首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) containing the gene of interest. To further enhance and refine the TAR cloning technology, we determined the minimal size of a specific hook required for gene isolation utilizing the Tg.AC mouse transgene as a targeted region. For this purpose a set of vectors containing a B1 repeat hook and a Tg.AC-specific hook of variable sizes (from 20 to 800 bp) was constructed and checked for efficiency of transgene isolation by a radial TAR cloning. When vectors with a specific hook that was ≥60 bp were utilized, ~2% of transformants contained circular YACs with the Tg.AC transgene sequences. Efficiency of cloning dramatically decreased when the TAR vector contained a hook of 40 bp or less. Thus, the minimal length of a unique sequence required for gene isolation by TAR is ~60 bp. No transgene-positive YAC clones were detected when an ARS element was incorporated into a vector, demonstrating that the absence of a yeast origin of replication in a vector is a prerequisite for efficient gene isolation by TAR cloning.  相似文献   

2.
The transformation-associated recombination (TAR) procedure allows rapid, site-directed cloning of specific human chromosomal regions as yeast artificial chromosomes (YACs). The procedure requires knowledge of only a single, relatively small genomic sequence that resides adjacent to the chromosomal region of interest. We applied this approach to the cloning of the neocentromere DNA of a marker chromosome that we have previously shown to have originated through the activation of a latent centromere at human chromosome 10q25. Using a unique 1.4-kb DNA fragment as a “hook” in TAR experiments, we achieved single-step isolation of the critical neocentromere DNA region as two stable, 110- and 80-kb circular YACs. For obtaining large quantities of highly purified DNA, these YACs were retrofitted with the yeast–bacteria–mammalian-cells shuttle vector BRV1, electroporated intoEscherichia coliDH10B, and isolated as bacterial artificial chromosomes (BACs). Extensive characterization of these YACs and BACs by PCR and restriction analyses revealed that they are identical to the corresponding regions of the normal chromosome 10 and provided further support for the formation of the neocentromere within the marker chromosome through epigenetic activation.  相似文献   

3.
We constructed representative large-insert bacterial artificial chromosome (BAC) libraries of two human pathogens (Trypanosoma brucei and Giardia lamblia) using a new hybrid vector, pTARBAC1, containing a yeast artificial chromosome (YAC) cassette (a yeast selectable marker and a centromere). The cassette allows transferring of BACs into yeast for their further modification. Furthermore, the new hybrid vector provides the opportunity to re-isolate each DNA insert without construction of a new library of random clones. Digestion of a BAC DNA by an endonuclease that has no recognition site in the vector, but which deletes most of the internal insert sequence and leaves the unique flanking sequences, converts a BAC into a TAR vector, thus allowing direct gene isolation. Cotransformation of a TAR vector and genomic DNA into yeast spheroplasts, and subsequent recombination between the TAR vector's flanking ends and a specific genomic fragment, allows rescue of the fragment as a circular YAC/BAC molecule. Here we prove a new cloning strategy by re-isolation of randomly chosen genomic fragments of different size from T. brucei cloned in BACs. We conclude that genomic regions of unicellular eukaryotes can be easily re-isolated using this technique, which provides an opportunity to study evolution of these genomes and the role of genome instability in pathogenicity.  相似文献   

4.
The spinocerebellar ataxia type 2 (SCA2) gene has been localized to chromosome 12q24.1. To characterize this region and to aid in the identification of the SCA2 gene, we have constructed a 3.9-Mb physical map, which covers markers D12S1328 and D12S1329 known to flank the gene. The map comprises a contig of 84 overlapping yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) onto which we placed 82 PCR markers. We localized eight genes and expressed sequence tags on this map, many of which had not been precisely mapped before. In contrast to YACs, which showed a high degree of chimerism and deletions in this region, PACs and BACs were stable. Only 1 in 65 PACs contained a small deletion, and 2 in 18 BACs were chimeric. The high-resolution physical map, which was used in the identification of the SCA2 gene, will be useful for the positional cloning of other disease genes mapped to this region.  相似文献   

