首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
After re-inoculation of the yeast Saccharomyces cerevisiae from phosphate-deficient to complete medium, the total content of polyphosphates increased tenfold during 2 h (hypercompensation), but the content of certain fractions increased differently. The content of acid-soluble polyphosphate increased to the maximal extent. The ratio of the activities of two exopolyphosphatases also changed in the cytosol. Activity of a low molecular weight exopolyphosphatase (40 kD) decreased almost twice, whereas activity of a high molecular weight exopolyphosphatase (830 kD) increased tenfold. Cycloheximide blocks the increase in activity of high molecular weight exopolyphosphatase and hence, under these conditions the latter is synthesized de novo. Inhibitors of energy metabolism and cycloheximide, an inhibitor of protein synthesis, differently influence accumulation of certain polyphosphate fractions under hypercompensation conditions. The effect of iodoacetamide, an inhibitor of glycolysis, on any fraction is negligible, while cycloheximide suppresses accumulation of only polyP4 fraction associated with the cell envelope and bafilomycin A1, an inhibitor of vacuolar H+-ATPase, suppresses accumulation of polyP3 fraction. The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) to variable extent inhibits accumulation of all the fractions. Analysis of the effect of inhibitors on accumulation of polyphosphates under hypercompensation conditions confirms various localization, heterogeneity, and multiplicity of the routes of biosynthesis of certain fractions of these macroergic phosphorus compounds and also suggests interrelation between their biosynthesis and the gradient of H+ electrochemical potential.  相似文献   

2.
Genetic regulation of the inducibility of sexual agglutination ability in the yeast Saccharomyces cerevisiae was studied. Detailed analysis of the degree of sexual agglutination was carried out; it showed that a greater number of genes are involved in the regulation of inducible sexual agglutination in strain H1-0 than previously assumed. Although dominancy of inducible phenotype over constitutive was confirmed, the effectiveness of one gene changing the constitutive phenotype to the inducible seemed to be somewhat low. Quantity per cell of agglutination substances responsible for sexual agglutination increased as the agglutination ability became greater.  相似文献   

3.
4.
The yeast Saccharomyces cerevisiae is a useful model system for examining the biosynthesis of sterols in eukaryotic cells. To investigate underlying regulation mechanisms, a flux analysis of the ergosterol pathway was performed. A stoichiometric model was derived based on well known biochemistry of the pathway. The model was integrated in the Software COMPFlux which uses a global optimization algorithm for the estimation of intracellular fluxes. Sterol concentration patterns were determined by gas chromatography in aerobic and anaerobic batch cultivations, when the sterol metabolism was suppressed due to the absence of oxygen. In addition, the sterol concentrations were observed in a cultivation which was shifted from anaerobic to aerobic growth conditions causing the sterol pools in the cell to be filled. From time-dependent flux patterns, possible limitations in the pathway could be localized and the esterification of sterols was identified as an integral part of regulation in ergosterol biosynthesis.  相似文献   

5.
Summary Ribosomal proteins from the cytoplasm and mitochondria of the yeast Saccharomyces cerevisiae were compared by immunoblotting techniques. Antibodies raised against cytoplasmic ribosomal proteins cross-react with five mitochondrial ribosomal proteins, four of which are located in the large and one in the small mitochondrial subunits. The possible existence of common ribosomal proteins for cytoplasmic and mitochondrial ribosomes is discussed.Abbreviations cyto cytoplasmic - mito mitochondrial  相似文献   

6.
Copper-induced metallothionein (MT) synthesis in Saccharomyces cerevisiae was investigated in order to associate this exclusively with Cu2+ in vivo, when cultured in nutrient medium containing other heavy metal ions. Expression of the CUP1 promoter/lacZ fusion gene was inhibited by all heavy metal ions tested, especially Cd2+ and Mn2+. By adding Cd2+ and Mn2+ at 10 M concentration, the -galactosidase activity decreased by about 80% and 50% of the maximum induction observed with 1 mM CuSO4, respectively. Furthermore, cell growth was markedly inhibited by combinations of 1 mM-Cu2+ and 1 M-Cd2+. Therefore, the yeast S. cerevisiae could not rely on MT synthesis as one of the copper-resistance mechanisms, when grown in a Cd2+ environment. In contrast, the presence of Mn2+ in the nutrient medium showed alleviation rather than growth inhibition by high concentrations of Cu2+. The recovery from growth inhibition by Mn2+ was due to decreased Cu2+ accumulation. Inhibitory concentrations of Co2+, Ni2+ and Zn2+ on expression of the CUP1p/lacZ fusion gene were at least one order of magnitude higher than that of Cd2+ and Mn2+. These results are discussed in relation to Cu2+ transport and Cu-induced MT synthesis in the copper-resistance mechanism of the yeast S. cerevisiae.  相似文献   

