首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Membrane polyunsaturated fatty acids (PUFA) and particularly linolenic acid (18:3, LA) are known to be implicated in plant tolerance to low temperature. Their role in resistance to drought is much less investigated. In this work, three full-length cDNAs corresponding to omega-3 fatty acid desaturases: fad3 (endoplasmic reticulum), fad7 and fad8 (chloroplastic) were isolated from Vigna unguiculata leaves. Two cowpea cultivars, one drought-tolerant, EPACE-1, and one drought-susceptible, 1183, were compared in terms of fad isoform gene expression and leaf LA contents in plants submitted to water stress followed by rehydration. In EPACE-1, LA content in the main leaf polar lipids increased in response to mild water deficit. Severe water deficits induced a decrease in MGDG LA content while those of PC and DGDG continued to increase. Variations in FAD gene expression, matched those in LA contents. In 1183, LA contents decreased in all lipid classes in response to water stress, as did FAD3 and FAD8 gene expression levels. Rehydration after a moderate water stress induced stimulation mostly in FAD3 gene expression in both cvs. LA contents were equivalent to control levels in EPACE-1. In 1183, they were back to control levels in PC shortly after rehydration but remained low in galactolipids. These results suggested that omega-3 FAD activities were involved in the increase in leaf membrane unsaturation, in the drought tolerant plants whereas the sensitive plants lost PUFAs in response to the treatment. The significance of this discrepancy between the two cvs. in terms of adaptation to drought is discussed.  相似文献   

3.
Plant desaturases comprise two independently evolved classes, a structurally well characterized soluble class responsible for the production of monoenes in the plastids of higher plants and the poorly structurally characterized integral membrane class that has members in the plastid and endoplasmic reticulum that are responsible for producing mono- and polyunsaturated fatty acids. Both require iron and oxygen for activity and are inhibited by azide and cyanide underscoring their common chemical imperatives. We previously showed that the Δ9 acyl-CoA integral membrane desaturase Ole1p from Saccharomyces cerevisiae exhibits dimeric organization, like the soluble plastidial acyl-ACP desaturases. Here we use two independent bimolecular complementation assays, i.e. yeast two-hybrid analysis and Arabidopsis leaf protoplast split luciferase assay, to demonstrate that members of the plant integral membrane fatty acid desaturase (FAD) family, FAD2, FAD3, FAD6, FAD7, and FAD8, self-associate. Further, the endoplasmic reticulum-localized desaturase FAD2 can associate with FAD3, as can the plastid-localized FAD6 desaturase with either FAD7 or FAD8. These pairings appear to be specific because pairs such as FAD3 and FAD7 (or FAD8) and FAD2 and FAD6 do not interact despite their high amino acid similarity. These results are consistent also with their known endoplasmic reticulum and plastid subcellular localizations. Chemical cross-linking experiments confirm that FAD2 and FAD3 can form dimers like the yeast Ole1p and, when coexpressed, can form FAD2-FAD3 heterodimers. Metabolic flux analysis of yeast coexpressing FAD2 and FAD3 indicates that heterodimers can form a metabolic channel in which 18:1-PC is converted to 18:3-PC without releasing a free 18:2-PC intermediate.  相似文献   

4.
5.
The FAD7 gene, a gene for a chloroplast [omega]-3 fatty acid desaturase, is responsible for the trienoic fatty acid (TA) formation in leaf tissues. The TA content of the leaf tissue of the 25[deg]C-grown transgenic tobacco (Nicotiana tabacum cv SR1) plants, in which the FAD7 gene from Arabidopsis thaliana was overexpressed, increased uniformly by about 10%. Fatty acid unsaturation in all major leaf polar lipid species increased in the 25[deg]C-grown FAD7 transformants but was approximately the same between the control plants and the FAD7 transformants when grown at 15[deg]C. Therefore, the overexpression of the exogenous FAD7 gene leads to the same consequence in the tobacco plants as the low-temperature-induced TA production that may be catalyzed by an endogenous, temperature-regulated chloroplast [omega]-3 fatty acid desaturase. In the 25[deg]C-grown control plants, the chilling treatment caused symptoms of leaf chlorosis and suppression of leaf growth. The 25[deg]C-grown FAD7 transgenic plants conferred alleviation of these chilling-induced symptoms. A reductions of the chilling injury similar to that of the FAD7 transformants was also observed in the 15[deg]C-preincubated control plants. These results indicate that the increased TA production during chilling acclimation is one of the prerequisites for the normal leaf development at low, nonfreezing temperatures.  相似文献   

