首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Litter, an essential component of forest ecosystems, plays an important role in maintaining soil fertility, sequestering carbon (C) and improving soil biodiversity. However, litter decomposition is affected by increased nitrogen (N) deposition. Numerous reports have presented N deposition experiments in different forest ecosystems to investigate the effects of N deposition on litter decomposition, but the effects remain unclear, especially in ecosystems receiving increasingly higher levels of ambient N deposition. To address this gap, we performed a litterbag experiment to understand the effects of increasing N deposition on the litter decomposition process in natural evergreen broad-leaved forest in the Rainy Area of Western China.

Methods

A 2-year field litter decomposition experiment was conducted using the litterbag method. Four levels of N deposition were established: control (CK; 0 kg·N·ha?1·year?1), low N deposition (LN; 50 kg·N·ha?1·year?1), medium N deposition (MN; 150 kg·N·ha?1·year?1), and high N deposition (HN; 300 kg·N·ha?1·year?1). The simulated N depositions ranged from 50% to 320% of the ambient rate of wet N deposition.

Results

Simulated N deposition significantly increased the remaining mass, C, N, lignin and cellulose of the litter. The LN treatment decreased the remaining phosphorus (P); conversely, the HN treatment increased it. In the late stage of the study period, the mass remaining was positively closely correlated to the lignin and cellulose remaining during the decomposition process.

Conclusions

Simulated N deposition significantly suppressed the litter decomposition in the natural evergreen broad-leaved forest, despite the high rate of ambient N deposition, and the inhibitory effects increased with the N deposition levels. The suppressive effect of N deposition on litter decomposition may be primarily explained by the inhibition of lignin and cellulose degradation by the exogenous inorganic N. With ongoing N deposition in future, N deposition may have a potentially significant impact on C and N cycles in such forest ecosystems.
  相似文献   

2.

Background and aims

It is so far a gap in knowledge to assess nitrate (NO3 ?) leaching loss linking with crop yield for a given cereal cropping system.

Methods

We conducted a meta-analysis on 32 published studies reporting both NO3 ? leaching losses and crop yields in the maize (N?=?20) and wheat (N?=?12) systems.

Results

On average, 22 % and 15 % of applied fertilizer N to wheat and maize systems worldwide are leached in the form of NO3 ?, respectively. The average area-scaled NO3 - leaching loss for maize (57.4 kg N ha?1) was approx. two times higher than for wheat (29.0 kg N ha?1). While, if scaled to crop yields, the average yield-scaled NO3 ? losses were comparable between maize (5.40 kg N Mg?1) and wheat (5.41 kg N Mg?1) systems. Across all sites, the lowest yield-scaled NO3 ? leaching losses were observed at slightly suboptimal fertilization rates, corresponding to 90 % and 96 % of maximum maize or wheat yields, respectively.

Conclusions

Our findings suggest that small adjustments of agricultural N management practices can effectively reduce yield-scaled NO3 ? leaching losses. However, further targeted field experiments are still needed to identify at regional scale best agricultural management practices for reducing yield-scaled NO3 ? leaching losses in maize and wheat systems.  相似文献   

3.

Background and aims

The association of the legume Anthyllis vulneraria and the grass Festuca arvernensis, was found to be very efficient for the phytostabilisation of highly multi-metal contaminated mine tailings. Our objective was to quantify the contribution of Anthyllis inoculated with its symbiotic bacteria Mesorhizobium metallidurans to the soil N pool and to test whether a starter nitrogen fertilization may improve symbiotic nitrogen fixation and the growth of Festuca.

Methods

Plants of Festuca and of Anthyllis inoculated with M. metallidurans were grown separately during eight months in pots filled with mine contaminated soil. Estimation of the N fluxes was realized using 15?N isotopic methods.

Results

Starter N fertilization (28 kg N ha?1) improved symbiotic N2 fixation and the growth of both species. Belowground N balance (N rhizodeposition – soil N uptake) of the non-fertilized Anthyllis at maturity was negative (?30.6 kg N ha?1). However, the amount of N derived from fixation, including above- and belowground parts, was 78.6 kg N ha?1, demonstrating the ability of this symbiotic association to improve soil N content after senescence.

