首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Urease fromAnabaena doliolum andAnacystic nidulans showed maximum activity at pH 7.0–7.4 at 40°C when measured in cell-free, phosphate-buffered extracts. It is a soluble enzyme located in cytoplasm. The apparent Km forA. doliolum urease was 120 M. Anacystis nidulans urease exhibited biphasic kinetics (Km=250 M and 1.66 mM). Enzyme, fully expressed in cells grown with urea, nitrate, or N2, was repressed in ammonia-grown cells, but ammonia did not inhibit the activity in vitro. Incubation of algal cells in N2 medium with chloramphenicol for 12 h caused degradation of urease. Cu2+ at 1 M inhibited the enzyme activity by 50%, whereas Co2+ and Ni2+ up to 20 M had no effect.p-Hydroxymercuribenzoate appeared to be a more powerful inhibitor of urease than acetohydroxamic acid.Address reprint requests to: c/o Prof. Robert Tabita, Department of Microbiology, Experimental Science Building #319, The University of Texas at Austin, Austin, TX 78712, USA.  相似文献   

3.
A survey of the occurrence of toxic blooms of cyanobacteria in Finnish fresh and coastal waters was made during 1985 and 1986. Toxicity of the freeze-dried water bloom samples was tested by mouse-bioassay (i.p.). Forty-four per cent (83/188) of the bloom samples were found to be lethally toxic. Hepatotoxic blooms (54) were almost twice as common as neurotoxic ones (29). Anabaena was the most frequently found genus in toxic and non-toxic blooms and it was present in all neurotoxic samples. Statistical associations were found between hepatotoxicity and incidence of Microcystis aeruginosa, M. viridis, M. wesenbergii, Anabaena flos-aquae and Anabaena spiroides. Neurotoxicity was statistically associated with Anabaena lemmermannii, Anabaena flos-aquae and Gomphosphaeria naegeliana. Isolation of strains of cyanobacteria confirmed the occurrence of hepatotoxic and neurotoxic strains of Anabaena, as well as hepatotoxic strains of Microcystis and Oscillatoria species.Toxic blooms caused cattle poisonings at three different lakes during the study period. Toxic blooms also occurred in drinking water sources. Our study shows that toxic cyanobacteria are more common in Finnish lakes than would be expected on the basis of animal poisonings. The results of this study show the existence of toxic cyanobacteria in Finnish water supplies and the need for their continued study as agents of water based disease.  相似文献   

4.
感染丝状蓝藻的噬藻体的裂解周期和释放量的测定   总被引:3,自引:1,他引:3  
近年来,随着浮游病毒的认识的深入,人们认识到浮游病毒对水体中初级生产力的影响是巨大的[1],其主要证据就是发现噬藻体在海洋蓝藻的种群控制上发挥着重要作用[2]. 噬藻体的释放量和裂解周期是衡量噬藻体感染力的重要指标,很多重要的生态指标如病毒在生态系统中对宿主的致死率、病毒种群得以维持的阈浓度等都需要使用病毒的释放量和裂解周期来加以推算[3,4], 因此准确地测定这两个基本参数是十分重要的.在自然界,很多丝状蓝藻,如颤藻、鱼腥藻、螺旋藻、席藻等是能够形成水华的,其中有些还具有产毒的功能[5].丝状蓝藻的形态特征有别于单细胞蓝藻, 在被噬藻体感染时,丝状蓝藻的感染周期和光合生理也与单细胞蓝藻有较大的差异[6],因此研究裂解丝状蓝藻的噬藻体的方法可能不同于感染单细胞的噬藻体.本次试验以一种感染丝状宿主的噬藻体为材料,探讨了确定其裂解周期和释放量的研究方法.  相似文献   

5.
近年来 ,随着浮游病毒的认识的深入 ,人们认识到浮游病毒对水体中初级生产力的影响是巨大的[1] ,其主要证据就是发现噬藻体在海洋蓝藻的种群控制上发挥着重要作用[2 ] 。噬藻体的释放量和裂解周期是衡量噬藻体感染力的重要指标 ,很多重要的生态指标如病毒在生态系统中对宿主的致死率、病毒种群得以维持的阈浓度等都需要使用病毒的释放量和裂解周期来加以推算[3,4 ] ,因此准确地测定这两个基本参数是十分重要的。在自然界 ,很多丝状蓝藻 ,如颤藻、鱼腥藻、螺旋藻、席藻等是能够形成水华的 ,其中有些还具有产毒的功能[5] 。丝状蓝藻的形态特征…  相似文献   

