首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.

Background and aims

The Bragança Peninsula, in northern Brazil is characterized by macrotides (4 m) and specific edaphic conditions, which determine the local mangrove forest’s development. This study, conducted during the dry season evaluated the spatial patterns of Rhizophora mangle and Avicennia germinans species across an inundation gradient.

Methods

Along a transect of 700 m, measurements of structure forest, soil moisture, porewater salinity, extractable phosphorus (extr.-P) in sediments, and phosphorus in the leaves (leaf-P) were conducted.

Result

The A. germinans (100 %) occurred in high intertidal (HI) zone. A. germinans (59 %) and R. mangle (41 %) co-occurred in mid intertidal (MI) zone, while R. mangle (58 %) predominated in low intertidal (LI) zone, followed by A. germinans (37 %) and Laguncularia racemosa (5 %). Covariance analysis (ANCOVA) indicated that salinity and soil moisture means are significantly different between the mangrove forests, but do not correlate with inundation frequency (IF). The means of extr.-P were significantly different in mangrove forests and correlated with IF and leaf-P.

Conclusion

The inundation frequency, the availability of P in the sediments, phosphorus in the leaves and interstitial salinity are all important factors contributing to the distribution of the mangrove tree species A. germinans and R. mangle on the Bragança Peninsula.  相似文献   

2.
The present study sought to identify the factors that drive flowering in the main neotropical mangrove species. We evaluated the effects of water regime variables and foliar meristematic activity on the flowering intensity of Rhizophora mangle, Laguncularia racemosa, and Avicennia germinans in three physiographic types of San Andres Island, Colombia. The results show that pore salinity regulates flowering intensity and periodicity in all three mangrove species. All species flowering showed significant correlations with water balance and air vapor pressure deficit (VPD). In the fringe and interior mangroves, R. mangle flowering was explained linearly by salinity (25%) and monthly change in salinity (47%), respectively. L. racemosa flowering was linked with stronger periods of foliar meristematic activity and occurred during months of relatively high water balance (54-233 mm) and low VPD (1.18-1.29 kPa). The flowering of A. germinans was triggered by water deficit conditions when the monthly pore salinity increased over 30 g L−1 and, with a month delay response, when the water column height (WCH) was below ground. The flowering of A. germinans was also explained by these variables at 65% and 39%, respectively. The flowering patterns of the studied mangrove species indicate that reproduction within the neotropical mangrove community depends on seasonally contrasting water conditions on an annual basis.  相似文献   

3.
Mangrove species more tolerant to salinity may function with less efficient water transport, which may be related to more conservative water use. To test the hypothesis, we investigate the gas exchange and hydraulic properties of three mangrove species: Rhizophora mangle L., Laguncularia racemosa Gaert and Avicennia germinans (L.)L. Experiments were performed with adult plants growing naturally in the field under a salinity of 35‰. Gas exchange parameters showed that A. germinans had significantly higher photosynthetic rates, and lower stomatal conductance and transpiration rates, compared to the other two mangroves. In concert with this, instantaneous water use efficiency was significantly high in A. germinans, intermediate in L. racemosa and lowest in R. mangle. The hydraulic parameters of the three mangrove species were in the lowest end of the range reported for tropical trees. However, the three mangrove species exhibited measurable differences in hydraulic parameters related to the control of water requirements for maintenance of carbon gain. L. racemosa and A. germinans showed less efficient water transport at shoot level but were the more efficient species in water use at the leaf level in comparison to R. mangle. Received: 7 April 1999 / Accepted: 25 July 1999  相似文献   

4.

Key Message

Morphological plasticity helps plants to cope to environmental conditions. Allometric responses of the mangrove Avicennia germinans to increasing salinity are easily detectable when focusing on the top height trees.

