首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of proteolytic enzymes in Shumiya cataract rats in alterations to lens proteins during cataract formation was studied immunohistochemically using antibodies against exopeptidases, such as lysosomal dipeptidyl peptidase II (DPP II), cytosolic dipeptidyl peptidase III, and soluble and membrane-bound alanyl aminopeptidases, and against cytosolic endopeptidases such as mu- and m-calpains, and 20S proteasome. AlphaB-crystallin was detected as a proteolytic marker in the lenses. A constant immunoreactivity against all the antibodies employed was observed in the lens epithelium independent of the strain and age of the rats. A weak immunoreactivity against exo- and endopeptidases and an intense reactivity against alphaB-crystallin were observed in the lens fibres of control rats at all ages. The immunoreactivity of these peptidases in lens fibres increased with age in cataract rats, but that of alphaB-crystallin decreased. No reactivity against exo- and endopeptidases was seen in the perinuclear region of lenses of control rats at all ages or in Shumiya cataract rats at 8 and 10 weeks of age, but an intense reactivity against these peptidases was observed in the lens perinuclear region of lenses in cataract rats at 12 and 14 weeks of age. AlphaB-crystallin immunoreactivity was observed with ordered striations in the lens perinuclear region of all control rats whereas the striations in this area of cataract rat lens were disorganized. Membrane-bound alanyl aminopeptidase was detected feebly in the lens epithelium and fibres of both types of rat at all weeks of age. These findings indicate that exo- and endopeptidases, except for membrane-bound alanyl aminopeptidase, are expressed intensively and are age-dependent. Conversely, the amount of alphaB-crystallin decreased with age in lens fibres of cataract rats. Calpains (mu- and m-), 20S proteasome, dipeptidyl peptidases II and III and soluble alanyl aminopeptidase are thought to induce lens opacification kinetically during cataract formation in Shumiya cataract rats through the intracellular turnover of lens proteins.  相似文献   

2.
Glucose solutions incubated at low oxygen concentration gave rise to the appearance of an absorption band in the UVA-visible region after 10 days. Further characterization evidenced that this band was composed by a single chomophore with maximum absorption bands at 335 and 365 nm. HPLC/MS and UV spectroscopy assays indicated that this product is composed by five unities of furan. Importantly, the presence of a compound with identical spectral and chromatographic properties was observed in the water-soluble fraction of cataractous human eye lenses. The photo-biological effects of this glucose-derived chromophore (GDC) have been addressed using targets of biological relevance, such as water-soluble proteins from eye lens and the proteasome present in this protein mixture. Increased protein oxidation and protein crosslinking was observed when lens proteins were exposed to UVA-visible light in the presence of GDC under a 5% and 20% oxygen atmosphere. In addition, an increased proteasome peptidase activity was also observed. However, the use of D2O resulted in decreased proteasome activity, suggesting that singlet oxygen promotes the impairment of proteasome activity. Our results suggest that the species generated by Type I and Type II mechanisms have opposite effects on proteasome activity, being Type I a positive activator while Type II lead to impairment of proteasome function.  相似文献   

3.
Glucose solutions incubated at low oxygen concentration gave rise to the appearance of an absorption band in the UVA-visible region after 10 days. Further characterization evidenced that this band was composed by a single chomophore with maximum absorption bands at 335 and 365 nm. HPLC/MS and UV spectroscopy assays indicated that this product is composed by five unities of furan. Importantly, the presence of a compound with identical spectral and chromatographic properties was observed in the water-soluble fraction of cataractous human eye lenses. The photo-biological effects of this glucose-derived chromophore (GDC) have been addressed using targets of biological relevance, such as water-soluble proteins from eye lens and the proteasome present in this protein mixture. Increased protein oxidation and protein crosslinking was observed when lens proteins were exposed to UVA-visible light in the presence of GDC under a 5% and 20% oxygen atmosphere. In addition, an increased proteasome peptidase activity was also observed. However, the use of D(2)O resulted in decreased proteasome activity, suggesting that singlet oxygen promotes the impairment of proteasome activity. Our results suggest that the species generated by Type I and Type II mechanisms have opposite effects on proteasome activity, being Type I a positive activator while Type II lead to impairment of proteasome function.  相似文献   