Conclusions

i) soil N enrichment by the N2-fixing symbiotic association occurs after plant senescence, when decaying leaves and shoots are incorporated into the soil; ii) application of a starter fertilization is an efficient solution to improve phytostabilisation of highly contaminated sites.  相似文献   

4.

Background

Although plant growth in alpine steppes on the Tibetan Plateau has been suggested to be sensitive to nitrogen (N) addition, the N limitation conditions of alpine steppes remain uncertain.

Methods

After 2 years of fertilization with NH4NO3 at six rates (0, 10, 20, 40, 80 and 160 kg N ha?1 yr?1), the responses of plant and soil parameters as well as N2O fluxes were measured.

Results

At the vegetation level, N addition resulted in an increase in the aboveground N pool from 0.5?±?0.1 g m?2 in the control plots to 1.9?±?0.2 g m?2 in the plots at the highest N input rate. The aboveground C pool, biomass N concentration, foliar δ15N, soil NO3 ?-N and N2O flux were also increased by N addition. However, as the N fertilization rate increased from 10 kg N ha?1 yr?1 to 160 kg N ha?1 yr?1, the N-use efficiency decreased from 12.3?±?4.6 kg C kg N?1 to 1.6?±?0.2 kg C kg N?1, and the N-uptake efficiency decreased from 43.2?±?9.7 % to 9.1?±?1.1 %. Biomass N:P ratios increased from 14.4?±?2.6 in the control plots to 20.5?±?0.8 in the plots with the highest N input rate. Biomass N:P ratios, N-uptake efficiency and N-use efficiency flattened out at 40 kg N ha?1 yr?1. Above this level, soil NO3 ?-N began to accumulate. The seasonal average N2O flux of growing season nonlinearly increased with increased N fertilization rate and linearly increased with the weighted average foliar δ15N. At the species level, N uptake responses to relative N availability were species-specific. Biomass N concentration of seven out of the eight non-legume species increased significantly with N fertilization rates, while Kobresia macrantha and the one legume species (Oxytropics glacialis) remained stable. Both the non-legume and the legume species showed significant 15N enrichment with increasing N fertilization rate. All non-legume species showed significant increased N:P ratios with increased N fertilization rate, but not the legume species.

Conclusions

Our findings suggest that the Tibetan alpine steppes might be N-saturated above a critical N load of 40 kg N ha?1 yr?1. For the entire Tibetan Plateau (ca. 2.57 million km2), a low N deposition rate (10 kg N ha?1 yr?1) could enhance plant growth, and stimulate aboveground N and C storage by at least 1.1?±?0.3 Tg N yr?1 and 31.5?±?11.8 Tg C yr?1, respectively. The non-legume species was N-limited, but the legume species was not limited by N.  相似文献   

5.

Aims

Winter oilseed-rape production is characterized by a low N efficiency, due to low N uptake and insufficient N remobilisation to the seeds. In particular, a reduction of leaf N losses might be one way to improve N efficiency of this crop. It was tested if variations in leaf N losses and in stem residual N amounts at maturity exist between cultivars differing in N efficiency.

Methods

In a 3-year field experiment, four oilseed rape cultivars were cultivated at limiting, medium, and high N supply.

Results

N harvest indices in this study were comparatively high (around 0.79) and leaf N losses amounted to at most 13 kg N ha?1. 86 % of the leaf N present at the beginning of flowering was remobilised, irrespective of N rate or cultivar. Nevertheless, genotypic variation in leaf N loss existed. They were mainly due to differences in leaf N accumulation until flowering. Residual N in stems (up to 33 kg N ha?1) was higher than leaf N losses and varied more between treatments but was not related to genotypic variation in yield.

Conclusions

N uptake after flowering was more important than N remobilisation from vegetative biomass for genotypic variation in seed yield both at low and high N supply.  相似文献   

6.