Abstract

Several studies show that mangrove trees possess high species- and site-related trait allometry, suggesting large morphological plasticity that might be related to environmental conditions, but the causes of such variation are not clearly understood and systematic quantification is still missing. Both aspects are essential for a mechanistic understanding of the development and functioning of forests. We analyzed the role of salinity in the allometric relations of the mangrove Avicennia germinans, using: (1) the top height trees (trees with the largest diameters at breast height, which reflect forest properties at the maximum use of resources); (2) the slenderness coefficient (which indicates competition and environmental conditions); and (3) the crown to DBH ratio. These standard tools for forest scientists dealing with terrestrial forests are suitable to analyze the plastic responses of mangroves to salinity. First, the top height trees help to recognize structural forest properties that are not detectable when studying the whole stand. Second, we found that at salinities above 55 ‰, trees are less slender and develop wider crowns in relation to DBH than when growing at lower salinities. Our results suggest a significant change in allometric traits in relation to salinity, and reflect the plastic responses of tree traits in response to environmental variation. Understanding the plastic responses of plants to their environment can help to better model, predict, and manage forests in changing environments.  相似文献   

5.

Background

Worldwide there is growing research interest in the ethnobiology of mangrove forests. Notwithstanding that, little information has been published about ethnobiology of mangrove forests in Cameroon. The aims of this study were a) to analyze the harvesting methods and the local selling of mangrove wood products by loggers in the vicinity of Wouri estuary and b) to investigate the patterns of subsistence uses of mangrove wood products around the Douala-Edea reserve.

Methods

Semi-structured interviews were conducted with 120 active mangrove loggers in 23 Douala wood markets and 103 households located in three villages (Mbiako, Yoyo I and Yoyo II) close to Douala-Edea reserve. In each of the three densely populated villages, every second household was chosen for sampling while in all markets, mangrove loggers were chosen randomly. In addition, log diameters were measured in each market using a wooden foldable tape measure. A post hoc analysis (Newman-Keuls test) was performed in order to detect the common wood class diameter sold in the Douala wood markets.

Results

The analysis of the loggers' survey data has shown that large logs of Rhizophora with diameter greater than 40 cm were common in the Douala wood markets and were more closely associated with loggers who used chainsaws. In addition to the general mangroves wood products selling, the analysis on a subsistence level (households' survey) suggests the local population's dependence on mangroves, with multiple uses of Rhizophora racemosa Meyer, R. harrisonii Leechman, Avicennia germinans L. Stearn., Laguncularia racemosa Gaertn. f. and Conocarpus erectus L. timbers for furniture, fences, smoking fish, and fuelwood. Finally, Nypa fruticans (Thunb.) Wurmb. leaves were used as thatching material for house walls and roofs.

Conclusion

Our findings revealed that big logs of Rhizophora were commonly sold by the loggers. A majority of loggers (60%) reported that mangrove marketed wood constitute a principal source of income. Most of the villagers (85.83%) often depend on mangroves for subsistence needs and for them there is no substitute for mangrove wood. Therefore, more efforts should be undertaken at the national level to implement conservation, management and sustainable use of these coastal forests.  相似文献   

6.
We investigated the role of wood-boring insects in the creation of light gaps within mangrove forests. We compared the frequency of gaps caused by wood borers to other gap-forming processes and characterized the physical attributes of light gaps in mangrove forests on small islands in Belize. Methods of quantifying light gaps included aerial photography, ground surveys, and experimental plots. Small light gaps (≤12 m2) were very common in Rhizophom mangle fringe, comprising almost 22 percent of these forests. Rhizophora mangle gaps were smaller than gaps in Avicennia germinans forests. In R. mangle forests, gaps were caused by branch death, and in A. germinans forests, gaps were caused primarily by downed trees. More than 91 percent of the gap-forming branches and boles in the R. mangle fringe were killed by a wood-boring cerambycid beetle, Elaphidion mimeticum, indicating that it is the major cause of small-scale disturbances in these forests. No trees or branches in the A. germinans forest were attacked by this beetle. In R. mangle forests, small gaps had significantly higher light levels and soil temperatures than areas under the closed canopy; however, soil conditions for sulfide concentrations, porewater salinity, and redox potentials were similar in small gaps and under the closed canopy. Survival of R. mangle, A. germinans, and Laguncularia racemosa seedlings was also higher inside these small gaps, indicating their importance in regeneration of mangrove forests. Feeding by wood borers is thus an important type of indirect herbivory in mangrove forests, with a critical role in ecological processes such as gap dynamics.  相似文献   

