首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cosmid library of recombinants containing nonmethylated CpG sites for rare-cutter restriction enzymes was used previously to isolate the gene IRP and four polymorphic DNA markers (pPT-3, pXV-2c, pCS.7, and pKM.19) which are close to and in linkage disequilibrium with the cystic fibrosis (CF) mutation. We have analyzed several new clones from the same library and have isolated a further cosmid, cNX.6d, which maps approximately 160 kb from CS.7, in the J3.11 direction. A DNA fragment (pMP6d-9) (D7S399) derived from cosmid cNX.6d detects a frequent polymorphism with MspI. Strong linkage disequilibrium between CF and MP6d-9 is found in European populations. Recombinations in two families suggest that CF is between the MspI polymorphic site recognized by pMP6d-9 and the polymorphism recognized by pJ3.11. The new marker is the closest, to date, to CF and will be useful for prenatal diagnosis and carrier testing.  相似文献   

2.
The locus D7S23 includes a CpG-enriched methylation-free island that maps midway between the markers J3.11 and met and is genetically very close to the mutation causing cystic fibrosis (CF). We have studied the linkage disequilibrium between four polymorphic markers from this locus (KM.19, CS.7, XV-2c, and PT-3) and the CF mutation (CF) in 127 Italian families. Strong linkage disequilibrium is found between KM.19, CS.7, and CF, and weaker but significant disequilibrium is found between XV-2c, PT-3, and CF. The disequilibrium between markers and CF for the Italian population provides additional information on the origin and homogeneity of the CF defect. This panel of probes is sufficiently informative to permit accurate prenatal diagnosis of CF in most families with an affected person, and the disequilibrium also allows indirect carrier detection/exclusion in some cases.  相似文献   

3.
Indirect tracking of mutation by DNA polymorphisms is still essential for carrier and prenatal diagnosis of Duchenne/Becker muscular dystrophy, at least in the families where no deletion can be detected. Because of the relatively high level of intragenic recombination, informative and easily testable markers at both ends of the gene are necessary for efficient and accurate diagnosis. We report the characterization of two polymorphic microsatellite sequences (TG repeats) at the 5' end of the dystrophin gene, within 40 kb of the muscle-specific promoter. The most useful one (5' DYS MSA) has 10 alleles with a 57% heterozygosity and can be tested on small polyacrylamide gels in a nonradioactive PCR-based assay. Despite its large number of alleles, this microsatellite shows strong linkage disequilibrium with a two-allele polymorphism reported by Roberts et al., an indication of the stability of this type of sequences. We have used the new microsatellites at the 5' end, along with one we reported previously for the 3' end, to type the families in the CEPH (Centre d'Etude du Polymorphisme Humain) panel. While the number of informative families has increased by a factor of about two with respect to the study of Abbs et al., the estimates of the recombination fractions are in good agreement with this previous report, suggesting a 11% recombination across the gene (3% between the 5' end and the pERT87 region, 8% between pERT87 and the 3' end), which is about fivefold more than expected. However, these estimates still have wide confidence limits.  相似文献   

4.
We have identified a novel SacI restriction fragment length polymorphism (RFLP) in the human galactose-1-phosphate uridyl transferase (GALT) gene. This RFLP can be readily typed by the polymerase chain reaction (PCR). The polymorphic allele is found on about 11% of normal chromosomes and is in linkage disequilibrium with the two most common mutations identified in GALT thus far: Q188R and N314D. Q188R is found exclusively on chromosomes with the SacI restriction site, whereas N314D is found only on chromosomes lacking this site. This suggests that these two mutations arose independently in evolution on different chromosomal backgrounds. Galactosemia patients without the Q188R mutation have a frequency of the SacI polymorphism similar to normal controls suggesting that several different galactosemia mutations must be present in them. The SacI RFLP may also be useful in the prenatal diagnosis of galactosemia.  相似文献   

