首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the factors involved in the production of volatile aldehydes during mashing, a model mashing experiment was done. After we inactivated the endogenous lipoxygenase (LOX) activity in the mash by mashing at 70 degrees C for 30 min, further incubation with recombinant barley LOX-1 stimulated the accumulation of 2(E)-nonenal; however, this effect was significantly reduced by boiling the mash sample. The result suggests that both LOX-1 and a heat-stable enzymatic factor are involved in the production of 2(E)-nonenal during mashing. Malt contained fatty acid hydroperoxide lyase-like activity (HPL-like activity) that transformed 9-hydroperoxy-10(E), 12(Z)-octadecadienoic and 13-hydroperoxy-9(Z), 11(E)-octadecadienoic acid into 2(E)-nonenal and hexanal, respectively. Proteinase K sensitivity tests showed that they are distinct factors. 9-HPL-like activity survived through the mashing at 70 degrees C for 30 min but was inactivated by boiling, suggesting it will be the heat-stable enzymatic factor found in the model mashing experiment.  相似文献   

2.
After wounding, the moss Physcomitrella patens emits fatty acid derived volatiles like octenal, octenols and (2E)-nonenal. Flowering plants produce nonenal from C18-fatty acids via lipoxygenase and hydroperoxide lyase reactions, but the moss exploits the C20 precursor arachidonic acid for the formation of these oxylipins. We describe the isolation of the first cDNA (PpHPL) encoding a hydroperoxide lyase from a lower eukaryotic organism. The physiological pathway allocation and characterization of a downstream enal-isomerase gives a new picture for the formation of fatty acid derived volatiles from lower plants. Expression of a fusion protein with a yellow fluorescent protein in moss protoplasts showed that PpHPL was found in clusters in membranes of plastids. PpHPL can be classified as an unspecific hydroperoxide lyase having a substrate preference for 9-hydroperoxides of C18-fatty acids but also the predominant substrate 12-hydroperoxy arachidonic acid is accepted. Feeding experiments using arachidonic acid show an increase in the 12-hydroperoxide being metabolized to C8-aldehydes/alcohols and (3Z)-nonenal, which is rapidly isomerized to (2E)-nonenal. PpHPL knock out lines failed to emit (2E)-nonenal while formation of C8-volatiles was not affected indicating that in contrast to flowering plants, PpHPL is only involved in formation of a specific subset of volatiles.  相似文献   

3.
Soybean lipoxygenase-1 produces a preponderance of two chiral products from linoleic acid, (13S)-(9Z,11E)-13-hydroperoxy-9,11-octadecadienoic acid and (9S)-(10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid. The former of these hydroperoxides was generated at all pH values, but in the presence of Tween 20, the latter product did not form at pH values above 8.5. As the pH decreased below 8.5, the proportion of (9S)-hydroperoxide increased linearly until at pH 6 it constituted about 25% of the chiral products attributed to enzymic action. Below pH 6, lipoxygenase activity was barely measurable, and the hydroperoxide product arose mainly from autoxidation and possibly non-enzymic oxygenation of the pentadienyl radical formed by the enzyme. The change in percent enzymically formed 9-hydroperoxide between pH 6.0 and 8.5 paralleled the pH plot of a sodium linoleate/linoleic acid titration. It was concluded that the (9S)-hydroperoxide is formed only from the nonionized carboxylic acid form of linoleic acid. Methyl esterification of linoleic acid blocked the formation of the (9S)-hydroperoxide by lipoxygenase-1, but not the (13S)-hydroperoxide. Since the hydroperoxydiene moieties of the (9S)- and (13S)-hydroperoxides are spatially identical when the molecules are arranged head to tail in opposite orientations, it is suggested that the carboxylic acid form of the substrate can arrange itself at the active site in either orientation, but the carboxylate anion can be positioned only in one orientation. These observations, as well as others in the literature, suggest and active-site model for soybean lipoxygenase-1.  相似文献   

