首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Rochefort 《Hormone research》1987,28(2-4):196-201
The mechanism of the antiproliferative effect of nonsteroidal antiestrogens (tamoxifen, hydroxytamoxifen) is discussed from studies performed in human breast cancer cell lines. At least two types of mechanism have been evidenced. In the presence of estrogens, antiestrogens behave as classical antihormones and their inhibition of cell proliferation is likely due to inhibition of the synthesis and release of several estrogen-induced mitogens (growth factors and proteases). In the absence of estrogens (cells cultured in phenol-red-free medium), antiestrogens can still inhibit the effect of growth factors (EGF, insulin). At concentrations less than or equal to 4 microM, antiestrogens are also cytotoxic and they require accessible estrogen receptors for their action. 'Estrogen-receptor-targeted drugs' is therefore a better general term than 'antiestrogens' to describe the mechanism of action of these drugs, which can also function without inhibiting estrogen action.  相似文献   

2.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. The mechanism underlying the increased proliferation could involve the induction of components of the insulin-like growth factor signal transduction pathway by estrogen. In this study we have examined the regulation of the expression of insulin receptor substrate-1, a major intracellular substrate of the type I insulin-like growth factor receptor tyrosine kinase. Estradiol increased insulin receptor substrate-1 mRNA and protein levels at concentrations consistent with a mechanism involving the estrogen receptor. Insulin receptor substrate-1 was not induced significantly by the antiestrogens tamoxifen and ICI 182,780, but they inhibited the induction of insulin receptor substrate-1 by estradiol. Analysis of tyrosine-phosphorylated insulin receptor substrate-1 showed that the highest levels were found in cells stimulated by estradiol and insulin-like growth factor-I, whereas low levels were found in the absence of estradiol irrespective of whether type I insulin-like growth factor ligands were present. Insulin receptor substrate-2, -3, and -4 were not induced by estradiol. These results suggest that estrogens and antiestrogens may regulate cell proliferation by controlling insulin receptor substrate-1 expression, thereby amplifying or attenuating signaling through the insulin-like growth factor signal transduction pathway.  相似文献   

3.
MCF-7 human breast cancer cells have been studied for hormonal regulation of secretion of an insulin growth factor-I (IGF-I)-related growth factor. 17 beta-Estradiol, which is required for tumorigenesis of the cell line in the nude mouse and which stimulates proliferation in vitro, was able to significantly induce IGF-I secretion at 10(-13) M, with maximal induction at 10(-11) M. Under optimal conditions IGF-I could be induced 4-fold after 4 days. Demonstration of estrogenic stimulations required removal of phenol red, a weak estrogen, from the cell culture medium. In addition to estrogen, insulin, epidermal growth factor, and transforming growth factor alpha induce both cellular proliferation and IGF-I secretion, while growth inhibitory antiestrogens, transforming growth factor beta, and glucocorticoids have the opposite effect. In each case, modulations in IGF-I secretion preceeded effects on cellular proliferation. IGF-I was not regulated by human GH, basic fibroblast growth factor, platelet-derived growth factor, or PRL, none of which affected proliferation rate. Thus, regulation of IGF-I secretion in human breast cancer is controlled by different hormones from those previously reported in human fibroblasts. Regulation of IGF-I by neither estrogen nor antiestrogen was associated with changes in steady-state mRNA levels; thus regulation may occur at a step beyond mRNA. We conclude that IGF-I production is tightly coupled to growth regulation by estrogens, antiestrogens, and other hormones and may contribute to autocrine and/or paracrine growth regulation by these agents in breast cancer.  相似文献   