7.
The diet of the mangrove crab, Aratus pisonii, was assessed by determining the percent of damaged leaves at selected mangrove communities and by examining herbivore gut contents. This study compared the utility of both methods and tested if comparable levels of damage and dietary preference occurred using the methods. Percent of damaged leaves was determined for the three species of mangroves within Tampa Bay, FL, USA, including: the red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa, respectively) in four 5×10-m quadrats during summer 2001. For each species, in each of the quadrats, 200 leaves per tree were assessed for the presence or absence of crab damage. A. pisonii were sampled from the same quadrats from which leaf damage data were collected. Stomach contents were dissected and food items were classified into a number of categories.Species damaged and preferred were determined by comparing relative numbers of mangrove leaf stomata from the three mangrove species in gut contents. Results suggested that both methods provide similar estimates of preference. R. mangle leaves were preferred over those of A. germinans and L. racemosa. The percent of R. mangle leaves with damage was about 20-30 times greater than the other species, and R. mangle leaf stomata were 3 to 20 times more abundant in crab guts compared to leaf stomata of the other species. Gut contents indicated that A. pisonii is omnivorous, that average-sized adult crabs (1.4-1.7-cm width) prefer R. mangle, and that the diet of males is more varied than of females. While use of both percent leaf damage and crab gut contents reliably indicates preference, gut contents may describe better the actual diet and elucidate trends for different size or sex classes within a population.  相似文献   

8.
Tate  Amanda W.  Hershey  Anne E. 《Hydrobiologia》2003,499(1-3):13-23
Carbon and nitrogen stable isotopic data from the primary producers in mangrove ecosystems are needed to investigate trophic links and biogeochemical cycling. Compared with other mangrove species (e.g. Rhizophora mangle) very few measurements have been conducted on the white mangrove, Laguncularia racemosa. The carbon and nitrogen stable isotopic and elemental compositions of L. racemosa were analyzed and compared from Florida and Belize. 13C values of L. racemosa from Florida (mean = –26.4) were slightly higher than those from Twin Cays, Belize (mean = -27.4), which may be due to higher salinity in some parts of the Florida site. There was no difference between the 15N values from L. racemosa from these two sites (Florida mean = 0.6; Belize mean = 0.3), which are indicative of nitrogen derived from nitrogen fixation in a planktonic marine system. However, higher 15N values from L. racemosa at Man of War Cay in Belize (11.4 and 12.3), which is fertilized by roosting marine birds (14.0), illustrate that L. racemosa can sensitively reflect alternative nitrogen sources. Although the isotopic data could not distinguish between Avicennia germinans, R. mangle and L. racemosa in Belize the L. racemosa had considerably higher C/N ratios (46.5 – 116.1) compared with the Florida samples (42.2 – 76.0) or the other mangrove species. Unlike some previous findings from R. mangle, substrate characteristics (e.g. salinity, NH4 +, and H2S) were not related to the isotopic or elemental composition of L. racemosa. 13C, 15N and C/N were analyzed for ecosystem components from L. racemosa habitats at Twin Cays, including other plants (e.g. R. mangle, A. germinans and seagrass), detritus, microbial mats and sediments. Results from mass-balance calculations show that mangrove detritus composes very little of the sediment, which is principally composed of microbial biomass (80 – 90%). Detritus at some sites is also influenced by sources other than that from L. racemosa, including seagrass leaves.  相似文献   

9.

Background and aims

(i) compare the concentrations of total polyphenols (TP) and condensed tannins (CT), and CT profiles in different organs of mature trees and seedlings of eight true mangrove species in Hong Kong; (ii) examine the antioxidant activities of CT and (iii) relate the non-enzymatic antioxidative defence system with the vertical zonation pattern of mangrove species.

