no neurons expressing decarboxylase of aromatic amino acids (DAA), the second enzyme of catecholamine synthesis, among TH-immunoreactive neurons, thus suggesting noncatecholaminergic nature of these neurons. However, single nonenzymatic DAA-immunoreactive neurons were found in the area of anterior olfactory nuclei in the forebrain, which suggests their involvement in local cooperative synthesis of catecholamines in the area where GnRH-immunoreactive neurons penetrate in the forebrain. Thus, the neurons expressing TH, TH and GnRH, and DAA were found in rats during prenatal period in the nasal part of the head along the nerves projecting into the forebrain. The origin and functional significance of these neurons are discussed.  相似文献   

14.
It is now a recognized principle that various neuropeptides are neuronally co-localized with biogenic amine or aminoacid neurotransmitters. In the rat CNS it has previously been shown that TRH is co-localized with 5-HT (and also with substance P) in cell bodies of the posterior raphe that project to the spinal cord. Although TRH cell bodies are known to be widely distributed throughout the forebrain there is no other known co-localization with 5-HT. In this study we further specify the anatomical relationship of TRH with 5-HT by use of surgical and neurotoxic lesioning with reference to limbic forebrain regions wherein TRH is greatly increased following seizures. In groups of rats, the fimbria-fornix was lesioned alone, or combined with a lesion of the dorsal perforant path or the ventral perforant path. There was a sham lesioned control group. Additional groups were lesioned with 5, 7 dihydroxytryptamine, 100 g i.v.t., 45 min. after i.p. desipramine, 25 mg/kg. All rats were sacrificed three weeks after lesions. Indoleamines were determined by HPLC in left anterior cortex, left pyriform/olfactory cortex, left dorsal hippocampus and left ventral hippocampus. TRH was determined by specific RIA in the corresponding right brain regions. The modal n was 7 rats. The surgical lesions reduced 5-HT to below the detection limit in dorsal hippocampus in all three groups, and to 31–52% of control in all the ventral hippocampus groups. 5-HIAA was reduced to 19–37% of control in dorsal and to 30–51% of control in ventral hippocampus. TRH was reduced to 44–61% of control in dorsal hippocampus and to 48–53% of control in ventral hippocampus. As was repeatedly observed in our previous reports all TRH levels in ventral hippocampus were higher than in dorsal hippocampus. The 5, 7 dihydroxytryptamine treatment nearly eliminated the indoleamines from all the forebrain regions examined while TRH levels were unchanged. These results can be explained by our previous data showing that immunoreactive TRH is intrinsic and localized to the vicinity of both CA and dentate granule cells of the hippocampus, but about half of hippocampal TRH enters via fibers of the fimbria-fornix. The perforant path appears to contribute no TRH to hippocampus, but, results with the combined lesion groups showed some reduction of 5-HIAA in ventral hippocampus as is expected from the known perforant path contribution of 5-HT. Since the neurotoxic lesion had no effect on TRH, the 5-HT pathway through the fimbria-fornix is probably anatomically separate from a parallel TRH pathway there. This study shows that co-localization of TRH with 5-HT is very unlikely in four specific limbic forebrain regions.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

15.
16.
We have isolated a monoclonal antibody, mAb 52G9, that recognizes a 55-kDa cell surface protein restricted to the early embryonic rat forebrain and to placode-derived structures. In the central nervous system (CNS), 52G9 immunoreactivity appears at Embryonic Day 11 (E11) in the rostral-most area of the telencephalon. It then spreads to the neuroepithelium of the telencephalon and basal diencephalon. Most strikingly, it appears at E14 in a distinct zone at the caudal end of the ventral diencephalic neuroepithelium. This area is sharply defined by strong 52G9 immunoreactivity bounded by unlabeled neuroepithelium. The pattern revealed by 52G9 is the first biochemical demonstration of spatial domains in the forebrain at a time prior to neuronal differentiation. By E18, 52G9 immunoreactivity has progressively disappeared from the forebrain; the glomerular layer of the olfactory bulb is the only 52G9-positive area in the CNS. The olfactory, otic, and hypophyseal placodes, which can be identified as early as E10, are also 52G9 positive as are their derivatives, the sensory epithelial of the nasal passage and inner ear, and also Rathke's pouch. The distribution and regulation of the 52G9 protein suggests that this novel cell surface molecule may be involved in the formation of spatial domains in the developing forebrain.  相似文献   