4.
Antiestrogens are efficient inhibitors of estrogen-mediated growth of human breast cancer. Besides inhibiting estradiol-stimulated growth, antiestrogens may have a direct growth-inhibitory effect on estrogen receptor (ER) positive cells and thus be more efficient than aromatase inhibitors, which will only abrogate estrogen-dependent tumor growth. To address this issue, we have used the human breast cancer cell line MCF-7/S9 as a model system which is maintained in a chemically defined medium without serum and estrogen. The addition of estradiol results in an increase in cell growth rate. Thus, the MCF-7/S9 cell line is estrogen-responsive but not estrogen-dependent. Three different types of antiestrogens, namely tamoxifen, ICI 182,780 and EM-652 were found to exert a significant and dose-dependent inhibition of basal growth of MCF-7/S9 cells. The growth-inhibitory effect of the three antiestrogens was prevented by simultaneous estradiol treatment. Antiestrogen treatment also reduced the basal pS2 mRNA expression level, thus indicating spontaneous estrogenic activity in the cells. However, treatment with the aromatase inhibitor had no effect on basal cell growth, excluding that endogenous estrogen synthesis is involved in basal growth. These data demonstrate that in addition to their estrogen antagonistic effect, antiestrogens have a direct growth-inhibitory effect which is ER-mediated. Consequently, in the subset of ER positive breast cancer patients with estrogen-independent tumor growth, antiestrogen therapy may be superior to treatment with aromatase inhibitors which only inhibit estrogen formation but do not affect cancer cell growth in the absence of estrogens.  相似文献   

5.
Breast cancer is characterized by hormonal regulation. The current article reviews the role of estrogen and polypeptide growth factors in control of proliferation and basement membrane invasion of breast cancer cells in vitro. The role of antiestrogens to regulate proliferation, invasion, and growth factor secretion is further highlighted. Finally, the use of in vitro cultures of breast cancer cells to model steps in the malignant progression of the disease is emphasized. The availability of hormone dependent and independent breast cancer cell lines should allow screening for better antiestrogens, antimetastatic drugs, and antagonists of local action of growth factors.  相似文献   

6.
Both transforming growth factor beta (TGF beta) and TGF alpha mRNA are expressed in human breast cancer cell lines. We have investigated the relationship of mRNA abundance for these growth modulators to the proliferation rate of a number of human breast cancer cell lines. Furthermore, we have investigated the relationship of regulation of TGF beta and TGF alpha mRNA to growth inhibition caused by progestins and nonsteroidal antiestrogens in T-47D human breast cancer cells. The abundance of TGF beta and TGF alpha mRNA in human breast cancer cell lines was not related directly to proliferation rate of the cells in culture or estrogen receptor positivity or negativity. The relationship of TGF beta and TGF alpha mRNA to growth inhibition caused by antiestrogens and progestins was investigated in T-47D human breast cancer cells. We observed that in T-47D human breast cancer cells the abundance of TGF beta mRNA is decreased in a time- and dose-dependent fashion by progestins but remains unaltered by nonsteroidal antiestrogens. Treatment of T-47D cells for 24 h with 10 nM medroxyprogesterone acetate (MPA) reduced the level of TGF beta mRNA to one third that present in untreated cells. The same treatment increased TGF alpha mRNA 3-fold above untreated controls in a time- and dose-dependent fashion and nonsteroidal antiestrogens caused a small decrease. The regulation of both TGF alpha and TGF beta mRNA was not directly related to inhibition of growth by progestins and antiestrogens in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Zinc transporter LIV-1 (SLC39A6) is estrogen regulated and present in increased amounts in estrogen receptor-positive breast cancer as well as in tumors that spread to the lymph nodes. The LIV-1 subfamily of ZIP zinc transporters consists of nine human sequences that share considerable homology across transmembrane domains. Many of these sequences have been shown to transport zinc and/or other ions across cell membranes. Increasingly, studies have implicated members of the LIV-1 transporter subfamily in a variety of diseases. We review these studies and report our own investigations of the role in breast cancer of the nine LIV-1 zinc transporters. We have documented the response of these transporters to estrogen and antiestrogens, and also their presence in our models of resistance to antiestrogens. Resistance to antiestrogen drugs such as tamoxifen and fulvestrant often occurs in advanced breast cancer. In these models we observed differential expression of individual LIV-1 family members, which may be related to their observed variable tissue expression. We were unable detect ZIP4, which is known to be expressed in the intestine. HKE4/SLC39A7 had elevated expression in both antiestrogen-resistant cell lines, and ZIP8 had elevated expression in fulvestrant-resistant cells. In addition, we investigated the expression of the nine LIV-1 family members in a clinical breast cancer series. Although a number of different LIV-1 family members showed some association with growth factor receptors, LIV-1 was solely associated with estrogen receptor and a variety of growth factors commonly associated with clinical breast cancer. HKE4, however, did show an association with the marker of cell proliferation Ki67 the spread of breast cancer to lymph nodes.  相似文献   