4.
It is known that human lenses increase in color and fluorescence with age, but the molecular basis for this is not well understood. We demonstrate here that proteins isolated from human lenses contain significant levels of the UV filter kynurenine covalently bound to histidine and lysine residues. Identification was confirmed by synthesis of the kynurenine amino acid adducts and comparison of the chromatographic retention times and mass spectra of these authentic standards with those of corresponding adducts isolated from human lenses following acid hydrolysis. Using calf lens proteins as a model, covalent binding of kynurenine to lens proteins has been shown to proceed via side chain deamination in a manner analogous to that observed for the related UV filter, 3-hydroxykynurenine O-beta-D-glucoside. Levels of histidylkynurenine and lysylkynurenine were low in human lenses in subjects younger than 30, but thereafter increased in concentration with the age of the individual. Post-translational modification of lens proteins by tryptophan metabolites therefore appears to be responsible, at least in part, for the age-dependent increase in coloration and fluorescence of the human lens, and this process may also be important in other tissues in which up-regulation of tryptophan catabolism occurs.  相似文献   

5.
Lens antioxidative enzyme activity (catalase, superoxide dismutase, glutathione peroxidase) in cataract as well as the possibility of cataract induction by the lipid peroxidation products and their influence on the content of reduced thiols (oxy-red balance) were studied. It was shown that the rate of the H2O2 decomposition by the human cataract lenses is lowered in comparison with the normal lenses. This is not due to the lowered catalase or glutathione-peroxidase 1 activity, but depends on the deficiency of reduced glutathione in the lens. Activity of superoxide dismutase and glutathione peroxidase metabolizing organic hydroperoxides is significantly lowered in the cataract lenses. Lipid peroxidation products injected into the rabbit vitreous induce posterior subcapsular cataract, which is accompanied by depletion of reduced glutathione level in the lens. The conclusion is made that two interrelated processes: accumulation of H2O2 and of lipid peroxides induce aggregation of the soluble proteins and the fragmentation of the membrane structures in cataract lenses.  相似文献   

6.
Diminished proteolytic functionality in the lens may cause cataracts. We have reported that O-GlcNAc is an endogenous inhibitor of the proteasome. We hypothesize that in the lens there is a cause-and-effect relationship between proteasome inhibition by O-GlcNAc, and cataract formation. To demonstrate this, we established novel transgenic mouse models to over-express a dominant-negative form of O-GlcNAcase, GK-NCOAT, in the lens. Expression of GK-NCOAT suppresses removal of O-GlcNAc from proteins, resulting in increased levels of O-GlcNAc in the lenses of our transgenic mice, along with decreased proteasome function. We observed that transgenic mice developed markedly larger cataracts than controls and lens fiber cell denucleation was inhibited. Our study suggests that increased O-GlcNAc in the lens could lead to cataract formation and attenuation of lens fiber cell denucleation by inhibition of proteasome function. These findings may explain why cataract formation is a common complication of diabetes since O-GlcNAc is derived from glucose.  相似文献   

7.
Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65–75 years) were incubated with aggrelyte-2 (500 μM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%–30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC–MS/MS results showed Nε-acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.  相似文献   

8.
A number of proteins have been isolated from the human lens at different stages of development, from before birth to old age. These proteins have been characterized and compared with each other and with corresponding proteins from bovine lens. Many similarities were found between human and bovine crystallins, but alpha-crystallin isolated from old human lenses using DEAE-cellulose, unlike bovine alpha-crystallin similarly isolated, is not found as large soluble aggregates. The amide contents of various lens protein fractions were determined. No extensive changes were found during adult life, but there was evidence that significant deamidation of alpha-crystallin had occurred before birth and possibly during infancy. The results are related to the unique development and aging of the lens.  相似文献   

9.
Oxidized/cross-linked intracellular protein materials, known as ceroid pigment, age pigment, or lipofuscin, accumulate in postmitotic tissues. It is unclear, however, whether diminishing proteolytic capacities play a role in the accumulation of such oxidized intracellular proteins. Previous studies revealed that the proteasome is responsible for the degradation of most oxidized soluble cytoplasmic and nuclear proteins and, we propose, for the prevention of such damage accumulations. The present investigation was undertaken to test the changes in protein turnover, proteasome activity, lysosome activity, and protein oxidation status during the aging of nondividing cells. Since the companion paper shows that both proteasome activity and the overall protein turnover decline during proliferative senescence whereas the accumulation of oxidized proteins increases significantly, we decided to use the same human BJ fibroblasts, this time at confluency, at different PD levels (including those that are essentially postmitotic) to investigate the same parameters under conditions where cells do not divide. We find that the activity of the cytosolic proteasome declines dramatically during senescence of nondividing BJ fibroblasts. The peptidyl-glutamyl-hydrolyzing activity was particularly affected. This decline in proteasome activity was accompanied by a decrease in the overall turnover of short-lived (radiolabeled) proteins in the nondividing BJ fibroblasts. On the other hand, no decrease in the actual cellular proteasome content, as judged by immunoblots, was found. The decline in the activity of the proteasome was also accompanied by an increased accumulation of oxidized proteins, especially of oxidized and cross-linked material. Unlike the loss of lysosomal function seen in our accompanying studies of proliferative senescence (1), however, the present study of hyperoxic senescence in nondividing cells actually revealed marked increases in lysosomal cathepsin activity in all but the very 'oldest' postmitotic cells. Our comparative studies of proliferating (1) and nonproliferating (this paper) human BJ fibroblasts reveal a good correlation between the accumulation of oxidized/cross-linked proteins and the decline in proteasome activity and overall cellular protein turnover during in vitro senescence, which may predict a causal relationship during actual cellular aging.  相似文献   