7.
8.
The yeast, Hansenula wingei has two mating types designated 5 and 21. Cells of each mating type were found to produce mating type-specific sex pheromone which induces sexual agglutinability of the opposite mating type. Crude fractions of these pheromones were prepared by using an Amberlite CG 50 (H+ type) column. The agglutinability-inducing action of the pheromones required glucose as carbon source, but no external nitrogen source. The action of the pheromones was inhibited by 5 g/ml cycloheximide. The optimum pH for the pheromone action was 4.0. Pheromones of Saccharomyces cerevisiae and Saccharomyces kluyveri induced sexual agglutinability of 5 mating type cells but did not that of 21 mating type cells. a Pheromones of the Saccharomyces yeasts had no effect on both 5 and 21 mating type cells. The sex pheromones of H. wingei had no effect on the sexual agglutinability of inducible a cells of S. cerevisiae. From the experimental results obtained so far, we propose to call 5 and 21 mating types in H. wingei a and mating types, respectively.  相似文献   

9.
After a short period of tolerance, living cells of Saccharomyces cerevisiae were irreversibly damaged by low concentrations of sulfite. The length of the period of tolerance and the rate of the damaging effect depended on the concentration on sulfite, pH-value, temperature, the physiological state of the cells, and incubation time.Inhibitors of protein synthesis and mitochondrial ATP synthesis did not alter the deleterious effect of sulfite on living cells. Furthermore, cell damage leading to inhibition of colony formation occured under aerobic as well as under anaerobic conditions.Prior to cell inactivation sulfite induced the formation of respiratory deficient cells.The active agent was shown to be SO2.  相似文献   

10.
Summary A DNA fragment conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae was isolated from a library of yeast genomic DNA. Its nucleotide sequence revealed the presence of a single open reading frame (ORF; 1326 bp) having the potential to encode a protein of 442 amino acid residues (molecular mass of 48.3 kDa). A frameshift mutation introduced within the ORF abolished resistance to heavy metal ions, indicating the ORF is required for resistance. Therefore, we termed it the ZRC1 (zinc resistance conferring) gene. The deduced amino acid sequence of the gene product predicts a rather hydrophobic protein with six possible membrane-spanning regions. While multiple copies of the ZRC1 gene enable yeast cells to grow in the presence of 40 mM Zn2+, a level at which wild-type cells cannot survive, the disruption of the chromosomal ZRC1 locus, though not a lethal event, makes cells more sensitive to zinc ions than are wild-type cells.  相似文献   

11.
Glucose-induced cAMP signalling in Saccharomyces cerevisiae requires extracellular glucose detection via the Gpr1-Gpa2 G-protein coupled receptor system and intracellular glucose-sensing that depends on glucose uptake and phosphorylation. The glucose uptake requirement can be fulfilled by any glucose carrier including the Gal2 permease or by intracellular hydrolysis of maltose. Hence, the glucose carriers do not seem to play a regulatory role in cAMP signalling. Also the glucose carrier homologues, Snf3 and Rgt2, are not required for glucose-induced cAMP synthesis. Although no further metabolism beyond glucose phosphorylation is required, neither Glu6P nor ATP appears to act as metabolic trigger for cAMP signalling. This indicates that a regulatory function may be associated with the hexose kinases. Consistently, intracellular acidification, another known trigger of cAMP synthesis, can bypass the glucose uptake requirement but not the absence of a functional hexose kinase. This may indicate that intracellular acidification can boost a downstream effect that amplifies the residual signal transmitted via the hexose kinases when glucose uptake is too low.  相似文献   

12.
Summary Nikkomycin Z (NZ) is a competitive inhibitor of chitin synthase III in the yeast Saccharomyces cerevisiae. Myosin type II-deficient yeast strains (myo1) display a dramatic reduction in growth when chitin synthase III activity is inhibited by NZ, supporting the contention that actomyosin motility plays an important role in maintaining cell wall integrity. A proposed inhibitor of cortical actin polymerization in vitro, 2,3-butanedione monoxime (BDM), also inhibits growth of wild-type yeast strains at a concentration of 20 mM. In this study, we assayed for potential in vivo interplay between BDM-sensitive cell functions and cell wall chitin synthesis by testing for increased sensitivity to NZ during co-treatment with BDM at sub-inhibitory concentrations. Our results show that BDM can increase the sensitivity of yeast cells to Nikkomycin Z.  相似文献   

13.
A mesophilic wine yeast, Saccharomyces cerevisiae CSIR Y217 K R was subjected to the K2 killer effect of Saccharomyces cerevisiae T206 K + R + in a liquid grape medium. The lethal effect of the K2 mycoviral toxin was confirmed by methylene blue staining. Scanning electron microscopy of cells from challenge experiments revealed rippled cell surfaces, accompanied by cracks and pores, while those unaffected by the toxin, as in the control experiments, showed a smooth surface. Transmission electron microscopy revealed that the toxin damaged the cell wall structure and perturbed cytoplasmic membranes to a limited extent.  相似文献   

