首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root induced changes of effective 1D hydraulic properties in a soil column   总被引:2,自引:0,他引:2  

Aims

Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth.

Methods

Parameters of Kosugi’s lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection–dispersion like pore evolution model.

Results

Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation.

Conclusions

Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.  相似文献   

2.

Background and aims

Knowledge of plant water fluxes is critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolving root water transport dynamics has been a particularly daunting task. Our objectives were to demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging.

Methods

Seedlings were propagated for 1–3 weeks in aluminum chambers containing sand. Pulses of water or deuterium oxide were then tracked through the root systems by collecting consecutive radiographs during exposure to a cold-neutron source. Water flux was manipulated by cycling on a growth lamp to alter foliar demand for water.

Results

Neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. After irrigation there was rapid root water uptake from the newly wetted soil, followed by hydraulic redistribution of water through the root system to roots terminating in dry soil. Water flux within individual roots responded differentially to foliar illumination based on supply and demand of water within the root system.

Conclusions

Sub-millimeter scale image resolution revealed timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages—relationships not well characterized by other techniques.  相似文献   

3.

Background and aims

Accurate data on the standing crop, production, and turnover of fine roots is essential to our understanding of major terrestrial ecological processes. Minirhizotrons offer a unique opportunity to study the dynamic processes of root systems, but are susceptible to several measurement biases.

Methods

We use roots extracted from minirhizotron tube surfaces to calculate the depth of field of a minirhizotron image and present a model to correct for the underestimation of root diameters obscured by soil in minirhizotron images.

Results

Non-linear regression analysis resulted in an estimated depth of field of 0.78 mm for minirhizotron images. Unadjusted minirhizotron data underestimated root net primary production and fine root standing crop by 61 % when compared to adjusted data using our depth of field and root diameter corrections. Changes in depth of field accounted for >99 % of standing crop adjustments with root diameter corrections accounting for <1 %.

Conclusions

Our results represent the first effort to empirically derive depth of field for minirhizotron images. This work may explain the commonly reported underestimation of fine roots using minirhizotrons, and stands to improve the ability of researchers to accurately scale minirhizotron data to large soil volumes.  相似文献   

4.

Background and aims

Forest management activities influences stand nutrient budgets, belowground carbon allocation and storage in the soil. A field experiment was carried out in Southern Ethiopia to investigate the effect of thinning on fine root dynamics and associated soil carbon accretion of 6-year old C. lusitanica stands.

Methods

Fine roots (≤2 mm in diameter) were sampled seasonally to a depth of 40 cm using sequential root coring method. Fine root biomass and necromass, vertical distribution, seasonal dynamics, annual turnover and soil carbon accretion were quantified.

Results

Fine root biomass and necromass showed vertical and temporal variations. More than 70 % of the fine root mass was concentrated in the top 20 cm soil depth. Fine root biomass showed significant seasonal variation with peaks at the end of the major rainy season and short rainy season. Thinning significantly increased fine root necromass, annual fine root production and turnover. Mean annual soil carbon accretion, through fine root necromass, in the thinned stand was 63 % higher than that in the un-thinned stand.

Conclusions

The temporal dynamics in fine roots is driven by the seasonality in precipitation. Thinning of C. lusitanica plantation would increase soil C accretion considerably through increased fine root necromass and turnover.  相似文献   

5.

Introduction

In a recent paper, Warren et al. (2013) illustrated the potential of neutron radiography to visualize water dynamics in soil and plants.

Methods

After injection of deuterated water (D2O) in soil, the authors could monitor the changes of D2O concentration in roots.

Results

Based on the radiographs, the authors concluded that D2O was transported from roots growing in a wet soil region to roots in a dry region, proving hydraulic redistribution between roots. However, this interpretation depends on the correct estimation of D2O concentration in soil.

Conclusions

The experiments of Warren et al. (2013) could also be explained by diffusion of D2O from soil to roots, without hydraulic redistribution within the root system.  相似文献   

6.