6.
7.
The fluorescence characteristics of the cyanobacteria Synechocystisaquatilis Sauv., Microcystis firma (Breb. et Lenorm.) Schmidleand Synechococcus leopoliensis (Racib.) Kom. and the green algaScenedesmus quadricauda (Turp.) Breb. were examined. In thethree cyanobacteria, phycocyanin is the main accessory pigment.Phycoerythrin is not present in our investigated strains ofcyanobacteria. The highest excitation of the chlorophyll a (Chla) fluorescence of cyanobacteria resulted from light with wavelengthsof 620–630 nm. A definite ‘Kautsky’ effectis also evident at this wavelength. However, excitation withblue light (420–520 nm) produced only very slight fluorescence.The Kautsky effect is not evident at these wavelengths, evenat high photon flux densities. For Scenedesmus, fluorescencecharacteristics typical of green algae were found. The fluorescenceexcitation of cyanobacteria at 620 nm corresponds to a photosynthesispeak in the action spectrum measured in terms of O2 production.The results underline the necessity of fluorescence measurementsat several wavelengths whenever mixed populations are involved.Such measurements also present possibilities for more accurateestimation of biomass and potential photosynthetic productionin mixed populations.  相似文献   

8.
The respiratory chain of blue-green algae (cyanobacteria)   总被引:1,自引:0,他引:1  
Electron transport components on the way from reduced substrates to the terminal respiratory oxidase(s) are discussed in relation to analogous and/or homologous enzymes and electron carriers in the generally much better known bacteria, mitochondria and chloroplasts. The kinetic behaviour of the components, their localization within the cell and their evolutionary position are given special attention. Pertinent results from molecular genetics are also mentioned. The unprecedented role of cyanobacteria for our biosphere and our whole planet earth appears to deserve a more extended introductory chapter.  相似文献   

9.
Summary Mesosome-like, unit-membrane structures are clearly defined in the blue-green algae, Spirulina and three strains of Synechococcus, after osmium or potassium permanganate fixation and observation with the electron microscope. The membranous structures are distinct from the photosynthetic membranes and, in the case of Spirulina, are frequently observed in cells and can occur in large volume within the cell.  相似文献   

10.
Summary 15N tracer was used to detect the extent to which nitrogen of appliedAzolla caroliniana, Anabaena variabilis andNostoc muscorum was available for assimilation by the growing rice plants in pots under 4 cm flood water for 60 days. The rate of release of nitrogen from the above biofertilizers, the amount of nitrogen remaining in the soils and the amount that was lost from the soils during this period were also examined. Previously15N-labelled biomass of Azolla, Anabaena and Nostoc to provide 40 mg N was mixed thoroughly with 0.5 kg silt loam Bangladesh soil (Sonatola series) in each of three pots used for a single treatment. Each pot received four 16 days old IR8 rice seedlings. A parallet set of experiments was conducted without rice plants.It was found that nitrogen uptake in the rice plants was increased by 91, 176 and 215% on using Azolla, Anabaena and Nostoc which resulted in increased total dry matter yields (shoot plus root) of 74, 105 and 125%, respectively. Of the total15N applied at the start, 26, 49 and 53% was released from Azolla, Anabaena and Nostoc; about 7, 14 and 13% was lost by denitrification and 74, 51 and 47% remained in the soils as the undecomposed part of the biofertilizers, respeciively, after 60 days. Of 15.76, 22.72 and 25.92 mg N assimilated by the rice plants, 48, 61 and 62% was supplied by Azolla, Anabaena and Nostoc, respectively. The rest was obtained from the soil used.In the absence of the rice plants 30, 43 and 45% of applied15N of Azolla, Anabaena and Nostoc was released, respectively, in 60 days of which 93–96% was lost as N2 through denitrification.  相似文献   

11.
M. Potts 《Oecologia》1979,39(3):359-373
Summary High rates of nitrogen fixation (acetylene reduction) are associated with communities of heterocystous and non-heterocystous blue-green algae, which are widespread and abundant in the coastal mangrove forests of the Sinai Peninsula.Heterocystous forms, particularly representatives of the Rivulariaceae, grow in aerobic environments, where nitrogenase activity may be limited by the availability of nutrients such as Fe and PO4–P. Desiccated communities of Scytonema sp. reduce acetylene within ten minutes of wetting by tidal sea water. Communities dominated by the non-heterocystous Hydrocoleus sp., Hyella balani, Lyngbya aestuarii, Phormidium sp. and Schizothrix sp., occur in close contact with anaerobic sediments and reduce acetylene in the dark as well as in the light.Nitrogen fixation in all these communities is light dependant and may be supplemented by an alternative source of reductant in the dark. The indications are that nitrogen fixation by these communities of blue-green algae, makes a significant contribution to the overall nitrogen input of the mangrove ecosystem.  相似文献   

12.
NADH oxidase in blue-green algae   总被引:8,自引:0,他引:8  
  相似文献   

13.
Summary The occurrence of alanine dehydrogenase (AlaDH), glutamate dehydrogenase (GDH), and 2-ketoglutarate: glutamine amidotransferase (GGAT), has been surveyed in a number of blue-green algae. Among nine unicellular strains grown with nitrate, and belonging to five of the major typological groups, AlaDH was present in seven, and GDH in all eight that were assayed. In ten filamentous strains grown with nitrate, and belonging to the three nonheterocyst-forming and four heterocyst-forming groups, AlaDH was present in six, but both AlaDH and GDH were present in only one strain. In those strains which could be grown with N2 as sole nitrogen source, levels of GDH were generally lower, and AlaDH higher in cells fixing N2 than in those growing with nitrate. GGAT was undetectable in N2-grown cells. Two unicellular and three filamentous strains were tested for their ability to use L-alanine, L-glutamate, L-glutamine, and L-asparagine as sole sources of nitrogen. Of these, L-asparagine was utilized most effectively. There was little difference in levels of GDH in cells grown with nitrate or with L-asparagine, while the levels of AlaDH were slightly lower in cells grown with L-asparagine.  相似文献   