6.
7.
Flavins in the form of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) play an important role in metabolism as cofactors for oxidoreductases and other enzymes. Flavin nucleotides have applications in the food industry and medicine; FAD supplements have been efficiently used for treatment of some inheritable diseases. FAD is produced biotechnologically; however, this compound is much more expensive than riboflavin. Flavinogenic yeast Candida famata synthesizes FAD from FMN and ATP in the reaction catalyzed by FAD synthetase, a product of the FAD1 gene. Expression of FAD1 from the strong constitutive promoter TEF1 resulted in 7- to 15-fold increase in FAD synthetase activity, FAD overproduction, and secretion to the culture medium. The effectiveness of FAD production under different growth conditions by one of these recombinant strains, C. famata T-FD-FM 27, was evaluated. First, the two-level Plackett–Burman design was performed to screen medium components that significantly influence FAD production. Second, central composite design was adopted to investigate the optimum value of the selected factors for achieving maximum FAD yield. FAD production varied most significantly in response to concentrations of adenine, KH2PO4, glycine, and (NH4)2SO4. Implementation of these optimization strategies resulted in 65-fold increase in FAD production when compared to the non-optimized control conditions. Recombinant strain that has been cultivated for 40 h under optimized conditions achieved a FAD accumulation of 451 mg/l. So, for the first time yeast strains overproducing FAD were obtained, and the growth media composition for maximum production of this nucleotide was designed.  相似文献   

8.
Fatty acid -3 desaturase (FAD) is the key enzyme catalyzing the formation of trienoic fatty acids. We utilized an Arabidopsis FAD7 gene and the seven independent transgenic rice plants harbouring 1 to 3 copies of this gene were generated. The expression of FAD7 mRNA was different among independent transgenic lines regardless of the copy number. The total linolenic acid (18:3) contents reduced by about 7 – 32 % in transgenic rice plants but the linoleic acid (18:2) content increased accordingly. With or without wounding treatments, the jasmonate content was higher in transgenic lines than in wild-type rice plant. The transgenic lines overproducing jasmonate also showed increased expression of PR1b mRNA and allene oxide synthase inresponse to wounding.  相似文献   

9.
Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with different content of C18:3 in amphidiploid B. napus.  相似文献   

10.
11.
Lipid modifying enzymes play a key role in the development of cold stress tolerance in cold-resistant plants such as cereals. However, little is known about the role of the endogenous enzymes in cold-sensitive species such as cotton. Delta 12 fatty acid desaturases (FAD2), known to participate in adaptation to low temperatures through acyl chain modifications were used in gene expression studies in order to identify parameters of plant response to low temperatures. The induction of microsomal delta 12 fatty acid desaturases at an mRNA level under cold stress in plants is shown here for first time. Quantitative PCR showed that though both delta 12 omega 6 fatty acid desaturase genes FAD2-3 and FAD2-4 identified in cotton are induced under cold stress, FAD2-4 induction is significantly higher than FAD2-3. The induction of both isoforms was light regulated, in contrast a third isoform FAD2-2 was not affected by cold or light. Stress tolerance and light regulatory elements were identified in the predicted promoters of both FAD2-3 and FAD2-4 genes. Di-unsaturated fatty acid species rapidly increased in the microsomal fraction isolated from cotton leaves, following cold stress. Expression analysis patterns were correlated with the observed increase in both total and microsomal fatty acid unsaturation levels suggesting the direct role of the FAD2 genes in membrane adaptation to cold stress.  相似文献   