9.
We have isolated from the plant Onobrychis ebenoides three novel arylobenzofurans with binding affinity for the estrogen receptor. In this study, we evaluated these arylobenzofurans, namely ebenfuran I, ebenfuran II and ebenfuran III for their potential selective estrogen receptor modulator (SERM)-like properties. We examined their ability, (1) to induce the insulin growth factor binding protein-3 (IGFBP-3) in MCF-7 breast cancer cells, (2) to stimulate differentiation and mineralization of osteoblastic cell culture by histochemical staining for alkaline phosphatase, Alizarin Red-S staining and calcium levels in the supernatants and (3) to inhibit cell proliferation of cervical adenocarcinoma (Hela) cells by use of the MTT assay. An estrogen receptor mediated effect was investigated by carrying out chloramphenicol acetyl transferase (CAT) assay on transient MCF-7 transfectants. Estradiol and the "pure" antiestrogen ICI 182780 were included to serve as control samples of the estrogenic and antiestrogenic effect respectively. Our data reveal that ebenfuran II is a highly potent SERM, exhibiting antiestrogenic activity in breast cancer cells via the estrogen receptor, estrogenic effect on osteoblasts and no stimulatory effect on cervix adenocarcinoma cells. In conclusion, our study is the first to demonstrate that plant derived arylobenzofurans show a SERM profile and may be considered for the prevention and treatment of diseases such as breast cancer, cervical cancer and osteoporosis.  相似文献   

10.
The signaling cascades activated by insulin and IGF-1 contribute to the control of multiple cellular functions, including glucose metabolism and cell proliferation. In most cases these effects are mediated, at least in part, by insulin receptor substrates (IRS), one of which is insulin receptor substrate 1 (IRS-1). R-Ras is a member of the Ras family of GTPases and is involved in a variety of biological processes, including integrin activation, cell migration, and control of cell proliferation. Here we demonstrate that both R-Ras and BCAR3, a regulator of R-Ras activity that has been implicated in breast cancer, regulate the level of IRS-1 protein in estrogen-dependent MCF-7 and ZR75 breast cancer cells. In particular, expression of a constitutively activated R-Ras mutant, R-Ras38V, or of BCAR3 accelerates the degradation of IRS-1, leading to the impairment of signaling through insulin but not epidermal growth factor receptors. Moreover, knockdown of endogenous R-Ras levels in MCF-7 cells inhibits IRS-1 degradation induced by estrogen signaling blockade but not by long-term insulin treatment. Consistent with these results, both R-Ras38V expression and estrogen signaling blockade lead to the degradation of IRS-1, at least in part, through calpain activity. These findings show that R-Ras activity mediates inhibition of insulin signaling associated with suppression of estrogen action, implicating this GTPase in a growth-inhibitory mechanism associated with antiestrogen treatment of breast cancer.  相似文献   