Background and aims

Tropical and subtropical forests are experiencing high levels of atmospheric nitrogen (N) deposition, but the responses of such forests ecosystems to N deposition remain poorly understood.

Methods

We conducted an 8-year field experiment examining the effect of experimental N deposition on plant growth, soil carbon dioxide efflux, and net ecosystem production (NEP) in a subtropical Chinese fir forest. The quantities of N added were 0 (control), 60, 120, and 240 kg ha?1 year?1.

Results

NEP was lowest under ambient conditions and highest with 240 kg of N ha?1 year?1 treatment. The net increase in ecosystem carbon (C) storage ranged from 9.2 to 16.4 kg C per kg N added in comparison with control. In addition, N deposition treatments significantly decreased heterotrophic respiration (by 0.69–1.85 t C ha?1 year?1) and did not affect plant biomass. The nitrogen concentrations were higher in needles than that in fine roots.

Conclusions

Our findings suggest that the young Chinese fir forest is carbon source and N deposition would sequester additional atmospheric CO2 at high levels N input, mainly due to reduced soil CO2 emission rather than increased plant growth, and the amount of sequestered C depended on the rate of N deposition.  相似文献   

7.

Background and aims

Biochar additions to tropical soils have been shown to reduce N leaching and increase N use efficiency. No studies exist verifying reduced N leaching in field experiments on temperate agricultural soils or identifying the mechanism for N retention.

Methods

Biochar derived from maize stover was applied to a maize cropping system in central New York State at rates of 0, 1, 3, 12, and 30 t?ha-1 in 2007. Secondary N fertilizer was added at 100, 90, 70, and 50 % of the recommended rate (108 kg N ha-1). Nitrogen fertilizer enriched with 15?N was applied in 2009 to the 0 and 12 t?ha-1 of biochar at 100 and 50 % secondary N application.

Results

Maize yield and plant N uptake did not change with biochar additions (p?>?0.05; n?=?3). Less N (by 82 %; p?<?0.05) was lost after biochar application through leaching only at 100 %?N fertilization. The reason for an observed 140 % greater retention of applied 15?N in the topsoil may have been the incorporation of added 15?N into microbial biomass which increased approximately three-fold which warrants further research. The low leaching of applied fertilizer 15?N (0.42 % of applied N; p?<?0.05) and comparatively high recovery of applied 15?N in the soil (39 %) after biochar additions after one cropping season may also indicate greater overall N retention through lower gaseous or erosion N losses with biochar.

Conclusions

Addition of biochar to fertile soil in a temperate climate did not improve crop growth or N use efficiency, but increased retention of fertilizer N in the topsoil.  相似文献   

8.

Background and aims

High nitrous oxide (N2O) emissions may occur during the non-rice growing season of Chinese rice-upland crop rotation systems. However, our understanding of N2O emission during this season is poor due to a scarcity of available field N2O measurements.

Methods

Using the static manual chamber-GC technique, seasonal N2O emissions during the non-rice growing season were simultaneously measured at two adjacent rice-wheat and rice-rapeseed fields in southwest China for three consecutive annual rotation cycles (May 2005 to May 2008).

Results

Compared to the control, N fertilizer applications significantly enhanced soil N2O emissions from both wheat and rapeseed systems. Seasonal cumulative N2O fluxes from wheat systems were on average 2.6 kg N ha?1 for the recommended practice (RP [150 kg N ha?1]) and 5.0 kg N ha?1 for the conventional practice (CP [250 kg N ha?1]). Lower N2O emissions were observed from the adjacent rapeseed systems. Average cumulative seasonal N2O fluxes from rapeseed were 1.5 and 2.2 kg N ha?1 for the RP and CP treatments, respectively. The first 3 weeks after N fertilization were the “hot moment” of N2O emissions for both the wheat and rapeseed systems. The lowest yield-scaled N2O fluxes for wheat were obtained at the RP treatment (mean: 0.81 kg N Mg?1) while for rapeseed the CP treatment produced the lowest yield-scaled fluxes (mean: 0.79 kg N Mg?1). On average, the direct N2O emission factors (EFd) for the wheat system (1.76 %) were over two times higher than for the rapeseed system (0.73 %).