4.
The fungus Gaeumannomyces graminis metabolized linoleic acid extensively to (8R)-hydroperoxylinoleic acid, (8R)-hydroxylinoleic acid, and threo-(7S,8S)-dihydroxylinoleic acid. When G. graminis was incubated with linoleic acid under an atmosphere of oxygen-18, the isotope was incorporated into (8R)-hydroxylinoleic acid and 7,8-dihydroxylinoleic acid. The two hydroxyls of the latter contained either two oxygen-18 or two oxygen-16 atoms, whereas a molecular species that contained both oxygen isotopes was formed in negligible amounts. Glutathione peroxidase inhibited the biosynthesis of 7,8-dihydroxylinoleic acid. These findings demonstrated that the diol was formed from (8R)-hydroperoxylinoleic acid by intramolecular hydroxylation at carbon 7, catalyzed by a hydroperoxide isomerase. The (8R)-dioxygenase appeared to metabolize substrates with a saturated carboxylic side chain and a 9Z-double bond. G. graminis also formed omega 2- and omega 3-hydroxy metabolites of the fatty acids. In addition, linoleic acid was converted to small amounts of nearly (65% R) racemic 10-hydroxy-8,12-octadecadienoic acid by incorporation of atmospheric oxygen. An unstable metabolite, 11-hydroxylinoleic acid, could also be isolated as well as (13R,13S)-hydroxy-(9E,9Z), (11E)-octadecadienoic acids and (9R,9S)-hydroxy-(10E), (12E,12Z)-octadecadienoic acids. In summary, G. graminis contains a prominent linoleic acid (8R)-dioxygenase, which differs from the lipoxygenase family of dioxygenases by catalyzing the formation of a hydroperoxide without affecting the double bonds of the substrate.  相似文献   

5.
We have purified two enzymic activities from flaxseed acetone powder: a lipoxygenase and a hydroperoxide dehydrase. The lipoxygenase activity belongs to an iron-containing protein having a molecular weight of 130 kDa which, upon incubation with alpha-linolenic acid, forms 13-hydroperoxy-9(Z), 11(E), 15(Z)- octadecatrienoic acid. The hydroperoxide dehydrase (a 55 kDa protein) metabolizes this hydroperoxide to an allene oxide which in turn is spontaneously hydrolyzed to alpha- and gamma-ketols. Relationships between these two enzymes were studied and results suggest an inhibition of the lipoxygenase by hydroperoxide dehydrase.  相似文献   

6.
The methanol extract of Ehretia dicksonii provided (10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic acid methyl ester (1) which was isolated as an anti-inflammatory compound. Compound 1 suppressed 12-Otetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation on mouse ears at a dose of 500 microg (the inhibitory effect (IE) was 43%). Linolenic acid methyl ester did not inhibit this inflammation at the same dose. However, the related compounds of 1, (9Z,11E)-13hydroxy-9,11-octadecadienoic acid (5) and (9Z,llE)13-oxo-9,11-octadecadienoic acid (6), showed potent activity (IE500 microg of 63% and 79%, respectively). Compounds 1, 4 ((9Z, 12Z, 14E)-16-hydroxy-9,12,14-octadecatrienoic acid), 5 and 6 also showed inhibitory activity toward soybean lipoxygenase at a concentration of 10 microg/ml.  相似文献   

7.
Linoleic acid oxidation catalyzed by lipoxygenase (lipoxidase) activity in extracts of defatted corn germ does not terminate in the product, linoleic acid hydroperoxide, unless the lipoxygenase is first partially purified. If purification is not attempted, the hydroperoxide product exists only as a barely detectable intermediate in the synthesis of three products. One of these was identified as 9-hydroxy-10-oxo-cis-12-octadecenoic acid formed from the hydroperoxide by the enzyme, linoleate hydroperoxide isomerase. Another product, 13-hydroxy-10-oxo-trans-11-octadecenoic acid, is believed to be formed by an isomerase also. The third product was the linoleate ester of one of the hydroxy-oxo-fatty acids, 9-(cis-9,cis-12-octadecadienoyl)-10-oxo-cis-12-octadecenoic acid. It is not known if the synthesis of the ester is enzyme-catalyzed. When a mixture of 13-hydroperoxy-cis-9,trans-11-octa-decadienoic acid and 9-hydroperoxy-trans-10,cis-12-octa-decadienoic acid from soybean lipoxygenase oxidation of linoleic acid was used as a substrate, 13-hydroxy-12-oxo-cis-9-octadecenoic acid and 9-hydroxy-12-oxo-trans-10-octadecenoic acid were formed as the major products of catalysis by linoleate hydroperoxide isomerase(s) from corn. Smaller quantities of 9-hydroxy-10-oxo-cis-12-octadecenoic acid and 13-hydroxy-10-oxo-trans-11-octadecenoic acid were also formed.  相似文献   