11.
The effects of estradiol and/or antiestrogens on cholesterol biosynthesis were studied in two breast cancer cell lines. Cholesterogenic activity was evaluated after labeling cells with sodium [14C]acetate for increasing periods of time (up to 24 h) and measuring the incorporation of the radioactivity into nonsaponifiable lipids and into cholesterol, after separation from other labeled metabolites. We compared the effects of estradiol on cholesterogenesis with the well-known effects of this hormone on cell proliferation: estradiol stimulated both cholesterol synthesis and cell growth in MCF-7 cells, but stimulated neither in BT20 cells. The stimulation affected both the 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase step and the post-HMGCoA steps. Only the key enzyme step appeared to be mediated by the estrogen receptor. The hydroxytamoxifen and LY 117018 antiestrogens strongly inhibited cellular cholesterol production in both cell lines. Under the same conditions, cell growth is affected in MCF-7 cells, but not in BT20 (as shown by groups from other laboratories). This demonstrates that de novo synthesis of cholesterol is not essential for cell growth when cells are cultured in the presence of whole serum. The inhibition of cholesterol synthesis by antiestrogens mainly affected the lanosterol demethylation step and the C-27 sterol to cholesterol conversion. This inhibiting effect of antiestrogens was not mediated by the estrogen receptor.  相似文献   

12.
Focus here is on the mechanism of action of both estrogens and antiestrogens at the tumor cell levels in breast cancer. The interactions of estrogens and their antagonists are emphasized and analyzed in terms of current and potential clinical applications to breast cancer treatment. This review deals with these interrelationships at the molecular levels, not just with general aspects of endocrine interrelationships. The article is divided into 8 main parts: 1) an introduction, which reviews historical understanding of receptor technology and significances; 2) main properties of estrogens and estrogen receptors; 3) the influence of estrogens and antiestrogens on growth of experimental mammary tumor systems; 4) the suppression of or administration of estrogens for treatment of advanced human breast cancer; 5) estrogen receptivity of mammary tumors; 6) progress in treatment of advanced breast cancer derived from studies on the mode of action of estrogens; 7) the prognostic significance of estrogens and estrogenic receptivity (the estriol theory); and 8) concluding remarks on the future paths of receptor research.  相似文献   

13.
Estrogen sensitizes the MCF-7 estrogen-responsive breast cancer cell line to the mitogenic effect of insulin and the insulin-like growth factors (IGFs). This sensitization is specific for estrogen and occurs at physiological concentrations of estradiol. Dose-response experiments with insulin, IGF-I, and IGF-II suggested that the sensitization is mediated through the type I IGF receptor. Binding experiments with 125I-IGF-I and hybridization of a type I IGF receptor probe to RNA showed that the levels of the type I IGF receptor and its mRNA are increased 7- and 6.5-fold, respectively, by estradiol. IGF-I and estradiol had similar synergistic effects on other estrogen-responsive breast cancer cell lines, but IGF-I alone increased the proliferation of the MDA MB-231 cell line which is not responsive to estrogens. These experiments suggest that an important mechanism by which estrogens stimulate the proliferation of hormone-dependent breast cancer cells involves sensitization to the proliferative effects of IGFs and that this may involve regulation of the type I IGF receptor.  相似文献   

14.
15.
16.
We previously reported stable transfection of estrogen receptor alpha (ERalpha) into the ER-negative MDA-MB-231 cells (S30) as a tool to examine the mechanism of action of estrogen and antiestrogens [J. Natl. Cancer Inst. 84 (1992) 580]. To examine the mechanism of ERbeta action directly, we have similarly created ERbeta stable transfectants in MDA-MB-231 cells. MDA-MB-231 cells were stably transfected with ERbeta cDNA and clones were screened by estrogen response element (ERE)-luciferase assay and ERbeta mRNA expression was quantified by real-time RT-PCR. Three stable MDA-MB-231/ERbeta clones were compared with S30 cells with respect to their growth properties, ability to activate ERE- and activating protein-1 (AP-1) luciferase reporter constructs, and the ability to activate the endogenous ER-regulated transforming growth factor alpha (TGFalpha) gene. ERbeta6 and ERbeta27 clones express 300-400-fold and the ERbeta41 clone express 1600-fold higher ERbeta mRNA levels compared with untransfected MDA-MB-231 cells. Unlike S30 cells, 17beta-estradiol (E2) does not inhibit ERbeta41 cell growth. ERE-luciferase activity is induced six-fold by E2 whereas neither 4-hydroxytamoxifen (4-OHT) nor ICI 182, 780 activated an AP-1-luciferase reporter. TGFalpha mRNA is induced in response to E2, but not in response to 4-OHT. MDA-MB-231/ERbeta clones exhibit distinct characteristics from S30 cells including growth properties and the ability to induce TGFalpha gene expression. Furthermore, ERbeta, at least in the context of the MDA-MB-231 cellular milieu, does not enhance AP-1 activity in the presence of antiestrogens. In summary, the availability of both ERalpha and ERbeta stable breast cancer cell lines now allows us to compare and contrast the long-term consequences of individual signal transduction pathways.  相似文献   