Methods

Mature trees and seedlings of eight species were collected from a Hong Kong mangrove swamp to determine TP and CT concentrations and the antioxidant activities of CT.

Results

According to TP concentrations, the true mangrove species could be broadly classified into three groups, (i) Lumnitzera racemosa and Aegiceras corniculatum > (ii) Heritiera littoralis, Excoecaria agallocha, Bruguiera gymnorrhiza and Kandelia obovata > (iii) Acanthus ilicifolius and Avicennia marina. The last two are pioneer species in the most foreshore location. They also had significantly lower antioxidant activities, CT concentrations and different CT profiles than the other six species in mid- and low-tides.

Conclusions

Classification of the eight true mangrove species into three groups based on polyphenols was similar to their vertical zonation from land to sea. The relationships between these antioxidants and zonation should be further verified by transplantation studies.  相似文献   

10.
Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year−1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha−1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year−1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.  相似文献   

11.
The aim of this study was to characterize potential fungal species affecting mangrove species in Mexico. The phytopathogens were identified based on morphological and molecular characteristics using internal transcribed spacer (ITS1/ITS4) primers then sequenced and compared with the other related sequences in GenBank (NCBI). Three fungal species were identified as Colletotrichum queenslandicum (Weir and Johnst, 2012) from black mangrove (Avicennia germinans); Colletotrichum ti (Weir and Johnst, 2012) from white mangrove (Laguncularia racemosa) and buttonwood mangrove (Conocarpus erectus); Fusarium equiseti (Corda) from red mangrove (Rhizophora mangle). In addition, C. ti and F. equiseti were identified from mango Mangifera indica L. sampled close by the mangrove area. This study provides first evidence of anthracnose on four mangrove species caused by Colletotrichum and Fusarium species in the “Términos” coastal lagoon in Campeche State southern Mexico. This is the first time that C. queenslandicum and C. ti are reported in Mexico. F. equiseti has not been reported affecting M. indica and R. mangle until the present work. Little is known regarding fungal diseases affecting mangroves in Mexico. These ecosystems are protected by Mexican laws and may be threatened by these pathogenic fungus. This is the first report of the effect of Trichoderma harzianum TRICHO-SIN as an effective biological control against of Colletotrichum and Fusarium species.  相似文献   

12.
Factors modulating introgressive hybridization between the red mangrove species Rhizophora mangle and R. racemosa in spatially defined sites are poorly understood. To investigate this, we evaluated the reproductive phenology and the nutrient and physiological traits in those two species and their F1 hybrids genotyped with microsatellite data across a natural hybrid zone from the Pacific coast of Panama. We found no evidence that reproductive phenology represents a barrier to gene flow, because R. mangle and the F1 hybrids produced flowers and propagules throughout the annual cycle, while R. racemosa flowered only in the dry season. Soil nutrient concentrations decreased landward, while soil salinity varied only slightly. Foliar nutrients and δ15N signatures varied according to the soil nutrient gradient, but only foliar phosphorus and carbon varied among species. In contrast, two structural variables (height and trunk diameter) and leaf variables related to salinity tolerance (Na, Cl:Na, K:Na, cation:anion) and water-use efficiency (i.e., δ13C) differed among species, suggesting higher salinity tolerance for R. mangle and F1 hybrids compared with R. racemosa. We conclude that parental species and F1 hybrids differ in salinity tolerance and water-use efficiency, which could be associated with adaptive evolution of the red mangrove hybrid complex.  相似文献   

13.

Background and aims

Polyamines are cationic molecules that play an important role in the plant response to environmental stresses. The aim of this work is to determine the role of these compounds in the response to salinity of Medicago sativa plants in symbiosis with the soil bacteria Sinorhizobium meliloti.