5.
Although a number of human genes that cause disease have been traced through the defective product, most genetic defects are recognized only by phenotype. When the biochemical defect is unknown, a gene can be located only through molecular approaches based on coinheritance (genetic linkage) of the disease phenotype with a particular allele of a polymorphic DNA marker that has already been mapped to a specific chromosomal region. Linkage studies in affected families have already localized genes for several important diseases, including cystic fibrosis. Finding a genetic linkage in families in which a disease segregates requires that the human genetic map have a large number of polymorphic markers; when the map is dense enough, any disease gene can be located by linkage to a known marker. Many DNA segments with a high degree of polymorphism are being found and mapped as markers in normal reference pedigrees. Genetic linkage mapping has implications even broader than its application to prenatal diagnosis or therapeutic strategy; analyzing mutations in important genes will illuminate basic mechanisms in molecular biology and the early events that lead to cancer and other disorders.  相似文献   

6.
Summary We have analysed the segregation of a TA-repeat polymorphism in intron 17b of the cystic fibrosis transmembrane conductance regulator gene responsible for cystic fibrosis (CF) in 23 French CF families non-informative for the F508 mutation (i.e. with at least one parent not carrying F508) or closely linked DNA markers. At least 13 different alleles ranging from 7 to 45 repeats were observed and the detected heterozygosity was 89%. Of the 23 families studied, 19 were fully informative for prenatal diagnosis or carrier detection, 3 were partially informative and one was not informative. In 6 families, prenatal diagnosis for CF or carrier detection in siblings of CF cases were performed using this polymorphism.  相似文献   

7.
The opportunity raised by recombinant DNA technology to develop a linkage marker panel that spans the human genome requires cost-efficient strategies for its optimal utilization. Questions arise as to whether it is more cost-effective to convert a dimorphic restriction enzyme marker system into a highly polymorphic system or, instead, to increase the number of families studied, simply using the available marker alleles. The choice is highly dependent on the population available for study, and, therefore, an examination of the informational content of the various family structures is important to obtain the most informative data. To guide such decisions, we have developed tables of the average sample number of families required to detect linkage for autosomal recessive disorders under single backcross and under "fully informative" matings. The latter cross consists of a marker locus with highly polymorphic codominant alleles such that the parental marker genotypes can be uniquely distinguished. The sampling scheme considers families with unaffected parents of known mating types ascertained via affected offspring, for sibship sizes ranging from two to four and various numbers of affected individuals. The sample-size tables, calculated for various values of the recombination fractions and lod scores, may serve as a guide to a more efficient application of the restriction fragment length polymorphism technology to sequential linkage analysis.  相似文献   

8.
To contribute to a better understanding of the origin and distribution of CFTR mutations in the Brazilian population, we have investigated the linkage between four polymorphic markers (XV2c, KM19, GATT, and TUB9) within or near the CFTR locus. The distribution of alleles for each polymorphism for both parental and cystic fibrosis (CF) chromosomes from Rio de Janeiro CF families were ascertained using a maximum-likelihood method. This same method was applied to study the distribution of the haplotypes defined by these markers. There was no significant association between the XV2c and KM19 loci on the parental and CF chromosomes. On the other hand, a strong association between GATT and TUB9 loci was observed on both CF and parental chromosomes, and striking linkage disequilibrium between the GATT-TUB9 pair and deltaF508 was observed (chi2 = 26.48, p < 0.0001). Remarkable linkage disequilibrium between the GATT-TUB9 marker pair and non-deltaF508 was also found (chi2 = 17.05, p < 0.0001). Our finding of a linkage disequilibrium between GATT-TUB9 and the CFTR locus could suggest that gene flow between different ethnic groups, mainly sub-Saharan and Mediterranean populations, with Brazilian populations could have resulted in some CF mutations originating on chromosomes that carried the GATT-TUB9 marker haplotype 7-2 (OR = 1.34 < 2.83 < 6.00; p = 0.0066).  相似文献   

9.
Summary Wilson's disease (WD) is a rare autosomal recessive disorder and has been mapped to the long arm of chromosome 13 (q14.1). We have analyzed the segregation of esterase D (ESD) and retinoblastoma (RB) gene loci in ten families of Chinese WD subjects living in Taiwan. The polymorphic information content (PIC) for ESD and RB was 0.18 and 0.31, respectively. We confirmed a tight linkage between these loci and WD with a lod score of 3.33 by multipoint linkage analysis. The data from this limited number of pedigrees also suggested the following order: centromere-WD-RB-ESD or centromere-ESD-RB-WD. ESD in conjunction with RB polymorphism would be useful in prenatal and presymptomatic diagnosis, as well as in carrier detection in informative pedigrees.  相似文献   

