首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Carbohydrate research》1985,138(1):109-126
3-Deoxy-d-manno-2-octulosonic acid (KDO), a sugar previously presumed to occur only as a glycosyl residue in polysaccharides produced by Gram-negative bacteria, was found to be a component of the cell walls of higher plants. In the form of the disaccharide α-l-Rhap-(1→5)-d-KDO, KDO was released by mild hydrolysis with acid from the purified cell wall polysaccharide rhamnogalacturonan II. KDO was shown to be present in purified cell walls of several plants, including dicots, a monocot, and a gymnosperm. Improved methods for detecting and quantitating KDO residues in polysaccharides were developed during this investigation.  相似文献   

3.
4.
Apical cells on the verge of dividing, or having recently formed a new segment, or actually dividing, are not uncommonly encountered in bryophytes and pteridophytes. This is interpreted as evidence for the classical concept of active apical segmentation in these plants (versus the concept of a quiescent apical cell). In certain species a polarized organization of the cytoplasm of the dividing apical cells is identifiable.  相似文献   

5.
6.
A 2-O-methylfucosyl-containing heptasaccharide was released from red wine rhamnogalacturonan II (RG-II) by acid hydrolysis of the glycosidic linkage of the aceryl acid residue (AceA) and purified to homogeneity by size-exclusion and high-performance anion-exchange chromatographies. The primary structure of the heptasaccharide was determined by glycosyl-residue and glycosyl-linkage composition analyses, ESIMS, and by 1H and 13C NMR spectroscopy. The NMR data indicated that the pyranose ring of the 2,3-linked L-arabinosyl residue is conformationally flexible. The L-Arap residue was confirmed to be alpha-linked by NMR analysis of a tetraglycosyl-glycerol fragment, [alpha-L-Arap-(1-->4)-beta-D-Galp-(1-->2)-alpha-L-AcefA-(1-->3)-beta-L-Rhap-(1-->3)-Gro], generated by Smith degradation of RG-II. Our data together with the results of a previous study,(1) establish that the 2-O-Me Fuc-containing nonasaccharide side chain of wine RG-II has the structure (Api [triple bond] apiose): [see structure]. Data are presented to show that in Arabidopsis RG-II the predominant 2-O-MeFuc-containing side chain is a mono-O-acetylated heptasaccharide that lacks the non-reducing terminal beta-L-Araf and the alpha-L-Rhap residue attached to the O-3 of Arap, both of which are present on the wine nonasaccharide.  相似文献   

7.
Little is known about the amount of fungal biomass in the phyllosphere of bryophytes compared to higher plants. In this study, fungal biomass associated with the phyllosphere of three bryophytes (Hylocomium splendens, Pleurozium schreberi, Polytrichum commune) and three vascular plants (Avenella flexuosa, Gymnocarpium dryopteris, Vaccinium myrtillus) was investigated using ergosterol content as a proxy for fungal biomass. Phyllosphere fungi accounted for 0.2-4.0 % of the dry mass of moss gametophytes, representing the first estimation of fungal biomass associated with bryophytes. Significantly more fungal biomass was associated with the phyllosphere of bryophytes than co-occurring vascular plants. The ergosterol present in moss gametophytic tissues differed significantly between species, while the ergosterol present in vascular plant leaf tissues did not. The photosynthetic tissues of mosses had less associated fungal biomass than their senescent tissues, and the magnitude of this difference varied in a species-specific manner. The fungal biomass associated with the vascular plants studied varied significantly between localities, while that of mosses did not. The observed differences in phyllosphere community biomass suggest their size could be affected by host anatomical and physiological attributes, including micro-niche availability and chemical host defenses, in addition to abiotic factors like moisture and nutrient availability.  相似文献   

8.
Building a complex structure such as the cell wall, with many individual parts that need to be assembled correctly from distinct sources within the cell, is a well-orchestrated process. Additional complexity is required to mediate dynamic responses to environmental and developmental cues. Enzymes, sugars, and other cell wall components are constantly and actively transported to and from the plasma membrane during diffuse growth. Cell wall components are transported in vesicles on cytoskeletal tracks composed of microtubules and actin filaments. Many of these components, and additional proteins, vesicles, and lipids are trafficked to and from the cell plate during cytokinesis. In this review, we first discuss how the cytoskeleton is initially organized to add new cell wall material or to build a new cell wall, focusing on similarities during these processes. Next, we discuss how polysaccharides and enzymes that build the cell wall are trafficked to the correct location by motor proteins and through other interactions with the cytoskeleton. Finally, we discuss some of the special features of newly formed cell walls generated during cytokinesis.

The cell wall is assembled via vesicle trafficking along cytoskeletal filaments during growth and division.  相似文献   

9.
 In order to investigate the occurrence of callose in dividing cells, we cultivated a selection of 30 organisms (the prokaryotic cyanobacterium Anabaena and eukaryotic green algae, bryophytes, ferns and seed plants) under defined conditions in the laboratory. Samples from these photoautotrophs, which are members of the evolutionary 'green lineage' leading from freshwater algae to land plants, were analysed by fluorescence microscopy. The β-1,3-glucan callose was identified by its staining properties with aniline blue and sirofluor. With the exception of the prokaryotic cyanobacterium, all of the eukaryotic organisms studied were capable of producing wound-induced callose. No callose was detected during cytokinesis of dividing cells of unicellular green algae (and Anabaena). However, in all of the multicellular green algae and land plants (embryophytes) investigated, callose was identified in newly made septae by an intense yellow fluorescence. The formation of wound callose was never detected in cells with callose in the newly formed septae. Additional experiments verified that no fixation-induced artefacts occurred. Our results show that callose is a regular component of developing septae in juvenile cells during cytokinesis in multicellular green algae and embryophytes. The implications of our results with respect to the evolutionary relationships between extant charophytes and land plants are discussed. Received: 15 September 2000 / Revision received: 23 October 2000 / Accepted: 23 October 2000  相似文献   