10.
Heat shock proteins of adult and embryonic human ocular lenses.   总被引:11,自引:0,他引:11  
We investigated the presence and distribution of heat shock proteins, HSP-70 [Horwitz, J. 1992. Proc Natl Acad Sci 89:10449-10453], HSP-40, HSc-70, HSP-27, and alphabeta-crystallin in different regions of adult and fetal human lenses and in aging human lens epithelial cells. This study was undertaken because heat shock proteins may play an important role in the maintenance of the supramolecular organization of the lens proteins. Human adult and fetal lenses were dissected to separate the epithelium, superficial cortex, intermediate cortex, and nucleus. The water soluble and insoluble protein fractions were separated by SDS-PAGE, and transferred to nitrocellulose paper. Specific antibodies were used to identify the presence of heat shock proteins in distinct regions of the lens. HSP-70 [Horwitz, 1992], HSP-40, and HSc-70 immunoreactivity was mainly detected in the epithelium and superficial cortical fiber cells of the adult human lens. The small heat shock proteins, HSP-27 and alphabeta-crystallin were found in all regions of the lens. Fetal human lenses showed immunoreactivity to all heat shock proteins. An aging study revealed a decrease in heat shock protein levels, except for HSP-27. The presence of HSP-70 [Horwitz, 1992], HSP-40, and HSc-70 in the epithelium and superficial cortical fiber cells imply a regional cell specific function, whereas the decrease of heat shock protein with age could be responsible for the loss of optimal protein organization, and the eventual appearance of age-related cataract.  相似文献   

11.
Glyoxalase I is the first enzyme in a two-enzyme glyoxalase system that metabolizes physiological methylglyoxal (MGO). MGO reacts with proteins to form irreversible adducts that may lead to crosslinking and aggregation of lens proteins in diabetes. This study examined the effect of hyperglycemia on glyoxalase I activity and its mRNA content in mouse lens epithelial cells (mLE cells) and in diabetic mouse lenses and investigated the relationship between GSH and MGO in organ cultured lenses. mLE cells cultured with 25 mM D-glucose (high glucose) showed an upregulation of glyoxalase I activity and a higher content of glyoxalase I mRNA when compared with either cells cultured with 5 mM glucose (control) or with 20 mM L-glucose + 5 mM D-glucose. MGO concentration was significantly elevated in cells cultured with high D-glucose, but not in L-glucose. GSH levels were lower in cells incubated with high glucose compared to control cells. Glyoxalase I activity and mRNA levels were elevated in diabetic lenses compared to non-diabetic control mouse lenses. MGO levels in diabetic lenses were higher than in control lenses. Incubation of lenses with buthionine sulfoximine (BSO) resulted in a dramatic decline in GSH but the MGO levels were similar to lenses incubated without BSO. Our data suggest that in mouse lenses MGO accumulation may occur independent of GSH concentration and in diabetes there is an upregulation of glyoxalase I, but this upregulation is inadequate to normalize MGO levels, which could lead to MGO retention and chemical modification of proteins.  相似文献   