12.
13.
研究了白凤桃果实贮藏过程中光照条件对果实成熟的影响。在7月12日(未熟期)和7月16日(硬熟期)采收果实,分别贮藏在光条件(白色荧光灯照明,果顶部光强为80μmol m~(-2)s~(-1))和暗条件中,室温均为25℃。硬熟期采收果实贮藏在光条件下,达到完熟期时,乙烯生成量较低。果肉的硬度在各个采收期,各种贮藏条件下均没有差别。光条件贮藏果实中花青苷含量较高。未熟期采收果实贮藏在光条件下时,可溶性固形物含量增加较多。光条件贮藏果实中天冬酰胺的下降比暗贮藏果实中更多。各时期采收的果实中,在光下贮藏时,果肉和果皮γ-癸内酯和γ-十二内酯的含量都明显增加。以上结果表明,白凤桃果实采收后在光下贮藏,可以明显改善果实的品质。  相似文献   

14.
15.
The cloning of a bifunctional FAD synthetase gene, which shows flavokinase and FMN adenylyltransferase activities, from Corynebacterium ammoniagenes was tried by hybridization with synthetic DNAs corresponding to the N-terminal amino acid sequence. The cloned PstI-digested 4.4 × 103-base (4.4-kb) fragment could not express the FAD synthetase activity in E. coli, but could increase the two activities by the same factor of about 20 in C. amminoagenes. The FAD-synthetase-gene-amplified C. amminoagenes cells were applied to the production of FAD from FMN or riboflavin. The productivity of FAD from FMN was increased four to five times compared with the parent strain, and reached a 90% molar yield. The productivity of FAD from riboflavin was increased about eight times, with a 50% molar yield. The addition of Zn2+ to the reaction mixtures for the conversion from riboflavin to FAD brought about the specific inhibition of adenylyltransferase activity and resulted in the accumulation of FMN.  相似文献   

16.
UV exposure of DNA molecules induces serious DNA lesions. The cyclobutane pyrimidine dimer (CPD) photolyase repairs CPD-type - lesions by using the energy of visible light. Two chromophores for different roles have been found in this enzyme family; one catalyzes the CPD repair reaction and the other works as an antenna pigment that harvests photon energy. The catalytic cofactor of all known photolyases is FAD, whereas several light-harvesting cofactors are found. Currently, 5,10-methenyltetrahydrofolate (MTHF), 8-hydroxy-5-deaza-riboflavin (8-HDF) and FMN are the known light-harvesting cofactors, and some photolyases lack the chromophore. Three crystal structures of photolyases from Escherichia coli (Ec-photolyase), Anacystis nidulans (An-photolyase), and Thermus thermophilus (Tt-photolyase) have been determined; however, no archaeal photolyase structure is available. A similarity search of archaeal genomic data indicated the presence of a homologous gene, ST0889, on Sulfolobus tokodaii strain7. An enzymatic assay reveals that ST0889 encodes photolyase from S. tokodaii (St-photolyase). We have determined the crystal structure of the St-photolyase protein to confirm its structural features and to investigate the mechanism of the archaeal DNA repair system with light energy. The crystal structure of the St-photolyase is superimposed very well on the three known photolyases including the catalytic cofactor FAD. Surprisingly, another FAD molecule is found at the position of the light-harvesting cofactor. This second FAD molecule is well accommodated in the crystal structure, suggesting that FAD works as a novel light-harvesting cofactor of photolyase. In addition, two of the four CPD recognition residues in the crystal structure of An-photolyase are not found in St-photolyase, which might utilize a different mechanism to recognize the CPD from that of An-photolyase.  相似文献   