Conclusions

Intercropping of rapeseed tends to result in lower N2O emissions than wheat for rice-upland crop rotation systems of southwest China, indicating that either the N fertilization or the cropping system need to be considered not only for improving the estimate of regional and/or national N2O fluxes but also for proposing the climate-smart agricultural management practice to reduce N2O emissions from agricultural soils.  相似文献   

9.
Urbanization alters nitrogen (N) cycling, but the spatiotemporal distribution and impact of these alterations on ecosystems are not well-quantified. We measured atmospheric inorganic N inputs and soil leaching losses along an urbanization gradient from Boston, MA to Harvard Forest in Petersham, MA. Atmospheric N inputs at urban sites (12.3 ± 1.5 kg N ha?1 year?1) were significantly greater than non-urban (5.7 ± 0.5 kg N ha?1 year?1) sites with NH4 + (median value of 77 ± 4 %) contributing thrice as much as NO3 ?. Proximity to urban core correlated positively with NH4 + (R2 = 0.57, p = 0.02) and total inorganic N inputs (R2 = 0.61, p = 0.01); on-road CO2 emissions correlated positively with NO 3 ? inputs (R2 = 0.74, p = 0.003). Inorganic N leaching rates correlated positively with atmospheric N input rates (R2 = 0.61, p = 0.01), but did not differ significantly between urban and non-urban sites (p > 0.05). Our empirical measurements of atmospheric N inputs are greater for urban areas and less for rural areas compared to modeled regional estimates of N deposition. Five of the nine sites had NO 3 ? leached that came almost entirely from nitrification, indicating that the NO3 ? in leachate came from biological processes rather than directly passing through the soil. A significant proportion (17–100 %) of NO 3 ? leached from the other four sites came directly from the atmosphere. Surprisingly, the four sites where atmospheric sources made up the largest proportion of leachate NO3 ? also had relatively low N leaching rates, suggesting that atmospheric N inputs added to terrestrial ecosystems can move to multiple sinks and losses simultaneously, rather than being lost via leaching only after abiotic and biotic sinks have become saturated. This study improves our understanding of atmospheric N deposition and leaching in urban ecosystems, and highlights the need to incorporate urbanization effects in N deposition models.  相似文献   

10.

Background and aims

Two inland dunes in the Netherlands receiving low (24) and high (41 kg N ha?1 yr?1) nitrogen (N) deposition were compared for N dynamics and microbial activity to investigate the potential effect of N on succession rate of the vegetation and loss of pioneer habitats.

Methods

Primary succession stages were sampled, including bare sand, and vegetation dominated by Polytrichum piliferum, Campylopus introflexus, lichens and grasses respectively, representing a series of vegetation types in undisturbed drift sand sites with succession starting on bare sand containing virtually no organic matter. Microbial characteristics and potential N mineralization were analysed in a laboratory experiment.

Results

Organic matter accumulated during succession, resulting in a lower pH and in higher microbial biomass (bacteria and fungi), respiration and net N mineralization. The increase in respiration and N mineralization was largely due to the development of an ectorganic layer in the middle stages of succession. The observed effects of N deposition were (1) decrease of microbial biomass, (2) higher net N mineralization per m2, (3) higher levels of free nitrogen in the soil, and (4) a higher microbial N:P ratio.