12.
The accumulation of crystallin fragments in vivo and their subsequent interaction with crystallins are responsible, in part, for protein aggregation in cataracts. Transgenic mice overexpressing acylpeptide hydrolase (APH) specifically in the lens were prepared to test the role of protease in the generation and accumulation of peptides. Cataract development was seen at various postnatal days in the majority of mice expressing active APH (wt-APH). Cataract onset and severity of the cataracts correlated with the APH protein levels. Lens opacity occurred when APH protein levels were >2.6% of the total lens protein and the specific activity, assayed using Ac-Ala-p-nitroanilide substrate, was >1 unit. Transgenic mice carrying inactive APH (mt-APH) did not develop cataract. Cataract development also correlated with N-terminal cleavage of the APH to generate a 57-kDa protein, along with an increased accumulation of low molecular weight (LMW) peptides, similar to those found in aging human and cataract lenses. Nontransgenic mouse lens proteins incubated with purified wt-APH in vitro resulted in a >20% increase in LMW peptides. Crystallin modifications and cleavage were quite dramatic in transgenic mouse lenses with mature cataract. Affected lenses showed capsule rupture at the posterior pole, with expulsion of the lens nucleus and degenerating fiber cells. Our study suggests that the cleaved APH fragment might exert catalytic activity against crystallins, resulting in the accumulation of distinct LMW peptides that promote protein aggregation in lenses expressing wt-APH. The APH transgenic model we developed will enable in vivo testing of the roles of crystallin fragments in protein aggregation.  相似文献   

13.
The possibility of proteinase inhibitory activities in lenses measured with synthetic substrates being spurious, due to the effective competition of lens proteins as substrates for the target enzymes, was investigated. Goat, sheep and human cataractous lens proteins were found to be poor substrates for trypsin, elastase and papain compared to casein or bovine serum albumin. Further, the inhibition of elastase catalyzed hydrolysis of succinyl trialanyl p-nitroanilide by casein (500 μg, 53%) and albumin (500 μg, 49%) and of trypsin-catalyzed hydrolysis of benzoyl argininep-nitroanilide by albumin (1 mg, 24%) were significant only at high protein concentrations. These data indicated that the relatively high antielastase and antitryptic activities observed in human cataractous lenses were real. On the other hand, coincident lens protein hydrolysis elevating the true antitryptic and antielastase activities in goat and sheep lenses (that have low activities) could not be ruled out The lesser papain inhibitory activities observed in lenses when albumin was used as substrate compared to activities with benzoyl arginine p-nitroanilide as substrate, appeared to be partly due to lens protein hydrolysis masking the actual inhibition in the former method. Preincubation of goat, sheep and human lens extracts with trypsin for 1 h resulted in complete loss of antitryptic and antielastase activity except in the case of human lens antielastase activity which underwent 50% loss. Papain inhibitory activity was fully stable. Similar papain treatment caused loss of 80–100% of antielastase activity and 45–55% loss of antitryptic activity.  相似文献   

14.
The unusually high levels of saturation and thus order contribute to the uniqueness of human lens membranes. In addition, and unlike in most biomembranes, most of the lens lipids are associated with proteins, thus reducing their mobility. The major phospholipid of the human lens is dihydrosphingomyelin. Found in significant quantities only in primate lenses, particularly human ones, this lipid is so extremely stable that it was reported to be the only lipid remaining in a frozen mammoth 40,000 years after its death. Unusually high levels of cholesterol add peculiarity to the composition of lens membranes. Beyond the lateral segregation of lipids into dynamic domains known as rafts, the high abundance of cholesterol in the human lens leads to the formation of patches of pure cholesterol. Changes in human lens lipid composition with age and disease as well as differences among species are greater than those observed for any other biomembrane. The relationships among lens membrane composition, structure, and lipid conformation reviewed in this article are unique to the mammalian lens and offer exciting insights into lens membrane function. This review focuses on findings reported over the last two decades that demonstrate the uniqueness of mammalian lens membranes regarding their morphology and composition. Becaue the membranes of human lenses do undergo the most dramatic changes with age and cataractogenesis, the final sections of this review address our current knowledge of the unusual composition and organization of adult human lens membranes with and without opacification. Finally, the questions that still remain to be answered are presented.  相似文献   

15.
Analyses of total lipid in individual lenses 1.8-63 years of age indicate that both the cholesterol and the phospholipid concentrations have reached a high level of 10 and 14 micrograms/mg lens dry weight, respectively, after the first ten years of growth. Thereafter, the rate of phospholipid accumulation was greatly reduced to a value of 0.05 microgram/mg per year while that of cholesterol reduced to 0.19. Analyses of the distribution of lipid in successive lens fiber layers indicate that both the cholesterol and phospholipid levels increase in the entire lens between the age of 1.8 and 9 years. Older lenses showed a continuous increase in the accumulation of cholesterol in the deep cortical fibers, while little or no increase in phospholipid concentration was observed. These results indicate that the accumulation of lipids is greater than that of lens dry mass (protein) during the first decade of lens growth. Since more than 90% of lenticular lipids are associated with fiber cell membranes, these data suggest a gradual change in the differentiation of the newly formed secondary fibers from the epithelium during this period. Analyses of the phospholipid composition of the successive fiber fractions indicate that the major phospholipids of phosphatidyl ethanolamine (PE), phosphatidylserine (PS) and sphingomyelin maintained a uniform distribution in the 1.8- and 5-year-old lenses. While no change was observed with the cortical fibers, older lenses showed a gradual loss of PE and PS in the nuclear fiber up to 63 years of age. By the late teen years, nuclear PS can no longer be detected, while high levels of PE are maintained in lens nucleus. The disappearance of nuclear PE begins in the teen years and is completed by the age of 40. The decrease in PE and PS resulted in a continuous increase in the cholesterol/phospholipid ratio, a measure of membrane rigidity in the nuclear fiber in lenses 20 years of age and older. This decrease is also responsible for the exceedingly high rigidity of the nuclear fibers of lenses 60 years of age and older. Possible lamellar cholesterol organization in the lens fiber membrane is discussed.  相似文献   