17.
Olfactory placodes, that give rise to the olfactory and respiratory epithelia during ontogenesis, are a source of many neurons migrating into forebrain in the direction of growth of the olfactory nerves. The neurons expressing gonadotropin releasing hormone (GnRH) are among the best studied in the population in question. This hormone is responsible for the central regulation of reproduction in adult animals. It was already shown that, in addition to the GnRH-immunoreactive neurons, a small amount of neurons expressing tyrosine hydroxylase (TH), the first enzyme of catecholamine synthesis, migrates into the forebrain. Such a transient population of TH-immunoreactive neurons was shown by means of single and double immmunohistochemical labeling. The TH neurons were first found on branches of the olfactory, terminal, and vomeronasal nerves, along the trajectory of migration of GnRH-immunoreactive neurons on day 15 of embryogenesis, which preceded the appearance of GnRH-immunoreactive neurons. On days 17-21 of embryogenesis, both populations of neurons were found in almost the same areas and on day 21 single neurons contained both GnRH and TH. There were no neurons expressing decarboxylase of aromatic acids (DAA), the second enzyme of catecholamine synthesis, among TH-immunoreactive neurons, thus suggesting noncatecholaminergic nature of these neurons. However, single nonenzymatic DAA-immunoreactive neurons were found in the area of anterior olfactory nuclei in the forebrain, which suggests their involvement in local cooperative synthesis of catecholamines in the area where GnRH-immunoreactive neurons penetrate in the forebrain. Thus, the neurons expressing TH, TH and GnRH, and DAA were found in rats during prenatal period in the nasal part of the head along the nerves projecting into the forebrain and in the rostral part of forebrain. The origin and functional significance of these neurons are discussed.  相似文献   

18.
Neddens J  Buonanno A 《PloS one》2011,6(11):e27337
We demonstrated recently that frontal cortical expression of the Neuregulin (NRG) receptor ErbB4 is restricted to interneurons in rodents, macaques, and humans. However, little is known about protein expression patterns in other areas of the brain. In situ hybridization studies have shown high ErbB4 mRNA levels in various subcortical areas, suggesting that ErbB4 is also expressed in cell types other than cortical interneurons. Here, using highly-specific monoclonal antibodies, we provide the first extensive report of ErbB4 protein expression throughout the cerebrum of primates. We show that ErbB4 immunoreactivity is high in association cortices, intermediate in sensory cortices, and relatively low in motor cortices. The overall immunoreactivity in the hippocampal formation is intermediate, but is high in a subset of interneurons. We detected the highest overall immunoreactivity in distinct locations of the ventral hypothalamus, medial habenula, intercalated nuclei of the amygdala and structures of the ventral forebrain, such as the islands of Calleja, olfactory tubercle and ventral pallidum, and medium expression in the reticular thalamic nucleus. While this pattern is generally consistent with ErbB4 mRNA expression data, further investigations are needed to identify the exact cellular and subcellular sources of mRNA and protein expression in these areas. In contrast to in situ hybridization in rodents, we detected only low levels of ErbB4-immunoreactivity in mesencephalic dopaminergic nuclei but a diffuse pattern of immunofluorescence that was medium in the dorsal striatum and high in the ventral forebrain, suggesting that most ErbB4 protein in dopaminergic neurons could be transported to axons. We conclude that the NRG-ErbB4 signaling pathway can potentially influence many functional systems throughout the brain of primates, and suggest that major sites of action are areas of the "corticolimbic" network. This interpretation is functionally consistent with the genetic association of NRG1 and ERBB4 with schizophrenia.  相似文献   

19.
Major classical neurotransmitters including GABA and glutamate play novel morphogenic roles during development of the mammalian CNS. During forebrain neurogenesis, glutamate regulates neuroblast proliferation in different germinal domains using receptor subtype-specific mechanisms. For example, ionotropic N -methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptors mediate distinct proliferative effects in ventral or dorsal forebrain germinal domains, and regulate the correct number of neurons that populate the striatum or cerebral cortex. Recent work suggests metabotropic receptors may also mediate glutamate's proliferative effects. Group I mGluR5 receptor subtypes are highly expressed in forebrain germinal zones. Using in vitro and in vivo methods, we demonstrate mGluR5 receptor activation plays an important role in neuroblast proliferation in the ventral telencephalon, and helps determine the complement of striatum projection neurons. mGluR5 receptor-mediated effects on striatal neuronal progenitors are restricted mainly to early cycling populations in the ventricular zone, with little effect on secondary proliferative populations in the subventricular zone. In contrast to proliferative effects in the ventral telencephalon, mGluR5 receptors do not modulate proliferation of dorsal telencephalon-derived cortical neuroblasts. Heterogeneous domain-specific proliferative effects of glutamate-mediated by specific receptor subtypes provide an important developmental mechanism allowing generation of the correct complement of neuronal subtypes that populate the mammalian forebrain.  相似文献   

20.
The olfactory system of the pigeon (Columba livia) was examined. Our electrophysiological and experimental neuroanatomical (Fink-Heimer technique) data showed that axons from the olfactory bulb terminated in both sides of the forebrain. The cortex prepiriformis (olfactory cortex), the hyperstriatum ventrale and the lobus parolfactorius comprised the uncrossed terminal field. The crossed field included the paleostriatum primitivum and the caudal portion of the lobus parolfactorius, areas which were reached through the anterior commissure. In this report the relationships between areas that receive olfactory information and the possible roles that olfaction plays in the birds' behavior are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号