5.
Size Matters: Use of YACs,BACs and PACs in Transgenic Animals   总被引:15,自引:0,他引:15  
In 1993, several groups, working independently, reported the successful generation of transgenic mice with yeast artificial chromosomes (YACs) using standard techniques. The transfer of these large fragments of cloned genomic DNA correlated with optimal expression levels of the transgenes, irrespective of their location in the host genome. Thereafter, other groups confirmed the advantages of YAC transgenesis and position-independent and copy number-dependent transgene expression were demonstrated in most cases. The transfer of YACs to the germ line of mice has become popular in many transgenic facilities to guarantee faithful expression of transgenes. This technique was rapidly exported to livestock and soon transgenic rabbits, pigs and other mammals were produced with YACs. Transgenic animals were also produced with bacterial or P1-derived artificial chromosomes (BACs/PACs) with similar success. The use of YACs, BACs and PACs in transgenesis has allowed the discovery of new genes by complementation of mutations, the identification of key regulatory sequences within genomic loci that are crucial for the proper expression of genes and the design of improved animal models of human genetic diseases. Transgenesis with artificial chromosomes has proven useful in a variety of biological, medical and biotechnological applications and is considered a major breakthrough in the generation of transgenic animals. In this report, we will review the recent history of YAC/BAC/PAC-transgenic animals indicating their benefits and the potential problems associated with them. In this new era of genomics, the generation and analysis of transgenic animals carrying artificial chromosome-type transgenes will be fundamental to functionally identify and understand the role of new genes, included within large pieces of genomes, by direct complementation of mutations or by observation of their phenotypic consequences.  相似文献   

6.
A partial clone library of the short arm of human chromosome 7 was created in yeast artificial chromosomes (YAC) using TAR-cloning. The DNA of monochromosome somatic hybrid cells (mouse/human) RuRag 14-4-7-44 containing short arm human chromosome 7 was used for cloning. The clone library was screened for YACs with the human DNA; the mitotic stability of these YACs, the sizes of cloned fragments, and an independent clonal distribution in the chromosome were determined. Human YACs were tested for the presence of chromosome 7p telomeric sequences.  相似文献   

7.
Yeast artificial chromosome (YAC) cloning systems have advanced the analysis of complex genomes considerably. They permit the cloning of larger fragments than do bacterial artificial chromosome systems, and the cloned material is more easily modified. We recently developed a novel YAC cloning system called transformation-associated recombination (TAR) cloning. Using in vivo recombination in yeast, TAR cloning selectively isolates, as circular YACs, desired chromosome segments or entire genes from complex genomes. The ability to do that without constructing a representative genomic library of random clones greatly facilitates analysis of gene function and its role in disease. In this review, we summarize how recombinational cloning techniques have advanced the study of complex genome organization, gene expression, and comparative genomics.  相似文献   

8.
The recently developed technique for cloning genomic DNA fragments of several hundred kilobases or more into yeast artificial chromosomes (YACs) makes it possible to isolate gene families while preserving their structural integrity. We have analyzed five independent yeast clones identified by PCR screening using oligonucleotides derived from the adult human beta-globin gene. Analysis of the five clones containing YACs by conventional and pulsed-field gel electrophoresis revealed that all of the clones include a YAC with sequences from the adult beta-globin gene as expected. One of the clones contains multiple, unstable YACs. Two other clones carry single YACs in which there are at least two unrelated human genomic inserts. The remaining two clones contain single YACs, 150 and 220 kb in size, that contain the entire beta-globin gene family and flanking regions in a single, structurally intact genomic fragment. These should prove useful in future studies of the regulation of expression of genes in the beta-globin gene cluster.  相似文献   