Conclusions

Elevated N deposition leads to higher N availability which may cause accelerated succession.  相似文献   

11.
The objective of this study was to determine the effects of plant growth regulator (PGR) (no PGR, trinexapac-ethyl, and paclobutrazol) and N fertilizer (zero N, an average of 37 kg N ha?1 month?1, 6 and 12 kg N ha?1 week?1) on soil organic C (SOC) and soil N in creeping bentgrass (Agrostis stolonifera L.) fairway turf. After 4 years of field experiments soil samples were obtained from soil depths of 0–2.5, 2.5–5, 5–7.5, 7.5–10, 10–15, 15–20, and 20–30 cm. Soil bulk density, SOC, total N, NO 3 ? –N, and NH 4 + –N concentrations were determined. Paclobutrazol and trinexapac-ethyl application increased SOC. The 37 kg N ha?1 month?1 application increased SOC at the 0–2.5 cm depth with both PGRs. When paclobutrazol was used, N fertilizer always increased SOC; however, the greatest increase was observed with the 12 kg N ha?1 week?1 application when compared to other rates, inversely related to the NH 4 + –N concentration. Nitrogen application increased soil total N and NO 3 ? –N in the upper three depths. The application of PGRs and N fertilizer to creeping bentgrass fairway turf is an effective strategy for promoting C sequestration.  相似文献   

12.

Background and aims

The feather moss Pleurozium schreberi (Brid.) Mitt. is colonized by cyanobacteria, which fix substantial amounts of atmospheric nitrogen (N) in pristine and N-poor ecosystems. Cyanobacterial N2 fixation is inhibited by N deposition. However, the threshold of N input that leads to the inhibition of N2 fixation has not been adequately investigated. Further, the ability of N2 fixation to recover in mosses from high N deposition areas has not been studied to date.

Methods

We conducted two laboratory studies in which we (1) applied a range of concentrations of N as NH4NO3 to mosses from low N-deposition areas, and (2) we deprived mosses from a high N-deposition area of N to test their ability to recover N2 fixation.

Results

Higher addition rates (up to 10 kg N ha?1) did not systematically inhibit N2 fixation in P. schreberi. Conversely, upon weeks of N deprivation of mosses from a high N environment, N2 fixation rates increased.

Conclusions

The threshold of total N deposition above which N2 fixation in P. schreberi is inhibited is likely to be > 10 kg N ha?1. Further, cyanobacteria are able to recover from high N inputs and are able to fix atmospheric N2 after a period of N deprivation.  相似文献   

13.

Aims

A 3-year field experiment (October 2004–October 2007) was conducted to quantify N2O fluxes and determine the regulating factors from rain-fed, N fertilized wheat-maize rotation in the Sichuan Basin, China.

Methods

Static chamber-GC techniques were used to measure soil N2O fluxes in three treatments (three replicates per treatment): CK (no fertilizer); N150 (300 kg N fertilizer ha?1 yr?1 or 150 kg N?ha?1 per crop); N250 (500 kg N fertilizer ha?1 yr?1 kg or 250 kg N?ha?1 per crop). Nitrate (NO 3 ? ) leaching losses were measured at nearby sites using free-drained lysimeters.

Results

The annual N2O fluxes from the N fertilized treatments were in the range of 1.9 to 6.7 kg N?ha?1 yr?1 corresponding to an N2O emission factor ranging from 0.12 % to 1.06 % (mean value: 0.61 %). The relationship between monthly soil N2O fluxes and NO 3 - leaching losses can be described by a significant exponential decaying function.

Conclusions

The N2O emission factor obtained in our study was somewhat lower than the current IPCC default emission factor (1 %). Nitrate leaching, through removal of topsoil NO 3 ? , is an underrated regulating factor of soil N2O fluxes from cropland, especially in the regions where high NO 3 - leaching losses occur.  相似文献   

14.

Key message

By comparing 195 varieties in eight trials, this study assesses nitrogen use efficiency improvement in high and low nitrogen conditions in European winter wheat over the last 25 years.