10.
Many low-density lipoprotein (LDL) receptor mutations have been identified and characterized, demonstrating a high degree of allelic heterogeneity at this locus. The ability to identify mutant LDL-receptor genes for prenatal diagnosis of familial hypercholesterolemia (FH) or to study the role of the LDL-receptor gene in polygenic hypercholesterolemia requires the use of closely linked restriction fragment lenghth polymorphisms (RFLPs). In the present study nine different RFLPs (TaqI, StuI, HincII, BstEII, AvaII, PvuII, MspIA, MspIB, and NcoI) and a sequence variation at Arg450 were used to clarify the characteristics of the LDL-receptor gene in Koreans. A total of 978 LDL-receptor alleles from 244 members of 43 different pedigrees (15 normal and 28 FH pedigrees) and 245 individuals (187 normal and 58 FH) were analyzed. Frequencies of these polymorphisms did not differ significantly between controls and FH patients. Individually, seven sites--TaqI, BstEII, AvaII, MspIA, MspIB, NcoI and Arg450--had heterozygosity indices ranging from 0.3610 to 0.4601, whereas the PvuII site displayed low levels of polymorphism and StuI was monomorphic. Haplotypes were constructed for 215 individuals of 13 normal and 24 FH pedigrees using the nine polymorphisms. Of 512 (= 2(9)) possible combinations for the nine polymorphic sites, 39 unique haplotypes were detected. The frequency distribution of individual haplotypes ranged from 1/155 (0.65%) to 40/155 (25.8%). The four most common haplotypes accounted for 59.4% of those sampled. Statistical analysis of the haplotypes indicated marked linkage disequilibrium for these 10 sites and throughout the region containing the LDL-receptor gene. Owing to the high degree of linkage disequilibrium over the entire locus, not all RFLPs were informative. We rank each RFLP according to its informativeness and present a strategy for the optimal selection of RFLPs for pedigree analysis.  相似文献   

11.
We have obtained 15 sequences of Est-6 from a natural population of Drosophila melanogaster to test whether linkage disequilibrium exists between Est-6 and the closely linked Sod, and whether natural selection may be involved. An early experiment with allozymes had shown linkage disequilibrium between these two loci, while none was detected between other gene pairs. The Sod sequences for the same 15 haplotypes were obtained previously. The two genes exhibit similar levels of nucleotide polymorphism, but the patterns are different. In Est-6, there are nine amino acid replacement polymorphisms, one of which accounts for the S-F allozyme polymorphism. In Sod, there is only one replacement polymorphism, which corresponds to the S-F allozyme polymorphism. The transversion/transition ratio is more than five times larger in Sod than in Est-6. At the nucleotide level, the S and F alleles of Est-6 make up two allele families that are quite different from each other, while there is relatively little variation within each of them. There are also two families of alleles in Sod, one consisting of a subset of F alleles, and the other consisting of another subset of F alleles, designed F(A), plus all the S alleles. The Sod F(A) and S alleles are completely or nearly identical in nucleotide sequence, except for the replacement mutation that accounts for the allozyme difference. The two allele families have independent evolutionary histories in the two genes. There are traces of statistically significant linkage disequilibrium between the two genes that, we suggest, may have arisen as a consequence of selection favoring one particular sequence at each locus.  相似文献   

12.
To determine the usefulness of MspI/int22h-1 (intron 22 homologous region-1) polymorphism of the factor VIII gene for molecular genetic diagnosis of hemophilia A in the Korean population, MspI/intron 22 and XbaI/intron 22 polymorphisms were analyzed in 101 unrelated Korean families with severe hemophilia A. The expected heterozygosity rates of MspI/int22h-1 and XbaI/int22h-1 polymorphisms were 49.5 and 43.6%, respectively; these polymorphisms were not in complete linkage disequilibrium. Combined analysis using both polymorphisms provided an informative rate of 66.3%. These results suggest that PCR analysis of the MspI/int22h-1 polymorphism of the factor VIII gene would be useful for carrier detection and prenatal diagnosis of hemophilia A in the Korean population.  相似文献   