Background and aims

The potential use of a metal-tolerant sunflower mutant line for both biomonitoring and phytoremediating a Cu-contaminated soil series was investigated.

Methods

The soil series (21–1,170 mg Cu kg?1) was sampled in field plots at control and wood preservation sites. Sunflowers were cultivated 1 month in potted soils under controlled conditions.

Results

pH and dissolved organic matter influenced Cu concentration in the soil pore water. Leaf chlorophyll content and root growth decreased as Cu exposure rose. Their EC10 values corresponded to 104 and 118 μg Cu L?1 in the soil pore water, 138 and 155 mg Cu kg?1 for total soil Cu, and 16–18 mg Cu kg?1 DW shoot. Biomass of plant organs as well as leaf area, length and asymmetry were well correlated with Cu exposure, contrary to the maximum stem height and leaf water content.

Conclusions

Physiological parameters were more sensitive to soil Cu exposure than the morphological ones. Bioconcentration and translocation factors and distribution of mineral masses for Cu highlighted this mutant as a secondary Cu accumulator. Free Cu2+ concentration in soil pore water best predicted Cu phytoavailability. The usefulness of this sunflower mutant line for biomonitoring and Cu phytoextraction was discussed.  相似文献   

7.
Does biochar influence soil physical properties and soil water availability?   总被引:10,自引:0,他引:10  

Aims

This study aims to (i) determine the effects of incorporating 47 Mg ha?1 acacia green waste biochar on soil physical properties and water relations, and (ii) to explore the different mechanisms by which biochar influences soil porosity.

Methods

The pore size distribution of the biochar was determined by scanning electron microscope and mercury porosimetry. Soil physical properties and water relations were determined by in situ tension infiltrometers, desorption and evaporative flux on intact cores, pressure chamber analysis at ?1,500 kPa, and wet aggregate sieving.

Results

Thirty months after incorporation, biochar application had no significant effect on soil moisture content, drainable porosity between –1.0 and ?10 kPa, field capacity, plant available water capacity, the van Genuchten soil water retention parameters, aggregate stability, nor the permanent wilting point. However, the biochar-amended soil had significantly higher near-saturated hydraulic conductivity, soil water content at ?0.1 kPa, and significantly lower bulk density than the unamended control. Differences were attributed to the formation of large macropores (>1,200 μm) resulting from greater earthworm burrowing in the biochar-amended soil.

Conclusion

We found no evidence to suggest application of biochar influenced soil porosity by either direct pore contribution, creation of accommodation pores, or improved aggregate stability.  相似文献   

8.
Root growth in biopores—evaluation with in situ endoscopy   总被引:1,自引:0,他引:1  

Background and aims

The significance of biopores for nutrient acquisition from the subsoil depends on root-soil contact, which in turn is influenced by root architecture. The aim of this study was to detect differences regarding the architecture and root-soil contact of homorhizous barley roots (Hordeum vulgare L.) and allorhizous oilseed rape roots (Brassica napus L.) growing in biopores.

Methods

In situ endoscopy was used as a technique that allows non-destructive display of pore wall characteristics and root morphology inside large biopores under field conditions.

Results

For both crops, about 85 % of all roots did establish contact to the pore wall. However, according to their different root architecture, the two crops varied in their strategy of resource acquisition: While barley was characterized by thin vertical or ingrowing roots, most of them in direct contact to the pore wall, oilseed rape established contact to the pore wall predominantly via lateral roots.

Conclusions

Root morphological and pore wall assessment with in situ endoscopy in combination with detailed studies of soil biochemical and soil physical parameters of the pore wall is considered an essential prerequisite for more precise future modelling of nutrient acquisition and uptake.  相似文献   

9.