17.
We report the crystal structure of the FAD/NADPH-binding domain (FAD domain) of the biotechnologically important Bacillus megaterium flavocytochrome P450 BM3, the last domain of the enzyme to be structurally resolved. The structure was solved in both the absence and presence of the ligand NADP(+), identifying important protein interactions with the NADPH 2'-phosphate that helps to dictate specificity for NADPH over NADH, and involving residues Tyr974, Arg966, Lys972 and Ser965. The Trp1046 side chain shields the FAD isoalloxazine ring from NADPH, and motion of this residue is required to enable NADPH-dependent FAD reduction. Multiple binding interactions stabilize the FAD cofactor, including aromatic stacking with the adenine group from the side chains of Tyr860 and Trp854, and several interactions with FAD pyrophosphate oxygens, including bonding to tyrosines 828, 829 and 860. Mutagenesis of C773 and C999 to alanine was required for successful crystallization, with C773A predicted to disfavour intramolecular and intermolecular disulfide bonding. Multiangle laser light scattering analysis showed wild-type FAD domain to be near-exclusively dimeric, with dimer disruption achieved on treatment with the reducing agent dithiothreitol. By contrast, light scattering showed that the C773A/C999A FAD domain was monomeric. The C773A/C999A FAD domain structure confirms that Ala773 is surface exposed and in close proximity to Cys810, with this region of the enzyme's connecting domain (that links the FAD domain to the FMN-binding domain in P450?BM3) located at a crystal contact interface between FAD domains. The FAD domain crystal structure enables molecular modelling of its interactions with its cognate FMN (flavodoxin-like) domain within the BM3 reductase module.  相似文献   

18.
With 45 % or more oil content that contains more than 55 % alpha linolenic (LIN) acid, linseed (Linum usitatissimum L.) is one of the richest plant sources of this essential fatty acid. Fatty acid desaturases 2 (FAD2) and 3 (FAD3) are the main enzymes responsible for the Δ12 and Δ15 desaturation in planta. In linseed, the oilseed morphotype of flax, two paralogous copies, and several alleles exist for each gene. Here, we cloned three alleles of FAD2A, four of FAD2B, six of FAD3A, and seven of FAD3B into a pYES vector and transformed all 20 constructs and an empty construct in yeast. The transformants were induced in the presence of oleic (OLE) acid substrate for FAD2 constructs and linoleic (LIO) acid for FAD3. Conversion rates of OLE acid into LIO acid and LIO acid into LIN acid were measured by gas chromatography. Conversion rate of FAD2 exceeded that of FAD3 enzymes with FAD2B having a conversion rate approximately 10 % higher than FAD2A. All FAD2 isoforms were active, but significant differences existed between isoforms of both FAD2 enzymes. Two FAD3A and three FAD3B isoforms were not functional. Some nonfunctional enzymes resulted from the presence of nonsense mutations causing premature stop codons, but FAD3B-C and FAD3B-F seem to be associated with single amino acid changes. The activity of FAD3A-C was more than fivefold greater than the most common isoform FAD3A-A, while FAD3A-F was fourfold greater. Such isoforms could be incorporated into breeding lines to possibly further increase the proportion of LIN acid in linseed.  相似文献   

19.
Changes in the degree of fatty acid (FA) desaturation are implicated in plant responses to various abiotic stresses, including heat, salt and drought. However, it is still not known whether decreased levels of linolenic acid, found in many plants subjected to salt and drought stress, reflect a mechanism of defence or damage. We addressed this question by generating tobacco cells and plants ectopically overexpressing two FA desaturases: the cytosolic FAD3 or the plastidic FAD8. A remarkable increase in the ratio of total linolenic to linoleic acids resulted from overexpression of FAD3, whereas ectopic overexpression of FAD8 induced an increased ratio mainly in the plastidic lipids. Here we present evidence that overexpressing FAD8 imposes much greater heat sensitivity than does FAD3 overexpression, in both cultured cells and whole plants. Overexpression of either FAD3 or FAD8 increases tolerance to drought in tobacco plants and to osmotic stress in cultured cells. These findings suggest that a drought-induced decreased level of linolenic acid reflects damage. Our results point to the potential of exploiting FAD overexpression as a tool to ameliorate drought tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号