Methods

M. sativa plants inoculated with S. meliloti were subjected to 100 and 150 mM NaCl treatments. The concentration of nodular polyamines was determined in relation to the nitrogen fixation parameters, proline accumulation, and oxidative damage. In addition, polyamines concentrations were analyzed in different nodular fractions as well as the effect of exogenous polyamines in the nodulation response.

Results

The concentration of nodular polyamines decreased by the salinity in correlation with the nitrogenase activity after 2 and 4 weeks of salt treatment while spermine accumulated after 6 weeks. On the contrary, proline accumulation was induced by the salinity at all time points. The analysis of different nodular fractions showed the highest polyamines concentration in bacteroids being homospermidine the most abundant.

Conclusion

Proline accumulation had prevalence over polyamines at the earliest response to salinity probably due to nitrogen limitation under salt stress conditions and the existence of a common precursor for both compounds in the nodule. Nevertheless, after long salt exposure, spermine was also accumulated. The analysis of different nodular fractions indicated the bacteroidal origin of polyamines in nodules being homoespermidine, one of the most abundant.  相似文献   

14.
15.
The exotic mangrove species Laguncularia racemosa (Combretaceae) is fast-growing and was used for forestation in recent years along the southeast coast of China. The breeding system of L. racemosa is variable among populations, such as hermaphroditism, gynodioecy, and androdioecy. To determine whether androdioecy is widespread in L. racemosa, 19 planted populations were surveyed along the southeast coast of China. To determine whether local environmental factors could affect the sex ratio in androdioecious populations, the observed male frequency of different populations was compared to local average annual temperature, rainfall, and salinity. The results showed that the 19 L. racemosa populations along the southeast coast of China were androdioecious. The male frequencies of these populations varied from 31.0 to ?88.9%. Partial correlation analysis showed that average annual salinity explained 74.7% of the male frequency (p?=?0.001). It is reasonable to note that the male frequency followed a general trend, presenting peak that coincided with the low salinity. The average annual rainfall explained only 30.4% of the male frequency (p?=?0.403). And the average annual temperature explained only 20.2% of the male frequency (p?=?0.206). The variable male frequency in different androdioecious L. racemosa populations may presumably be caused by ecological or genetical processes; these hypotheses will be tested in future studies.  相似文献   

16.
Salicylic acid-altering Arabidopsis mutants response to salt stress   总被引:2,自引:0,他引:2  

Aims

The role of salicylic acid (SA) in plant responses to salinity is still a matter of controversy. To address the effect of endogenous SA variation in level and signaling on plant responses to salinity, biochemical and physiological analyses were performed on SA-altering Arabidopsis mutants including snc1 with high level of SA, transgenic line nahG with low SA, npr1-1 with SA signaling blockage, snc1/nahG plants (expression of nahG in the snc1 background), as well as wild type plants.

Methods

Plants were cultured in 1?×?Hoagland solution under controlled conditions. For salt exposure, NaCl at final concentrations of 100?mM, 200?mM, and 300?mM, respectively, was added to the culture solution after 25?d of seed germination. Except where mentioned, plant leaves were harvested after 14?d of salt stress, and used for physiological and chemical analyses.

Results

Salt stress caused all plants growth retardation with a dose-effect relationship relative to control. However, compared to wild type plants, a greater growth inhibition occurred in snc1, while a less inhibition was observed in nahG and npr1-1 plants, and a comparable extent was detected in snc1/nahG plants in which the SA level was near to that in wild type plants. The snc1 plants had lower net photosynthetic rate, variable to maximum fluorescence ratio, quantum efficiency of photosystem 2, reduced glutathione/oxidized glutathione ratio, proline levels, and higher malondiadehyde levels and electrolyte leakage rates as compared to wild type plants under salt stress. These values were effectively reversed by the expression of nahG gene in snc1 plants. The nahG and npr1-1 plants always exhibited more tolerance to salinity in above-mentioned indices than wild type plants. However, higher activities of superoxide dismutase and peroxidase in snc1 plants did not contribute to salt tolerance.