Abstract

In a context where European agriculture practices have to deal with environmental concerns and nitrogen (N) fertiliser cost, nitrogen use efficiency (NUE) has to be improved. This study assessed genetic progress in winter wheat (Triticum aestivum L.) NUE. Two hundred and twenty-five European elite varieties were tested in four environments under two levels of N. Global genetic progress was assessed on additive genetic values and on genotype × N interaction, covering 25 years of European breeding. To avoid sampling bias, quality, precocity and plant height were added as covariates in the analyses when needed. Genotype × environment interactions were highly significant for all the traits studied to such an extent that no additive genetic effect was detected on N uptake. Genotype × N interactions were significant for yield, grain protein content (GPC), N concentration in straw, N utilisation, and NUE. Grain yield improvement (+0.45 % year?1) was independent of the N treatment. GPC was stable, thus grain nitrogen yield was improved (+0.39 % year?1). Genetic progress on N harvest index (+0.12 % year?1) and on N concentration in straw (?0.52 % year?1) possibly revealed improvement in N remobilisation. There has been an improvement of NUE additive genetic value (+0.33 % year?1) linked to better N utilisation (+0.20 % year?1). Improved yield stability was detected as a significant improvement of NUE in low compared to high N conditions. The application of these results to breeding programs is discussed.  相似文献   

15.

Aims

Decomposition of leaf litterfall plays a major role for nitrogen (N) dynamics in soils. However, little is known as to which extent beech leaf litter contributes to N turnover and nitrous oxide (N2O) emissions within one decade after litterfall.

Methods

In 1997, we exchanged recently fallen leaf litter by 15N-labelled litter in a beech stand (Fagus sylvatica) at the Solling, Germany. Measurements were conducted 2–3 and 10–11 years after litter exchange.

Results

Two years after litter exchange, 92 % of added 15N was recovered in the surface 10 cm of the soil. The labelled N was primarily found in the upper part of the F layer of the moder type humus. Eleven years after litter exchange, 73 % of the added 15N was lost and the remaining 27 % was mainly recovered in the lower part of the F layer indicating N sequestration. The remaining leaf litter N was subject to measurable N mineralisation (2–3 % of litter N) and N2O production (0.02 %). Between 0.3 % (eleventh year) and 0.6 % (second year) of total annual N2O emissions were attributed to beech leaf litter of a single year.

Conclusions

Most of the annual N2O emissions (1.33–1.54 kg N ha?1 yr?1) were probably derived from older soil N pools.  相似文献   

16.

Background & Aims

The consequences of fertiliser addition to semi-natural grasslands are well understood, but much less is known about the consequences of cessation of nitrogen fertiliser regimes, including rates of recovery. This study aimed to investigate whether the effects of nitrogen (N) additions to a mesotrophic grassland were still apparent 15 years after the cessation of N inputs.

Methods

A long-term experiment at Tadham Moor, UK, received N additions at rates of 0, 25, 50, 100 and 200 kg N ha?1 yr?1 between 1986 and 1994. Fifteen years after the cessation of N additions soil chemistry, plant tissue chemistry, plant biomass and Ellenberg N values were assessed.

Results

KCl-extractable ammonium-N, total soil N, total organic carbon and microbial biomass N differed between the controls and the higher historic levels of N addition. Plant tissue chemistry showed no significant effects of previous N addition. Above-ground biomass was higher where N had been added, although this response was only weakly significant. The species composition of the vegetation showed effects of the N addition with mean Ellenberg N values significantly higher than the control in most treatments.

Conclusion

The effects of long-term N addition can be seen for many years.  相似文献   

17.

Background and Aims

Understanding the impact of soil rhizobial populations and inoculant rhizobia in supplying sufficient nodulation is crucial to optimising N2 fixation by legume crops. This study explored the impact of different rates of inoculant rhizobia and contrasting soil rhizobia on nodulation and N2 fixation in faba bean (Vicia faba L.).

Methods

Faba beans were inoculated with one of seven rates of rhizobial inoculation, from no inoculant to 100 times the normal rate of inoculation, sown at two field sites, with or without soil rhizobia present, and their nodulation and N2 fixation assessed.

Results

At the site without soil rhizobia, inoculation increased nodule number and increased N2 fixation from 21 to 129 kg shoot N ha?1, while N2 fixation increased from 132 to 218 kg shoot N ha?1 at the site with high background soil rhizobia. At the site without soil rhizobia, inoculation increased concentrations of shoot N from 14 to 24 mg g?1, grain N from 32 to 45 mg g?1, and grain yields by 1.0 Mg (metric tonne) ha?1. Differences in nodulation influenced the contributions of fixed N to the system, which varied from the net removal of 20 kg N ha?1 from the system in the absence of rhizobia, to a net maximum input of 199 kg N ha?1 from legume shoot and root residues, after accounting for removal of N in grain harvest.