14.
We have recently reported that protein kinase CK2 phosphortylates both in vivo and in vitro residue serine-46 of the cell cycle regulating protein Cdc28 of budding yeast Saccharomyces cerevisiae, confirming a previous observation that the same site is phosphorylated in Cdc2/Cdk1, the human homolog of Cdc28. In addition, S. cerevisiae in which serine-46 of Cdc28 has been mutated to alanine show a decrease of 33% in both cell volume and protein content, providing the genetic evidence that CK2 is involved in the regulation of budding yeast cell division cycle, and suggesting that this regulation may be brought about in G1 phase of the mammalian cell cycle. Here, we extended this observation reporting that the mutation of serine-46 of Cdc28 to glutamic acid doubles, at least in vitro, the H1-kinase activity of the Cdc28/cyclin A complex. Since this mutation has only little effects on the cell size of the cells, we hypothesize multiple roles of yeast CK2 in regulating the G1 transition in budding yeast.  相似文献   

15.
Summary Deposition of beta-amyloid peptide (1–42) (βAP) in the brain is an early event linked with pathogenesis of cell injury and death in Alzheimer disease. Previous studies have demonstrated that βAP induces cytotoxicity in several types of human cells. Surprisingly, the peptide was found not only to be non toxic for yeast cells, but to stimulate growth of yeast culture. The results are consistent with βAP binding to yeast cell as illustrated by binding isotherms with the apparent dissociation constant of 8×10−7 M and Bmax of 4.7×104 molecules/cell.  相似文献   

16.
We have analyzed the activity of antioxidant and tricarboxylic acid cycle enzymes as well as protein carbonyl content in budding yeast Saccharomyces cerevisiae cells grown in medium with glycerol using wild-strain cells and defective mutants in superoxide dismutases (SODs). The present report demonstrates that the activity of catalase, glucose-6-phosphate dehydrogenase, glutathione reductase, isocitrate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase, on average, was lower in the strains lacking SODs than that in the parental strain. On the other hand, under conditions used in this study, the content of carbonyl groups in proteins was relatively higher in the wild type as compared with SOD-defective strains. It may be suggested that in vivo SOD can demonstrate protective as well as pro-oxidant properties, and the final result depends on particular conditions.  相似文献   

17.
18.
Homologous recombination is initiated in meiotic eukaryotic cells at DNA double-strand breaks, which are generated by several proteins, Spo11p playing a key role. The protein products of SPO11 orthologs are highly conserved, are found in most eukaryotes from plants to human, and are structurally similar to subunit A of archaeal DNA topoisomerase VI. Saccharomyces cerevisiae SPO11 is expressed in meiotic prophase I. Spo11p acts as topoisomerase II and is presumably active as a dimer. Experimental data on Spo11p compartmentalization in vegetative yeast cells are unavailable. The SPO11 coding region and its fragments were fused in frame with the egfp reporter and expressed in vegetative yeast cells. The Spo11p-EGFP fusion was localized in the nucleus, while cytoplasmic localization was observed for Spo11Δ-EGFP devoid of the 25 N-terminal residues. N-terminal Spo11p region 7–25 fused with EGFP ensured the nuclear targeting of the reporter protein and was assumed to harbor the nuclear localization signal.  相似文献   

19.
Saccharomyces cerevisiae is an ascomycetous yeast, that is traditionally used in wine bread and beer production. Vaginitis caused by S. cerevisiae is rare.The aim of this study was to evaluate the frequency of S. cerevisiae isolation from the vagina in two groups of women and determined the in vitro susceptibility of this fungus.

Subjects and methods

Vaginal samples were collected from a total of262 (asymptomaticandsymptomatic) women with vaginitis attending the centre of family planning of General hospital ofPiraeus. All blastomycetes that isolated from the vaginal samples were examined for microscopic morphological tests and identified by conventional methods: By API 20 C AUX and ID 32 C (Biomerieux). Antifungal susceptility testing for amphotericin B,fluconazole itraconazole,voriconazole, posaconazole and caspofungin was performed by E -test (Ab BIODIKS SWEDEN) against S. cerevisiae.

Results

A total of 16 isolates of S. cerevisiae derived from vaginal sample of the referred women, average 6.10%. Susceptibility of 16 isolates of S. cerevisiae to a variety of antimycotic agents were obtained. So all isolates of S. cerevisiae were resistant to fluconazole, posaconazole and intraconazole, but they were sensitive to voriconazole caspofungin and Amphotericin B which were found sensitive (except 1/16 strains). None of the 16 patients had a history of occupational domestic use of baker’s yeast.

Conclusions

Vaginitis caused by S. cerevisiae occur, is rising and cannot be ignored. Treatment of Saccharomyces vaginitis constitutes a major challenge and may require selected and often prolonged therapy.  相似文献   

20.
Saccharomyces cerevisiae mutants acidifying glucose medium containing bromocresol purple were shown to excrete protons when placed in unbuffered water in the absence of any external carbon source. The mutants belong to 16 different complementation groups. Most of them do not grow on glycerol and the excreted protons are associated to particular sets of organic anions such as citrate, aconitate, succinate, fumarate or malate. These novel types of respiratory mutations seem to be located in genes operating in the Krebs or glyoxylate cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号