Background and Aims

Field studies have demonstrated that aluminum (Al) toxicity is low in no-till systems during cropping seasons that have adequate and well-distributed rainfall. This study evaluated the performance of corn (Zea mays L.) and soybean (Glycine max L. Merrill) on an acid loamy soil under a long-term no-till system, in response to surface liming and as affected by genotypic tolerance to Al and water stress.

Methods

A field trial examined the effect of surface application of lime (0, 4, 8, and 12 Mg ha?1) on no-till corn and soybean nutrition and yield. Trials were also carried out in undisturbed soil columns taken from the unlimed and limed plots. Two hybrids/cultivars of corn and soybean, one sensitive and the other moderately sensitive to Al were grown at two soil moisture levels with and without water stress (50 % and 80 % water filled pore space).

Results

Alleviating soil acidity by liming improved nutrition and increased grain yields of corn and soybean. The benefits of liming on root length density, nutrient uptake and shoot biomass production of corn and soybean were more pronounced in Al-sensitive genotypes under water stress.

Conclusions

The results suggest that plants exposed to drought stress under no-till systems are more affected by Al toxicity.  相似文献   

10.

Background and aims

Trees allocate a high proportion of assimilated carbon belowground, but the partitioning of that C among ecosystem components is poorly understood thereby limiting our ability to predict responses of forest C dynamics to global change drivers.

Methods

We labeled sugar maple saplings in natural forest with a pulse of photosynthetic 13C in late summer and traced the pulse over the following 3 years. We quantified the fate of belowground carbon by measuring 13C enrichment of roots, rhizosphere soil, soil respiration, soil aggregates and microbial biomass.

Results

The pulse of 13C contributed strongly to root and rhizosphere respiration for over a year, and respiration comprised about 75 % of total belowground C allocation (TBCA) in the first year. We estimate that rhizosphere carbon flux (RCF) during the dormant season comprises at least 6 % of TBCA. After 3 years, 3.8 % of the C allocated belowground was recovered in soil organic matter, mostly in water-stable aggregates.

Conclusions

A pulse of carbon allocated belowground in temperate forest supplies root respiration, root growth and RCF throughout the following year and a small proportion becomes stabilized in soil aggregates.  相似文献   

11.

Aims

A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

Methods

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

Results

At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

Conclusions

Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   

12.

Background and aims

The use of standard dynamic root architecture models to simulate root growth in soil containing macropores failed to reproduce experimentally observed root growth patterns. We thus developed a new, more mechanistic model approach for the simulation of root growth in structured soil.

Methods

In our alternative modelling approach, we distinguish between, firstly, the driving force for root growth, which is determined by the orientation of the previous root segment and the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by its inverse, soil mechanical conductance, and treated similarly to hydraulic conductivity in Darcy’s law. At the presence of macropores, soil mechanical conductance is anisotropic, which leads to a difference between the direction of the driving force and the direction of the root tip movement.

Results

The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated.

Conclusions

Qualitative and quantitative comparisons between simulated and experimentally observed root systems showed good agreement, suggesting that the drawn analogy between soil water flow and root growth is a useful one.
  相似文献   

13.

Aims

Roots need to be in good contact with the soil to take up water and nutrients. However, when the soil dries and roots shrink, air-filled gaps form at the root-soil interface. Do gaps actually limit the root water uptake, or do they form after water flow in soil is already limiting?

Methods

Four white lupins were grown in cylinders of 20 cm height and 8 cm diameter. The dynamics of root and soil structure were recorded using X-ray CT at regular intervals during one drying/wetting cycle. Tensiometers were inserted at 5 and 18 cm depth to measure soil matric potential. Transpiration rate was monitored by continuously weighing the columns and gas exchange measurements.

Results

Transpiration started to decrease at soil matric potential ψ between ?5 kPa and ?10 kPa. Air-filled gaps appeared along tap roots between ψ?=??10 kPa and ψ?=??20 kPa. As ψ decreased below ?40 kPa, roots further shrank and gaps expanded to 0.1 to 0.35 mm. Gaps around lateral roots were smaller, but a higher resolution is required to estimate their size.