8.
Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase.  相似文献   

9.
Nkwe DO  Taylor JE  Siame BA 《Mycopathologia》2005,160(2):177-186
Brewing and consumption of traditional beer have social–economic significance in most African countries including Botswana. Traditional sorghum malt, wort, and beer samples were collected from three villages around Gaborone, Botswana. Forty-six malt samples were analyzed for fungi on three different media and developing colonies were subcultured for identification. Rhizopus, Fusarium, Mucor, and Aspergillus were the most common genera isolated. Out of the 46 malt samples, 72% contained Rhizopus stolonifer, 63% Fusarium verticillioides (syn. Fusarium moniliforme), and 37% Aspergillus flavus. Although Aspergillus flavus was isolated from malt samples, aflatoxins (B1, B2, G1, and G2) were not detected in any of the samples analyzed. When the malt, wort, and beer samples were analyzed for fumonisin Bl and zearalenone, fumonisin B1 was detected in 3 malt samples, with concentrations ranging from 47 to 1316 μg/kg, while zearalenone was detected in 56%, 48% and 48% of the malt, wort and beer samples, respectively. Zearalenone concentration in samples ranged from 102 to 2213 μg/kg in malt, 26 to 285 μg/l in wort and 20 to 201 μg/l, in beer. Zearalenone carry-over from wort to beer ranged from 23 to 403%. Therefore, although aflatoxins and fumonisin B1 do not appear to be major contaminants, zearalenone is common and could pose a potential problem in traditional beer in Botswana.  相似文献   

10.
While incubation of soybean lipoxygenase with alpha-linolenic acid resulted in the gradual decrease of lipoxygenase activity, the incubation with linoleic acid had no change. The inactivation of soybean lipoxygenase during incubation with alpha-linolenic acid was markedly observed at pH 6.5, but not at pH 9.0. Among the lipoxygenation products of alpha-linolenic acid, only 9(S)-hydroperoxyoctadecatrienoic acid caused the inactivation of lipoxygenase. 9(S)-Hydroxyoctadecatrienoic acid, 13(S)-hydroperoxyoctadecatrienoic acid or 9,16-dihydroperoxy conjugated trienoic acid was without effect. Accordingly, it is suggested that the epoxide intermediate, one conversion product of 9(S)-hydroperoxyoctadecatrienoic acid, might be involved in the direct inactivation of lipoxygenase.  相似文献   

11.
An unstable fatty acid allene oxide, 12,13(S)-epoxy-9(Z),11-octadecadienoic acid, was recently identified as the product formed from 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid in the presence of corn (Zea mays L.) hydroperoxide dehydrase (M. Hamberg (1987) Biochim. Biophys. Acta 920, 76-84). The present paper is concerned with the spontaneous decomposition of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid in acetonitrile solution. Two major products were isolated and characterized, i.e. macrolactones 12-keto-9(Z)-octadecen-11-olide and 12-keto-9(Z)-octadecen-13-olide.  相似文献   