Conclusions

The impact of inoculation and soil rhizobia strongly influenced grain yield, grain N concentration and the potential contributions of legume cropping to soil N fertility. In soil with resident rhizobia, N2 fixation was improved only with the highest inoculation rate.  相似文献   

18.

Background

The promoted root growth under developmental plasticity triggered specifically by mild drought stress (MDS) is known to contribute to maintained water uptake and dry matter production (DMP).

Aims

To examine whether the expression of developmental plasticity of root systems and its contribution to DMP would be affected by the levels of nitrogen (N) application.

Methods

Two genotypes (CSSL50 derived from Nipponbare/Kasalath cross and Nipponbare) were grown under soil moisture gradients with a line source sprinkler system. Three N fertilizer treatments were used; 25 (low), 75 (standard) and 150 kg N ha?1 (high) in 2009 and 60 (low), 120 (standard) and 180 kg N ha?1 (high) in 2011.

Results

Across varying N level treatments, there were no significant differences in any of the traits examined between the two genotypes under well-watered and severe drought stress conditions. In contrast, under MDS conditions (15–25 % w/w of soil moisture content (SMC) in 2009 and 17–25 % w/w of SMC in 2011), CSSL50 showed greater DMP than Nipponbare. The difference, however, varied with N level treatments since CSSL50’s greater root system development under MDS, was more pronounced at standard and high N levels than at low N level than it was for Nipponbare.

Conclusions

N application enhanced the expression of plasticity in root system development at standard and high N levels as compared with low N level under MDS conditions, which contributed to the maintenance of DMP.  相似文献   

19.

Background and aims

Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors.

Results

Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24?±?6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12?±?4 %; p?Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.  相似文献   

20.
Cellulosic biofuels are an important source of renewable biomass within the alternative energy portfolio. Switchgrass (Panicum virgatum L.), a perennial C4 grass native to North America, is widely studied as a biofuel feedstock for its consistently high yields and minimal input requirements. The influences of precipitation amount and temporal variability on the fertilizer response of switchgrass productivity are not fully understood. Moreover, global climate models predict changes in rainfall patterns towards lower and increasingly variable soil water availability in several productive areas worldwide, which may impact net primary production of biofuel crops. We conducted a meta-analysis of aboveground net primary production of switchgrass from 48 publications encompassing 82 different locations, 11 soil types, 52 switchgrass cultivars, fertilizer inputs between 0 to 896 kg N ha?1 year?1, and 1 to 6 years of annual productivity measures repeated on the same stand. Productivity of the lowland ecotype doubled with N rates >?131 kg N ha?1 year?1, but upland ecotype productivity increased only by 50%. Results showed an optimum N rate of 30 to 60 kg N ha?1 year?1 for both ecotypes, after which biomass gain per unit of N added decreased. Growing season precipitation (GSPPT) and inter-annual precipitation variability (inter-PPTvar) affected both ecotypes similarly. Long-term mean annual precipitation (MAP) differentially affected lowland and upland productivity, depending on the N level. Productivity responses to MAP and GSPPT were similar for both upland and lowland ecotypes at none or low N rates. When N increased beyond 60 kg N ha?1 year?1, lowland cultivars had a greater growth response to MAP than uplands. Productivity increased with increasing GSPPT and MAP and had a positive linear response to MAP ranging from 600 to 1200 mm year?1. One third of the variability in switchgrass production was accounted for by inter-PPTvar. After accounting for MAP, sites with higher inter-PPTvar had lower switchgrass productivity than sites with lower inter-PPTvar. Increased inter-annual variation in precipitation reduced production of both ecotypes. Predicted changes in the amount and timing of precipitation thus likely will exert greater influence on production of upland than lowland ecotypes of switchgrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号