Conclusions

These data showed that SA deficit or signaling blockage in Arabidopsis plants was favorable to salt adaptation, while a high accumulation of SA potentiated salt-induced damage to Arabidopsis plants.  相似文献   

17.

Key message

The role of transporters in imparting salt tolerance to mangroves is not yet understood. Identification of the role of transporters in halophytes is promising, as far as the development of genetically engineered salt tolerant crops is concerned.

Abstract

Mangroves are models for stress tolerance and they provide a reservoir for some of the novel genes and proteins, involved in salt tolerance. Biochemical or physiological mechanisms contribute to salt tolerance depending on variations in the environment. A great deal of research on salinity tolerance of plants, probes into water relations, photosynthesis, and accumulation of various in-organic ions and organic metabolites. The ability of the plant to react to high salinity depends on the genes that are expressed during stress. The mechanism of salinity tolerance becomes complicated when the responses of plants varies with salinity and environmental conditions. During the onset and development of salt stress within a plant, major processes such as photosynthesis, protein synthesis and lipid metabolisms are affected. The present review attempts to dissect out the role of transporters in salt tolerance of mangroves.  相似文献   

18.

Aims

Responses to salt stress of two Gypsophila species that share territory, but with different ecological optima and distribution ranges, were analysed. G. struthium is a regionally dominant Iberian endemic gypsophyte, whereas G. tomentosa is a narrow endemic reported as halophyte. The working hypothesis is that salt tolerance shapes the presence of these species in their specific habitats.

Methods

Taking a multidisciplinary approach, we assessed the soil characteristics and vegetation structure at the sampling site, seed germination and seedling development, growth and flowering, synthesis of proline and cation accumulation under artificial conditions of increasing salt stress and effect of PEG on germination and seedling development.

Results

Soil salinity was low at the all sampling points where the two species grow, but moisture was higher in the area of G. tomentosa. Differences were found in the species’ salt and drought tolerance. The different parameters tested did not show a clear pattern indicating the main role of salt tolerance in plant distribution.

Conclusions

G. tomentosa cannot be considered a true halophyte as previously reported because it is unable to complete its life cycle under salinity. The presence of G. tomentosa in habitats bordering salt marshes is a strategy to avoid plant competition and extreme water stress.  相似文献   

19.

Key message

Depending on salt concentrations, different mechanisms are involved in the tolerance of pistachio and an acclimation to salinity conditions occurs in the leaves that develop in the presence of salt.

Abstract

Pistachio (Pistacia vera L.) is a salt tolerant species that is considered an alternative crop for cultivation in salinzied orchard soils. In this work, 12-week-old pistachio seedlings cultivated in soil under greenhouse conditions were treated with five levels of salinity including control (0.63 dSm?1), low (2 and 4 dSm?1) and high (8 and 10 dSm?1) salt concentrations for further 12 weeks. Plant growth parameters were not affected by mild salinity; a significant reduction was only observed from 8 dSm?1. Considerable differences were observed between the young and mature leaves regarding osmotic and ionic stress effects of salt. Main compatible solutes were proline in mature leaves, proline and soluble sugars in young leaves, and soluble sugars and amino acids, other than proline, in roots. Concentration and content of Na in the leaves were not significantly increased at low levels of salinity and the K:Na and Ca:Na ratio of leaves were affected only by higher salt concentrations. Using the sequential extraction procedure for cell wall isolation, we observed that both absolute and relative amounts of Na in the cell wall fraction increased under low salinity, while decreased under higher levels of salt supply. Stable water relations, photochemistry and CO2 assimilation rates particularly of young leaves, as well as ion homeostasis were mechanisms for maintenance of plants growth under mild salinity. Under severe saline conditions, the impaired ability of mature leaves for synthesis of assimilates, preferent allocation of carbohydrates to roots for maintenance of osmotic homeostasis and finally, reduction of protein synthesis caused growth inhibition in pistachio.  相似文献   

20.

Key message

We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments.

Abstract

Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号