9.
Human centromeres remain poorly characterized regions of the human genome despite their importance for the maintenance of chromosomes. In part this is due to the difficulty of cloning of highly repetitive DNA fragments and distinguishing chromosome-specific clones in a genomic library. In this work we report the highly selective isolation of human centromeric DNA using transformation-associated recombination (TAR) cloning. A TAR vector with alphoid DNA monomers as targeting sequences was used to isolate large centromeric regions of human chromosomes 2, 5, 8, 11, 15, 19, 21 and 22 from human cells as well as monochromosomal hybrid cells. The alphoid DNA array was also isolated from the 12 Mb human mini-chromosome ΔYq74 that contained the minimum amount of alphoid DNA required for proper chromosome segregation. Preliminary results of the structural analyses of different centromeres are reported in this paper. The ability of the cloned human centromeric regions to support human artificial chromosome (HAC) formation was assessed by transfection into human HT1080 cells. Centromeric clones from ΔYq74 did not support the formation of HACs, indicating that the requirements for the existence of a functional centromere on an endogenous chromosome and those for forming a de novo centromere may be distinct. A construct with an alphoid DNA array from chromosome 22 with no detectable CENP-B motifs formed mitotically stable HACs in the absence of drug selection without detectable acquisition of host DNAs. In summary, our results demonstrated that TAR cloning is a useful tool for investigating human centromere organization and the structural requirements for formation of HAC vectors that might have a potential for therapeutic applications.  相似文献   

10.
A method has been established to convert pYAC4-based linear yeast artificial chromosomes (YACs) into circular chromosomes that can also be propagated in Escherichia coli cells as bacterial artificial chromosomes (BACs). The circularization is based on use of a vector that contains a yeast dominant selectable marker (G418R), a BAC cassette and short targeting sequences adjacent to the edges of the insert in the pYAC4 vector. When it is introduced into yeast, the vector recombines with the YAC target sequences to form a circular molecule, retaining the insert but discarding most of the sequences of the YAC telomeric arms. YACs up to 670 kb can be efficiently circularized using this vector. Re-isolation of megabase-size YAC inserts as a set of overlapping circular YAC/BACs, based on the use of an Alu-containing targeting vector, is also described. We have shown that circular DNA molecules up to 250 kb can be efficiently and accurately transferred into E.coli cells by electroporation. Larger circular DNAs cannot be moved into bacterial cells, but can be purified away from linear yeast chromosomes. We propose that the described system for generation of circular YAC derivatives can facilitate sequencing as well as functional analysis of genomic regions.  相似文献   

11.
Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.  相似文献   

12.
Rohwer F  Seguritan V  Choi DH  Segall AM  Azam F 《BioTechniques》2001,31(1):108-12, 114-6, 118
In the following report, thermal cycling coupled with random 10-mers as primers was used to construct randomly amplified shotgun libraries (RASLs). This approach allowed shotgun libraries to be constructed from nanogram quantities of input DNA. RASLs contained inserts from throughout a target genome in an unbiased fashion and did not appear to contain chimeric sequences. This protocol should be useful for shotgun sequencing the genomes of unculturable organisms and rapidly producing shotgun libraries from cosmids, fosmids, yeast artificial chromosomes (YACs), and bacterial artificial chromosomes (BACs).  相似文献   

13.
A method has been established to convert pYAC4-based linear yeast artificial chromosomes (YACs) into circular chromosomes that can also be propagated in Escherichia coli cells as bacterial artificial chromosomes (BACs). The circularization is based on use of a vector that contains a yeast dominant selectable marker (G418R), a BAC cassette and short targeting sequences adjacent to the edges of the insert in the pYAC4 vector. When it is introduced into yeast, the vector recombines with the YAC target sequences to form a circular molecule, retaining the insert but discarding most of the sequences of the YAC telomeric arms. YACs up to 670 kb can be efficiently circularized using this vector. Re-isolation of megabase-size YAC inserts as a set of overlapping circular YAC/BACs, based on the use of an Alu-containing targeting vector, is also described. We have shown that circular DNA molecules up to 250 kb can be efficiently and accurately transferred into E.coli cells by electroporation. Larger circular DNAs cannot be moved into bacterial cells, but can be purified away from linear yeast chromosomes. We propose that the described system for generation of circular YAC derivatives can facilitate sequencing as well as functional analysis of genomic regions.  相似文献   