Conclusions

Gaps formed after the transpiration rate decreased. We conclude that gaps are not the cause but a consequence of reduced water availability for lupins.  相似文献   

14.

Aims and background

Root growth creates a gradient in age at both the scale of the single root, from distal to proximal parts, but also at the root system level when young branch roots emerge from the axis or new nodal roots are emitted that may reach same soil domain as older roots. It is known that a number of root functions will vary with root type and root tissue age (e.g. respiration, exudation, ion uptake, root hydraulic conductance, mucilage release…) and so will the resulting rhizosphere properties. The impact of the distribution of root demography with depth, and related functions, on the overall functioning of the root system is fundamental for an integration of processes at the root system scale.

Scope and conclusion

Starting from methods for measuring root demography, we discuss the availability of data related to root age and its spatial distribution, considering plant types (monocot/dicot, perennial/annuals) which may exhibit different patterns. We then give a detailed review of variation of root/rhizosphere properties related to root age, focusing on root water uptake processes. We examine the type of response of certain properties to changes in age and whether a functional relationship can be derived. Integration of changing root properties with age into modelling approaches is shown from 3D models at the single plant scale to approaches at the field scale based on integrated root system age. Functional structural modelling combined with new development in non-invasive imaging of roots show promises for integrating influence of age on root properties, from the local to whole root system scales. However, experimental quantification of these properties, such as hydraulic conductance variation with root age and root types, or impact of mucilage and its degradation products on rhizosphere hydraulic properties, presently lag behind the theoretical developments and increase in computational power.
  相似文献   

15.

Aims

Soil respiration in forest plantations can be greatly affected by management practices such as irrigation. In northwest China, soil water is usually a limiting factor for the development of forest plantations. This study aims to examine the effects of irrigation intensity on soil respiration from three poplar clone plantations in this arid area.

Methods

The experiment included three poplar clones subjected to three irrigation intensities (without, low and high). Soil respiration was measured using a Li-6400-09 chamber during the growing season in 2007.

Results

Mean soil respiration rates were 2.92, 4.74 and 3.49 μmol m?2 s?1 for control, low and high irrigation treatments, respectively. Soil respiration decreased once soil water content was below a lower (14.8 %) or above an upper (26.2 %) threshold. When soil water content ranged from 14.8 % to 26.2 %, soil respiration increased and correlated with soil temperature. Fine root also played a role in the significant differences in soil CO2 efflux among the three treatments. Furthermore, the three poplar hybrid clones responded differently to irrigation regarding fine root production and soil CO2 efflux.

Conclusions

Irrigation intensity had a strong impact on soil respiration of the three poplar clone plantations, which was mainly because fine root biomass and microbial activities were greatly influenced by soil water conditions. Our results suggest that irrigation management is a main factor controlling soil carbon dynamics in forest plantation in arid regions.  相似文献   

16.

Aims

Root-specific responses to stress are not well-known, and have been largely based on indirect measurements of bulk soil water extraction, which limits mechanistic modeling of root function.

Methods

Here, we used neutron radiography to examine in situ root-soil water dynamics of a previously droughted black cottonwood (Populus trichocarpa) seedling, contrasting water uptake by the two major components of the root system that differed in initial recovery rate as apparent by ‘new’ (whiter, thinner), or ‘old’ (darker, thicker) parts of the fine root system.

Results

The smaller diameter ‘new’ roots had greater water uptake per unit surface area than the larger diameter ‘old’ roots, but they had less total surface area leading to less total water extraction; rates ranged from 0.0027–0.0116 g cm?2 h?1. The finest most-active roots were not visible in the radiographs, indicating the need to include destructive sampling. Analysis based on root-free bulk soil hydraulic properties indicated substantial redistribution of water via saturated/unsaturated flow and capillary wicking across the layers - suggesting water uptake dynamics following an infiltration event may be more complex than approximated by common soil hydraulic or root surface area modeling approaches.