16.
Presbyopia, the inability to focus up close, affects everyone by age 50 and is the most common eye condition. It is thought to result from changes to the lens over time making it less flexible. We present evidence that presbyopia may be the result of age-related changes to the proteins of the lens fibre cells. Specifically, we show that there is a progressive decrease in the concentration of the chaperone, α-crystallin, in human lens nuclei with age, as it becomes incorporated into high molecular weight aggregates and insoluble protein. This is accompanied by a large increase in lens stiffness. Stiffness increases even more dramatically after middle age following the disappearance of free soluble α-crystallin from the centre of the lens. These alterations in α-crystallin and aggregated protein in human lenses can be reproduced simply by exposing intact pig lenses to elevated temperatures, for example, 50 °C. In this model system, the same protein changes are also associated with a progressive increase in lens stiffness. These data suggest a functional role for α-crystallin in the human lens acting as a small heat shock protein and helping to maintain lens flexibility. Presbyopia may be the result of a loss of α-crystallin coupled with progressive heat-induced denaturation of structural proteins in the lens during the first five decades of life.  相似文献   

17.
Protein distribution patterns across eye lenses from the Asiatic toad Bufo gargarizans were investigated and individual crystallin classes characterised. Special fractionation that follows the growth mode of the lens was used to yield nine fractions corresponding to layers laid down at different chronological (developmental) stages. Proportions of soluble and insoluble crystallins within each fraction were measured by Bradford assay. Water‐soluble proteins in all fractions were separated by size‐exclusion HPLC and constituents of each class further characterised by electrophoresis, RP‐HPLC and MS analysis. In outer lens layers, α‐crystallin is the most abundant soluble protein but is not found in soluble proteins in the lens centre. Water‐soluble β‐crystallins also decrease from their highest level in the outer lens to negligible mounts in the central lens. The proportion of soluble γ‐crystallin increases significantly towards the lens centre where this is the only soluble protein present. Insoluble protein levels increase significantly towards the lens centre. In B. gargarizans lenses, as with other anurans, the predominant water‐soluble protein class is γ‐crystallin. No taxon‐specific crystallins were found. The relationship between the protein distribution patterns and the functional properties of the lens this species is discussed.  相似文献   

18.
Protein turnover by the proteasome in aging and disease   总被引:9,自引:0,他引:9  
A significant body of evidence supports a key role for free radicals in causing cumulative damage to cellular macromolecules, thereby contributing to senescence/aging, and a number of age-related disorders. Proteins are recognized as major targets for oxidative damage (in addition to DNA and lipids) and the accumulation of oxidized proteins has been reported for many experimental aging models, as measured by several markers for protein oxidation. In young and healthy individuals, moderately oxidized soluble cell proteins are selectively and rapidly degraded by the proteasome. However, severely oxidized, cross-linked proteins are poor substrates for degradation and actually inhibit the proteasome. Considerable evidence now indicates that proteasome activity declines during aging, as the protease is progressively inhibited by binding to ever increasing levels of oxidized and cross-linked protein aggregates. Cellular aging probably involves both an increase in the generation of reactive oxygen species and a progressive decline in proteasome activity, resulting in the progressive accumulation of oxidatively damaged protein aggregates that eventually contribute to cellular dysfunction and senescence.  相似文献   

19.
20.
We have measured the free epsilon amino groups in soluble and insoluble proteins of clear human lenses and diabetic and non-diabetic senile cataractous lenses. The free epsilon amino groups content of soluble and insoluble proteins was significantly lower in diabetic cataracts than in clear lenses and non diabetic senile cataracts. Our results seem to demonstrate that non-enzymatic glycosylation of lens protein could play a role in the pathogenesis of cataract in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号