10.
Sphagnum acid was detected in all 30 Sphagnum species investigated. The content declines in older stem segments. Investigations have so far failed to detect this cinnamic acid derivative outside the Sphagnales. In all the Sphagnum species analysed, a second, conspicuous substance was detected, apparently identical with a degradation product of sphagnum acid produced by enzymatic reaction with peroxidase in vitro. A casual correlation between the sphagnum acid content and peroxidase activity in vivo is discussed. Glyphosate (0.5 mM) inhibits the synthesis of sphagnum acid and shikimate accumulates. Exogenously supplied phenylalanine is able to produce up to 65% reversal of the glyphosate-mediated inhibition of sphagnum acid synthesis. A mixed effect of glyphosate was found on amino acid levels. The content of sphagnum acid is also reduced by daily application of 0.1 mM l-α-aminooxy-β-phenylpropionic acid.  相似文献   

11.
BACKGROUND AND AIMS: In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. METHODS: Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3' RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. KEY RESULTS: XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. CONCLUSIONS: XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion.  相似文献   

12.
13.
1. Cell walls from rapidly growing cell suspension cultures of Spinacia oleracea L. contained ferulic acid and p-coumaric acid esterified with a water-insoluble polymer. 2. Prolonged treatment with trypsin did not release may feruloyl esters from dearabinofuranosylated cell walls, and the polymer was also insoluble in phenol/acetic acid/water (2:1:1, w/v/v). 3. Treatment of the cell walls with the fungal hydrolase preparation "Driselase' did liberate low-Mr feruloyl esters. The major esters were 4-O-(6-O-feruloyl-beta-D-galactopyranosyl)-D-galactose and 3?-O-feruloyl-alpha-L-arabinopyranosyl)-L-arabinose. These two esters accounted for about 60% of the cell-wall ferulate. 4. It is concluded that the feruloylation of cell-wall polymers is not a random process, but occurs at very specific sites, probably on the arabinogalactan component of pectin. 5. The possible role of such phenolic substituents in cell-wall architecture and growth is discussed.  相似文献   

14.
15.
16.
We examined effects of abandonment on species diversity and species composition by comparing 21 calcareous fen meadows in the pre-alpine zone of central and northeastern Switzerland. Meadows were divided into three classes of successional stages (mown: annually mown in late summer, young fallow: 4–15 years, and old fallow: >15 years of abandonment). In each fen, we measured litter mass in four 20 cm×20 cm plots, as well as (aboveground) biomass and species density (number of species per unit area) of bryophytes and vascular plants. Bryophyte biomass was reduced in abandoned fens, whereas litter mass and aboveground biomass of vascular plants increased. Species density of both taxonomic groups was lower in abandoned than in mown fens. Young and old successional stages were not different except for bryophytes, for which old successional stages had higher species density than young stages. We used litter mass and aboveground biomass of vascular plants as covariables in analyses of variance to reveal their effects on species density of both taxonomic groups. For bryophytes, litter mass was more important than vascular plant biomass in explaining variance of species density. This indicates severe effects of burying by litter on bryophyte species density. For species density of vascular plants, both vascular plant biomass and litter mass were of similar importance in explaining the decreased species density. Canonical correspondence analyses showed that abandonment also had an effect on species composition of both bryophytes and vascular plants. However, young and old successional stages were not different indicating fast initial changes after abandonment, but slow secondary succession afterwards. Furthermore, indicator species analysis showed that there was no establishment of new species after abandonment that might dramatically alter fen communities. Re-introduction of mowing as a nature conservation strategy may thus be very promising – even for old fallows.  相似文献   

17.
The structure of a cell-wall polysaccharide containing antigen II from Trichosporon asahii was investigated. A purified glucuronoxylomannan (GXM) antigen was found to contain O-acetyl groups that contribute to the serological reactivity. The structure of GXM was analyzed by partial acid hydrolysis, methylation analysis, controlled Smith degradation, NMR studies, and fluorophore-assisted carbohydrate electrophoresis. GXM has an alpha-(1-->3)-D-mannan backbone with a beta-D-glucopyranosyluronic acid residue bound to O-2 of a mannopyranosyl residue and the same number of beta-D-xylopyranosyl residues as mannose. Side chains of beta-D-xylopyranosyl-D-xylopyranose, forming a nonreducing terminus, and beta-D-xylopyranosyl residues were attached to O-2, O-4, and O-6 of the mannose residues.  相似文献   

18.
19.
The native proteoheteroglycan (PHG) from mycelia of Neurospora crassa contain two kinds of carbohydrate chains differing structure. The oligosaccharides containing mannose and galactofuranose are attached by O-glycosidic linkages to serine or threonine residues in the protein (J. Biochem. 96, 1005-1011, 1984). The second kind of carbohydrate chain is a polysaccharide containing mannose and galactofuranose as the main sugar components. The results of structural studies with methylation and NMR analyses on the native PHG and some of its specifically degraded products obtained on partial acid hydrolysis and acetolysis indicate that the polysaccharide moiety of the PHG has an (alpha 1-6) linked mannan backbone with mainly (alpha 1-2) linked side chains, each of which consists of 2 to 5 mannose units, and most of the mannosyl side chains bear beta-galactofuranosyl residues linked to the 2 positions of the mannosyl nonreducing terminals. The galactofuranose residues are linked with each other by (beta 1-5) bonds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号