12.
Epidermal lipoxygenase-3 (eLOX3) exhibits hydroperoxide isomerase activity implicated in epidermal barrier formation, but its potential dioxygenase activity has remained elusive. We identified herein a synthetic fatty acid, 9E,11Z,14Z-20:3ω6, that was oxygenated by eLOX3 specifically to the 9S-hydroperoxide. Reaction showed a pronounced lag phase, which suggested that eLOX3 is deficient in its activation step. Indeed, we found that high concentrations of hydroperoxide activator (e.g. 65 μM) overcame a prolonged lag phase (>1 h) and unveiled a dioxygenase activity with arachidonic acid; the main products were the 5-, 9-, and 7-hydroperoxyeicosatetraenoic acids (HPETEs). These were R/S mixtures (ranging from ~50:50 to 73:27), and as the bis-allylic 7-HPETE can be formed only inside the enzyme active site, the results indicate there is oxygen availability along either face of the reacting fatty acid radical. That the active site oxygen supply is limited is implied from the need for continuous re-activation, as carbon radical leakage leaves the enzyme in the unactivated ferrous state. An Ala-to-Gly mutation, known to affect the positioning of O(2) in the active site of other lipoxygenase enzymes, led to more readily activated reaction and a significant increase in the 9R- over the 5-HPETE. Activation and cycling of the ferric enzyme are thus promoted using the 9E,11Z,14Z-20:3ω6 substrate, by continuous hydroperoxide activation, or by the Ala-to-Gly mutation. We suggest that eLOX3 represents one end of a spectrum among lipoxygenases where activation is inefficient, favoring hydroperoxide isomerase cycling, with the opposite end represented by readily activated enzymes in which dioxygenase activity is prominent.  相似文献   

13.
Three yeast strains were isolated from a spontaneously fermented native millet (Pennisetum typhoideum) malt beer (Oyokpo). One of the yeast isolates found to have the most highly fermenting capacity was characterised and identified as a strain of Saccharomyces cerevisiae. The yeast was then utilised as the pitching yeast in a subsequent controlled fermentation of millet wort at 20°C for 120 hours. Bitter leaf (Vernonia amagdalina) extract was used as the bittering and flavouring agent. The Oyokpo beer sample produced under these conditions was found to possess both chemical and organoleptic qualities comparable to some extent, to the conventional barley malt beer. At the end of fermentation, the pH, specific gravity, alcohol content, reducing sugar content and protein content of the beer were 4.11, 1.0308, 2.81% (v/v), 4.00 (mg/ml) and 0.84 (mg/ml) respectively.  相似文献   

14.
Incubation of linoleic acid with the 105,000g particle fraction of the homogenate of the broad bean (Vicia faba L.) led to the formation of the following products: 13(S)-hydroxy-9(Z),11(E)-octadecadienoic acid, 9,10-epoxy-12(Z)-octadecenoic acid (9(R),10(S)/9(S)/10(R), 80/20), 12,13-epoxy-9(Z)-octadecenoic acid (12(S),13(R)/12(R)/13(S), 64/36), and 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid (9(S),10(R)/9(R),10(S), 91/9). Oleic acid incubated with the enzyme preparation in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid or cumene hydroperoxide was converted into 9,10-epoxyoctadecanoic acid (9(R),10(S)/9(S),10(R), 79/21). Two enzyme activities were involved in the formation of the products, an omega 6-lipoxygenase and a hydroperoxide-dependent epoxygenase. The lipoxygenase, but not the epoxygenase, was inhibited by low concentrations of 5,8,11,14-eicosatetraynoic acid and nordihydroguaiaretic acid. In contrast, the epoxygenase, but not the lipoxygenase, was readily inactivated in the presence of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid. Studies with 18O2-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the epoxide oxygens of 9,10-epoxyoctadecanoic acid and of 9,10-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid were derived from hydroperoxide and not from molecular oxygen.  相似文献   

15.
12-Iodo-cis-9-octadecenoic acid (12-IODE) is a time-dependent, irreversible inactivator of soybean lipoxygenase 1. The rate of inactivation is independent of 12-IODE concentration above 20 microM and is half-maximal at about 4 microM. Inactivation by 12-IODE requires lipid hydroperoxide, which must be present even after the initial oxidation of the iron in the enzyme from ferrous to ferric. Inactivation by 12-IODE is also dependent on O2. These findings suggest that 12-IODE is converted by the enzyme into a more reactive species, which is responsible for inactivation. No inactivation has been detected with 12-iodooctadecanoic acid, 12-bromo-cis-9-octadecenoic acid, 12-iodo-trans-9-octadecenoic acid, or a mixture of stereoisomers of 9,11-octadecadienoic acid.  相似文献   