14.
Microtubular complexes in blue-green algae   总被引:1,自引:1,他引:0  
  相似文献   

15.
Summary Nitrogen deficient Anacystis nidulans contained normal levels of chlorophyll-a and carotenoids but did not contain any phycocyanin. These organisms also contained large amounts of polysaccharide. The addition of nitrate to a deficient culture resulted in the recovery of normal pigmentation over a period of several hours.The relation between these changes and growth was established by a kinetic study of the changes in cell composition during pigment loss and recovery. Loss of phycocyanin commenced with the cessation of growth due to nitrogen limitation and was complete after 15 hours. In contrast there were only minor changes in chlorophyll-a and carotenoid. After growth had ceased polysaccharide continued to increase and viability dropped sharply although total cell counts did not change. These trends were reversed by the addition of nitrate to deficient cultures. Phycocyanin was detected after a short lag and normal levels of phycobiliprotein were present within 8 hours. Cell division did not begin until normal levels of phycocyanin had been restored. During the recovery of normal pigmentation there was a decrease in reducing sugar content and a sharp rise in viability. Qualitative studies with 9 additional blue-green algae suggest that loss of phycocyanin is a characteristic feature of nitrogen deficiency in blue-green algae.  相似文献   

16.
Morphological and habitat features have been recorded on punchcards for three genera in the Oscillatoriaceae and two in the Nostocaceae. As a result it is concluded that generic divisions in the Oscillatoriaceae are arbitrary and artificial, but that in the Nostocaceae, Cylindrospermum represents a grouping of distinct forms to a greater degree than does the amorphous genus Anabaena.

Some morphological comparisons between the two groups are attempted and detectable associations between morphological and habitat features are suggested : together these may contribute to an eventual separation of taxa on a more logical basis than at present.  相似文献   

17.
18.
Cyanobacteria (blue-green algae) are widely distributed Gram-negative oxygenic photosynthetic prokaryotes with a long evolutionary history. They have potential applications such as nutrition (food supplements and fine chemicals), in agriculture (as biofertilizer and in reclamation of saline USAR soils) and in wastewater treatment (production of exopolysaccharides and flocculants). In addition, they also produce wide variety of chemicals not needed for their normal growth (secondary metabolites) which show powerful biological activities such as strong antiviral, antibacterial, antifungal, antimalarial, antitumoral and anti-inflammatory activities useful for therapeutic purposes. In recent years, cyanobacteria have gained interest for producing biofuels (both biomass and H2 production). Because of their simple growth needs, it is potentially cost-effective to exploit cyanobacteria for the production of recombinant compounds of medicinal and commercial value. Recent advances in culture, screening and genetic engineering techniques have opened new ways to exploit the potential of cyanobacteria. This review analyses the sustainability of cyanobacteria to solve global problems such as food, energy and environmental degradation. It emphasizes the need to adopt multidisciplinary approaches and a multi-product production (biorefinery) strategy to harness the maximum benefit of cyanobacteria.  相似文献   

19.
Structure and biosynthesis of toxins from blue-green algae (cyanobacteria)   总被引:18,自引:0,他引:18  
Microcystis andNodularia species produce cyclic hepta- and pentapeptides, microcystins and nodularin, respectively, both containing the same unusual C20 amino acid, abbreviated Adda. Biosynthesis of nodularin fromNodularia and especially of Adda employs a pathway similar to that employed byMicrocystis for producting microcystins. Nearly 30 new microcystins have been isolated in our laboratory from cyanobacteria species and their structures assigned, largely employing tandem FAB mass spectrometry (FABMS/CID/MS). Acyclic peptides, some of them presumed precursors of nodularin and microcystins, have now been isolated and characterized. The numerous analogs identified or synthesized allow the identification of important parameters in a structure-activity relationship study.  相似文献   

20.
Blooms of blue-green algae from 51 eutrophic Scandinavian lakes were investigated during the period 1978–1984, to ascertain the occurrence of toxinogenic species. Toxicity assays were performed by intraperitoneal injection of suspensions of freeze-dried algal material in mice. Toxin-producing blue-green algae were found in 30 lakes. They belonged to 11 different species of the six genera Anabaena, Aphanizomenon, Gomphosphaeria, Microcystis, Nodularia and Oscillatoria. The presence of toxinogenic strains of blue-green algae seemed quite constant in several of the localities studied. In some lakes, more than one toxic species were found to develop simultaneously. The level of toxicity showed large variation (MLD100, 6 to > 2500 mg/kg), but clinical and pathological changes were quite uniform. The results indicate that water-blooms of toxin-producing blue-green algae, in the geographical area in question, are regionally widespread. In some localities, blooms of blue-green algae are apparently always toxic. Several aspects of the toxic blue-green algae problem are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号