Conclusions

Our results highlight the need for continued exploration of root-trait specific water uptake rates in situ, and impacts of roots on soil hydraulic properties – both critical components for mechanistic modeling of root function.
  相似文献   

17.

Aims

A simulation model to demonstrate that soil water potential can regulate transpiration, by influencing leaf water potential and/or inducing root production of chemical signals that are transported to the leaves.

Methods

Signalling impacts on the relationship between soil water potential and transpiration were simulated by coupling a 3D model for water flow in soil, into and through roots (Javaux et al. 2008) with a model for xylem transport of chemicals (produced as a function of local root water potential). Stomatal conductance was regulated by simulated leaf water potential (H) and/or foliar chemical signal concentrations (C; H?+?C). Split-root experiments were simulated by varying transpiration demands and irrigation placement.

Results

While regulation of stomatal conductance by chemical transport was unstable and oscillatory, simulated transpiration over time and root water uptake from the two soil compartments were similar for both H and H?+?C regulation. Increased stomatal sensitivity more strongly decreased transpiration, and decreased threshold root water potential (below which a chemical signal is produced) delayed transpiration reduction.

Conclusions

Although simulations with H?+?C regulation qualitatively reproduced transpiration of plants exposed to partial rootzone drying (PRD), long-term effects seemed negligible. Moreover, most transpiration responses to PRD could be explained by hydraulic signalling alone.  相似文献   

18.

Aims

Morphological and ontogenetic variation in root system architecture holds ecological significance, particularly in low-resource habitats where soil rooting is critical for both seedling establishment and water and nutrient uptake. To assess this variation under contrasted agroecological backgrounds, root architecture and rooting patterns were compared in Andean populations of Chenopodium hircinum, Chenopodium pallidicaule and two ecotypes (wet- and dry-habitat) of Chenopodium quinoa.

Methods

Seedlings were grown in rhizotrons under controlled water and nutrient availability. Root branching and elongation dynamics were characterized during 6 weeks after germination, while leaf area, above and below-ground biomass, and specific root length were determined at the end of the experiment.

Results

Despite large differences in aboveground biomass, all populations showed similar herringbone root systems. The dry-habitat C. quinoa had generally the highest root trait values, with fast taproot elongation, thick roots and long root segments resulting in high total root length and deep root proliferation.

Conclusion

Irrespective of their contrasting agroecological background, the studied chenopods displayed a similar root system topology. However, from very early development stages, they showed differential root foraging patterns with two extremes: fast and vigourous rooting at depth in the dry-habitat C. quinoa, and shallow and thin root system in C. pallidicaule adapted to shallow-soil and high-altitude habitats.  相似文献   

19.
20.

Background and Aims

Crop residues are important for the redistribution of alkalinity within soils. A net increase in pH following residue addition to soil is typically reported. However, effects are inconsistent in the field due to confounding soil processes and agronomic practises.

Methods

A column experiment investigated the effects of canola, chickpea and wheat residues, differing in alkalinity content and C:N ratio, on soil pH changes in a Podosol (Podzol; initial pH 4.5) and Tenosol (Cambisol; initial pH 6.2) under field conditions.

Results

Residues (10 g dry matter kg-1 soil; 0–10 cm) increased soil pH, and temporal changes in alkalinity depended on the residue and soil type. Alkalinity was generated via abiotic association reactions between H+ and added organic matter and via ammonification and decarboxylation processes during decomposition. Alkalinity from canola and chickpea residues moved down the soil profile (10–30 cm) and was attributed to nitrate immobilisation and organic anion decomposition by soil microbes.

Conclusions

The application of residues to acid and moderately acid soils increased the pH of both topsoil and subsoils, which persisted over 26 months. Maximal increase of pH observed at 3 months was correlated with the concentration of excess cations in the residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号