14.
The recently developed technique for cloning genomic DNA fragments of several hundred kilobases or more into yeast artificial chromosomes (YACs) makes it possible to isolate gene families while preserving their structural integrity. We have analyzed five independent yeast clones identified by PCR screening using oligonucleotides derived from the adult human β-globin gene. Analysis of the five clones containing YACs by conventional and pulsed-field gel electrophoresis revealed that all of the clones include a YAC with sequences from the adult β-globin gene as expected. One of the clones contains multiple, unstable YACs. Two other clones carry single YACs in which there are at least two unrelated human genomic inserts. The remaining two clones contain single YACs, 150 and 220 kb in size, that contain the entire β-globin gene family and flanking regions in a single, structurally intact genomic fragment. These should prove useful in future studies of the regulation of expression of genes in the β-globin gene cluster.  相似文献   

15.
In order to facilitate alterations of large DNA molecules for their introduction into mammalian cells we have characterised the mechanism of site-specific modifications in yeast artificial chromosomes (YACs). Newly developed yeast integration vectors with dominant selectable marker genes allow targeted integration into left (centromeric) and right (non-centromeric) YAC arms as well as alterations to the human derived insert DNA. In transformation experiments, integration proceeds exclusively by homologous recombination although yeast prefers linear ends of homology for predefined insertions. Targeted regions can be rescued which expedite the cloning of internal human sequences and the identification of 5' and 3' YAC/insert borders. Integration of the neomycin resistance gene into various parts of the YAC allowed the transfer and stable integration of large DNA molecules into a variety of mammalian cells including embryonic stem cells.  相似文献   

16.
We previously assigned the disease locus for autosomal dominant hereditary motor neuropathy type II (distal HMN II) within a 13-cM interval at chromosome 12q24.3. We constructed a physical map of the distal HMN II region based on yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) using an STS content mapping approach. The contig contains 26 YAC, 15 PAC, and 60 BAC clones and covers a physical distance of approximately 5 Mb. A total of 99 STS markers, including 25 known STSs and STRs, 49 new STSs generated from clone end-fragments, 20 ESTs, and 5 known genes, were located on the contig. This physical map provides a valuable resource for mapping genes and markers located within the distal HMN II region and facilitates the positional cloning of the distal HMN II gene.  相似文献   

17.
The gene encoding the D2 dopamine receptor (DRD2) is located on human chromosome 11q23 and has been circumstantially associated with a number of human disorders including Parkinson's disease, schizophrenia, and susceptibility to alcoholism. To determine the physical structure of the DRD2 gene, we utilized cosmid cloning, isolation of yeast artificial chromosomes (YACs), and pulsed-field gel electrophoresis to construct a long-range physical map of human chromosome 11q23 linking the genes for the DRD2 and neural cell adhesion molecule (NCAM). The D2 dopamine receptor gene extends over 270 kb and includes an intron of approximately 250 kb separating the putative first exon from the exons encoding the receptor protein. The resulting physical map spans more than 1.5 mb of chromosome band 11q23 and links the DRD2 gene with the gene encoding the NCAM located 150 kb 3' of the DRD2 gene and transcribed from the same DNA strand. We additionally located the sites of at least four hypomethylated HTF islands within the physical map, which potentially indicate the sites of additional genes. High-resolution fluorescent in situ suppression hybridization using cosmid and YAC clones localized this gene cluster between the ApoAI and STMY loci at the interface of bands 11q22.3 and 11q23.1.  相似文献   