13.
A detailed study of the mutant phenylalanine hydroxylase (PAH) gene from the eastern part of the Czech Republic (Moravia) is reported. A total of 190 mutant alleles from 95 phenylketonuria (PKU) families were analyzed for 21 prevalent Caucasian mutations and restriction fragment length polymorphism /variable number of tandem repeats (RFLP/VNTR) haplotypes. Eighty per cent of all mutant alleles were found to carry 11 mutations. The most common molecular defect was the mutation R408W (55.3%), with a very high degree of homozygosity (34.6%). Each of four other mutations (R158Q, R243X, G272X, IVS12nt1) accounted for more than 3% of PKU alleles. Rarely present were mutations IVS10nt546 (2.6%), R252W (2.6%), L48S (2.1%), R261Q (1.6%), Y414C (1.0%) and I65T (0.5%). Mutations that have been predominantly described in southern Europe (IVS7nt1, A259V, Y277D, R241H, T278N) were not detected. A total of 14 different mutant haplotypes were observed. Three unusual genotype-haplotype associations were identified (R158Q on haplotypes 2.3 and 7.8 and R252W on haplotype 69.3). There was a strong association between the mutation R408W and haplotype 2.3 (54.7%). Heterogeneity was found at mutations R408W (haplotypes 2.3 and 5.9), R158Q (haplotypes 4.3, 2.3 and 7.8) and IVS10nt546 (haplotypes 6.7 and 34.7). The molecular basis of PKU in the Moravian area appears to be relatively homogeneous in comparison with other southern and western European populations, thus providing a good starting point for prenatal diagnosis and early clinical classification.  相似文献   

14.
Summary Eight polymorphic restriction enzyme sites at the phenylalanine hydroxylase (PAH) locus were analyzed from the parental chromosomes in 33 Danish nuclear families with at least one phenylketonuric (PKU) child. Determination of haplotypes of 66 normal chromosomes and 66 chromosomes bearing mutant allele (S) demonstrated that there are at least two haplotypes which occur predominantly on PKU chromosomes and rarely otherwise. Overall, the relative frequencies of the various haplotypes are significantly different on PKU-and normal-allele bearing chromosomes, even though there is no predominantly occurring unique haplotype which can characterize the PKU chromosomes. In addition, no significant association (linkage disequilibrium) between any single polymorphic site and the mutant allele (s) was observed. The results suggest that either the phenylketonuric mutation was very ancient so that the polymorphic sites and the mutation have reached linkage equilibrium or the mutant allele (s) are the results of multiple mutations in the phenylalanine hydroxylase gene in man. Furthermore, a crude relationship between standardized linkage disequilibria and physical map distances of the polymorphic sites indicates that there is no apparent recombination hot-spot in the human phenylalanine hydroxylase gene, since the recombination rate within the locus apears to be uniform and likely to be occurring at a rate similar to that within the HLA gene cluster. The limitations of this later analysis are discussed in view of the sampling errors of disequilibrium measure used, and the potential untility of the PAH haplotypes for prenatal diagnosis and detection of PKU carriers is established.  相似文献   

15.
PAH 399 GTA(Val)→GTT(Val), a new silent mutation found in the Chinese   总被引:1,自引:1,他引:0  
Summary A silent mutation or sequence polymorphism, an A to T substitution at codon 399 in exon 11 of the phenylalanine hydroxylase (PAH) gene has been identified by DNA sequence analysis in the Chinese. The frequencies of this new mutation in normal and abnormal (phenylketonuria; PKU) genes are 0.005 and 0.09, respectively, based on the analyses of 100 apparently normal individuals and 39 PKU patients, as demonstrated by DNA amplification with polymerase chain reaction (PCR) and oligonucleotide hybridization methods. The results suggest that there is linkage disequilibrium between this polymorphism and PKU mutations in the PAH gene; approximately 10% of defect PAH alleles in the Chinese population may be identified with this sequence polymorphic marker.  相似文献   