16.
Three basic samples of beers were produced: A, B and C. The grit of A and B contained as unmalted adjuncts 15% (plus 10% of saccharose) and 25% of sorghum grains or maize grits, respectively. The reference beer C was produced with barley malt only. The study of the effects of the unmalted adjuncts on the brewing and the quality of beer revealed that: (a) the use of 15 to 20% of maize or 25% of sorghum increased the content of iso-compounds in wort; (b) the combination of maize grit and saccharose improved the colour of the wort and beer; (c) the addition of 25% sorghum extended saccharification time, slowed down both wort and beer filtration and also produced wort of a darker colour and beer with a slightly bitter aftertaste.  相似文献   

17.
1. A particulate enzyme fraction and an acetone powder preparation from cucumber fruits cleaved 9- and 13-hydroperoxyoctadecadienoic acids to form volatile aldehydes and oxoacid fragments. 2. From the 9-hydroperoxide, the major volatile fragments were cis-3-nonenal and trans-2-nonenal using particulate enzyme and acetone powder preparations, respectively. 3. Hexanal was the only significant volatile fragment from the 13-hydroperoxide. 4. The particulate enzyme system was equally effective on both 9- and 13-hydroperoxide isomers and was fully active under anaerobic conditions and at pH 6.4. 5. An enzymic pathway for the biogenesis of hexanal, cis-3- and trans-2-nonenal (components of the characteristic flavour volatiles of cucumber) from linoleic acid is proposed. This involves the sequential activity of lipoxygenase, hydroperoxide cleavage and cis-3-: trans-2-enal isomerase enzymes.  相似文献   

18.
AIM: To quantify and identify the predominant lactic acid bacteria (LAB) in dolo and pito wort processing, and to examine their biodiversity at strain level. MATERIALS AND RESULTS: The processing of dolo and pito wort was studied at four production sites in Burkina Faso and Ghana. The succession of dominant micro-organisms, pH and titratable acidity were determined from sorghum malt through mashing and acidification to final wort. In the sorghum malt and during mashing, the LAB counts were 5.7-7.5 log CFU g(-1). Similar levels of yeasts and gram-negative, catalase-positive bacteria were observed. These levels decreased to 3.7-4.5 log CFU g(-1) and相似文献   

19.
Some marine algae can form volatile aldehydes such as n-hexanal, hexenals, and nonenals. In higher plants it is well established that these short-chain aldehydes are formed from C18 fatty acids via actions of lipoxygenase and fatty acid hydroperoxide lyase, however, the biosynthetic pathway in marine algae has not been fully established yet. A brown alga, Laminaria angustata, forms relatively higher amounts of C6- and C9-aldehydes. When linoleic acid was added to a homogenate prepared from the fronds of this algae, formation of n-hexanal was observed. When glutathione peroxidase was added to the reaction mixture concomitant with glutathione, the formation of n-hexanal from linoleic acid was inhibited, and oxygenated fatty acids accumulated. By chemical analyses one of the major oxygenated fatty acids was shown to be (S)-13-hydroxy-(Z, E)-9, 11-octadecadienoic acid. Therefore, it is assumed that n-hexanal is formed from linoleic acid via a sequential action of lipoxygenase and fatty acid hydroperoxide lyase (HPL), by an almost similar pathway as the counterpart found in higher plants HPL partially purified from the fronds has a rather strict substrate specificity, and only 13-hydroperoxide of linoleic acid, and 15-hydroperoxide of arachidonic acid are the essentially suitable substrates for the enzyme. By surveying various species of marine algae including Phaeophyta, Rhodophyta and Chlorophyta it was shown that almost all the marine algae have HPL activity. Thus, a wide distribution of the enzyme is expected.  相似文献   

20.
The enzyme activity responsible for volatile C6-aldehyde formation was accompanied by lipoxygenase and hydroperoxide lyase in the green leaves of 28 plant species tested, but the level of each enzyme's activity varied. Lipoxygenase activity rather than hydroperoxide lyase activity appears to affect the overall C6-aldehyde formation. There was a positive correlation (r = 0.712) between hydroperoxide lyase activity and the chlorophyll content of the green leaves; no correlation was found between lipoxygenase activity and chlorophyll content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号