18.
J Song  F Dong  J W Lilly  R M Stupar  J Jiang 《Génome》2001,44(3):463-469
The cloning and propagation of large DNA fragments as bacterial artificial chromosomes (BACs) has become a valuable technique in genome research. BAC clones are highly stable in the host, Escherichia coli, a major advantage over yeast artificial chromosomes (YACs) in which recombination-induced instability is a major drawback. Here we report that BAC clones containing tandemly repeated DNA elements are not stable and can undergo drastic deletions during routine library maintenance and DNA preparation. Instability was observed in three BAC clones from sorghum, rice, and potato, each containing distinct tandem repeats. As many as 46% and 74% of the single colonies derived from a rice BAC clone containing 5S ribosomal RNA genes had insert deletions after 24 and 120 h of growth, respectively. We also demonstrated that BAC insert rearrangement can occur in the early stage of library construction and duplication. Thus, a minimum growth approach may not avoid the instability problem of such clones. The impact of BAC instability on genome research is discussed.  相似文献   

19.
D de Bruin  M Lanzer  J V Ravetch 《Genomics》1992,14(2):332-339
Molecular genetic studies of the human malaria parasite Plasmodium falciparum have been hampered in part due to difficulties in stably cloning and propagating parasite genomic DNA in bacteria. This is thought to be a result of the unusual A+T bias (>80%) in the parasite's DNA. Pulsed-field gel electrophoretic separation of P. falciparum chromosomes has shown that large chromosomal polymorphisms, resulting from the deletion of DNA from chromosome ends, frequently occur. Understanding the biological implications of this chromosomal polymorphism will require the analysis of large regions of genomic, and in particular telomeric, DNA. To overcome the limitations of cloning parasite DNA in bacteria, we have cloned genomic DNA from the P. falciparum strain FCR3 in yeast as artificial chromosomes. A pYAC4 library with an average insert size of approximately 100 kb was established and found to have a three to fourfold redundancy for single-copy genes. Unlike bacterial hosts, yeast stably maintain and propagate large tracts of parasite DNA. Long-range restriction enzyme mapping of YAC clones demonstrates that the cloned DNA is contiguous and identical to the native parasite genomic DNA. Since the telomeric ends of chromosomes are underrepresented in YAC libraries, we have enriched for these sequences by cloning P. falciparum telomeric DNA fragments (from 40 to 130 kb) as YACs by complementation in yeast.  相似文献   

20.
From the collection described by Abidi et al., 102 yeast artificial chromosomes (YACs) with human DNA inserts more than 300 kb in length were assigned to chromosomal band positions on early metaphase chromosomes by in situ hybridization using the biotin-avidin method. All the YACs hybridized within the Xq24-Xqter region, supporting the origin of the vast majority of the YACs from single human X-chromosomal sites. With assignments precise to +/- 0.5 bands, YACs were distributed among cytogenetic bands to roughly equal extents. Thus, there is no gross bias in the cloning of DNA from different bands into large YACs. To test band assignments further, hybridizations were carried out blind, and band positions were then compared with (1) probe localizations in cases in which a reported location was present in one of the YACs; (2) cross-hybridization of a labeled YAC with others in the collection; and (3) hybridization to a panel of DNAs from a series of hybrid cells containing Xq DNA truncated at various regions. Of 31 cases in which YACs contained a probe with a previously reported location, 28 in situ assignments were in agreement, and 14 other assignments, including one of the three discordant with probe localization, were confirmed by YAC cross-hybridization studies. Results with a group of nine YACs were further confirmed with a panel of somatic cell hybrid DNAs from that region. Five YACs hybridized both to Xq25 and to a second site (four in Xq27 and one in Xq28), suggestive of some duplication of DNA of the hybrid cell and perhaps in normal X chromosomes. The in situ assignments are thus sufficient to place YACs easily and systematically within bins of about 7-10 Mb and to detect some possible anomalies. Furthermore, on the basis of expectations for random cloning of DNA in YACs, the assigned YACs probably cover more than 50% of the total Xq24-Xq28 region. This provides one way to initiate the assembly of YAC contigs over extended chromosomal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号