16.
Genetic analysis of carbamyl phosphate synthetase I deficiency   总被引:2,自引:0,他引:2  
Summary Carbamyl phosphate synthetase I deficiency (CPSD) is an autosomal recessive disorder of ureagenesis characterized by hyperammonemic coma in the neonatal period. To study the genetic basis of CPSD we have performed a molecular analysis of the CPS I genes in CPSD patients from six unrelated families. Using a cDNA probe for the human CPS I gene and restriction endonuclease mapping techniques, we observed no abnormality in the number or size of the hybridizing DNA fragments from the seven affected individuals examined. These findings suggest that no gross alteration affected the CPS I genes. We did detect a frequent restriction fragment length polymorphism (RFLP) at the CPS I locus which we employed as a linkage marker. Our results suggest the polymorphic CPS I restriction fragments cosegregate with the CPSD phenotype, and that linkage disequilibrium exists between the CPSI RFLPs studied and the affected alleles. The RFLPs described may enable prenatal detection of CPSD in families where the coupling phases between CPSD alleles and RFLPs can be determined.A preliminary report of these studies was presented at the Society for Pediatric Research meetings, San Francisco, May 1984 and appeared in abstract form in Pediatric Research 18:296A (1984)  相似文献   

17.
A new polymorphic DNA marker U6.2, defining the locus DXS304, was recently isolated and mapped to the Xq27 region of the X chromosome. In the previous communication we describe a linkage study encompassing 16 fragile-X families and using U6.2 and five previously described polymorphic markers at Xq26-q28. One recombination event was observed between DXS304 and the fragile-X locus in 36 informative meioses. Combined with information from other reports, our results suggest the following order of the examined loci on Xq: cen-F9-DXS105-DXS98-FRAXA-DXS304-(DXS52-F8 -DXS15). The locus DXS304 is closely linked to FRAXA, giving a peak lod score of 5.86 at a corresponding recombination fraction of .00. On the basis of the present results, it is apparent that U6.2 is a useful probe for carrier and prenatal diagnosis in fragile-X families.  相似文献   

18.
A marker locus closely linked to a disease locus is often useful for genetic counseling provided that a counselee is heterozygous at both disease and marker loci. Furthermore, the linkage phase of these genes in the counselee must be known. When the linkage between the disease and marker loci is very close, one often finds linkage disequilibrium between the loci. To evaluate the effect of such nonrandom associations on the utility of linked marker genes for genetic counseling, the proportion of informative families is studied for X-linked recessive and autosomal dominant diseases. This proportion is higher for X-linked genes than for autosomal genes, if other factors are the same. In general, codominant markers are more useful than dominant markers. Also, under appropriate conditions, the proportion of informative families is higher when linkage disequilibrium is present. The results obtained in this paper are useful for evaluating the utility of polymorphic restriction endonuclease cleavage sites as markers in genetic counseling.  相似文献   

19.
Summary The PstI polymorphism detected by probe KM19 is a highly informative marker in linkage disequilibrium with the cystic fibrosis locus and has been used extensively for prenatal diagnosis. The currently available primers used for polymerase chain reaction- (PCR-) based analysis of this locus have been shown to produce spurious amplification products. In this report, we describe the sequence of the KM19 locus and the major contaminating PCR product. We have used this information to design a more specific amplification procedure for analysis of the KM19 locus.  相似文献   

20.
We have studied linkage disequilibrium between CTG repeats and anAlu insertion/deletion polymorphism at the myotonin protein kinase gene (DMPK) in 102 Japanese families, of which 93 were affected with myotonic dystrophy (DM). All of the affected chromosomes are in complete linkage disequilibrium with theAlu insertion allele. Among the normal chromosomes, alleles of CTG repeats 5 and 17 are exclusively associated with the insertion allele. On the other hand, intermediate alleles of 11-6 repeats show a significantly greater association with the deletion allele. A strikingly similar pattern of linkage disequilibrium observed in European populations suggests a common origin of the DM mutation in the Japanese and European populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号