17.
18.
Both steroid hormones, such as estrogens and progestins acting via nuclear receptors, and growth factors, such as EGF, IGF-I and IGF-II acting via transmembrane receptors, are able to modulate the growth of human breast cancer cells. In addition to its anti-estrogenic action requiring estrogen receptor (ER) and leading to growth arrest, we have previously shown that the anti-hormone tamoxifen (Tam) is able to block EGF, insulin and IGF-I mitogenic activities in total absence of estrogens (BBRC, 146,1502,1987). This anti-growth factor activity is observe exclusively in ER + cells and is rescued by estradiol addition, thus suggesting that it is mediated by accessible ER sites. In the same culture conditions, progestins and anti-progestins do not display such an inhibition, whereas retinoic acid does, thus indicating that this anti-growth factor effect is not restricted to ER ligands. To progress in the understanding of this inhibition, we first analyzed how Tam could affect EGF and IGF-I binding in responsive cells. We have shown that Tam neither affects EGF and IGF-I binding to their respective receptors by direct competition nor modulates their affinities. However, our recent data suggest that Tam pretreatment (6 days) of MCF7 cells, which similarly prevents EGF and IGF-I mitogenic activities, results in opposite effects on the concentrations of their binding sites.

In conclusion, we propose that some steroid antagonists can inhibit not only the action of agonist ligands of the receptors they are binding to, but can also modulate the action of growth factors by decreasing their receptor concentrations or altering their functionalities.  相似文献   


19.
20.
The effect was studied of four different synthetic progestins (Org 30659, gestodene, 3-ketodesogestrel and levonorgestrel) on the proliferation of the 17 beta estradiol (E2)-dependent human breast cancer cell line MCF7. All progestins were found to stimulate proliferation, but only at high pharmacological dosages. Moreover, like estrogens the progestins at high concentrations synergistically stimulated MCF7 cell proliferation together with low concentrations of insulin. This stimulatory effect could be blocked by antiestrogens, but not by antiglucocorticoids and antiprogestins. This suggests that growth stimulation by these progestins (or their metabolites) occurs through crossreaction with the E2 receptor (ER). This is confirmed by the observation that the strong synthetic progestin Org 2058 does not stimulate proliferation. The absence of a progesterone receptor (PR)-mediated growth response seems not to be due to aberrant PR expression in these cells; 27,000 receptors (Kd 1.7 x 10(-10)M) per cell were present under growth-assay conditions. Growth stimulation by E2 in the absence or presence of insulin, is slightly inhibited or unaffected by the progestins, respectively. Our data do not support a role for the recently identified gestodene binding sites [Colletta et al., J. Steroid Biochem. 33 (1989) 1055-1061] in mediating gestodene effects on breast cancer cells: gestodene and 3-ketodesogestrel, a compound that does not bind to these gestodene binding sites, showed a similar biological activity. The effects of the progestins on the MCF7 breast cancer cell line, indicate that the use of these compounds at very high concentrations may be unfavourable, but do not support a role for them in directly stimulating breast tumor proliferation at the low progestin concentration which are reached in the serum in oral contraceptive users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号