首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisomal beta-oxidation proceeds from enoyl-CoA through D-3-hydroxyacyl-CoA to 3-ketoacyl-CoA by the D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxy-acyl-CoA dehydrogenase bifunctional protein (d-bifunctional protein), and the oxidation of bile-acid precursors also has been suggested as being catalyzed by the d-bifunctional protein. Because of the important roles of this protein, we reinvestigated two Japanese patients previously diagnosed as having enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase bifunctional protein (L-bifunctional protein) deficiency, in complementation studies. We found that both the protein and the enzyme activity of the d-bifunctional protein were hardly detectable in these patients but that the active L-bifunctional protein was present. The mRNA level in patient 1 was very low, and, for patient 2, mRNA was of a smaller size. Sequencing analysis of the cDNA revealed a 52-bp deletion in patient 1 and a 237-bp deletion in patient 2. This seems to be the first report of D-bifunctional protein deficiency. Patients previously diagnosed as cases of L-bifunctional protein deficiency probably should be reexamined for a possible d-bifunctional protein deficiency.  相似文献   

2.
3.
In 15%-20% of children with severe combined immunodeficiency (SCID), the underlying defect is adenosine deaminase (ADA) deficiency. The overall goal of our research has been to identify the precise molecular defects in patients with ADA-deficient SCID. In this study, we focused on a patient whom we found to have normal sized ADA mRNA by Northern analysis and an intact ADA structural gene by Southern analysis. By cloning and sequencing this patient's ADA cDNA, we found a C-to-T point mutation in exon 11. This resulted in the amino acid substitution of a valine for an alanine at position 329 of the ADA protein. Sequence analysis revealed that this mutation created a new BalI restriction site. Using Southern analyses, we were able to directly screen individuals to determine the frequency of this mutation. By combining data on eight families followed at our institution with data on five other families reported in the literature, we established that five of 13 patients (seven of 22 alleles) with known or suspected point mutations have this defect. This mutation was found to be associated with three different ADA haplotypes. This argues against a founder effect and suggests that the mutation is very old. In summary, a conservative amino acid substitution is found in a high proportion of patients with ADA deficiency; this can easily be detected by Southern analysis.  相似文献   

4.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial beta-oxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985A-->G, and a further 18% have this mutation in only one disease allele. In addition, a large number of rare disease-causing mutations have been identified and characterized. There is no clear genotype-phenotype correlation. High 985A-->G carrier frequencies in populations of European descent and the usual avoidance of recurrent disease episodes by patients diagnosed with MCAD deficiency who comply with a simple dietary treatment suggest that MCAD deficiency is a candidate in prospective screening of newborns. Therefore, several such screening programs employing analysis of acylcarnitines in blood spots by tandem mass spectrometry (MS/MS) are currently used worldwide. No validation of this method by mutation analysis has yet been reported. We investigated for MCAD mutations in newborns from US populations who had been identified by prospective MS/MS-based screening of 930,078 blood spots. An MCAD-deficiency frequency of 1/15,001 was observed. Our mutation analysis shows that the MS/MS-based method is excellent for detection of MCAD deficiency but that the frequency of the 985A-->G mutant allele in newborns with a positive acylcarnitine profile is much lower than that observed in clinically affected patients. Our identification of a new mutation, 199T-->C, which has never been observed in patients with clinically manifested disease but was present in a large proportion of the acylcarnitine-positive samples, may explain this skewed ratio. Overexpression experiments showed that this is a mild folding mutation that exhibits decreased levels of enzyme activity only under stringent conditions. A carrier frequency of 1/500 in the general population makes the 199T-->C mutation one of the three most prevalent mutations in the enzymes of fatty-acid oxidation.  相似文献   

5.
Mitochondrial trifunctional protein (TP) is an enzyme complex with three activities: enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. Studies on defects in this enzyme in patients with TP deficiency suggest that there are two types of defect. Patients in group 1 have normal amount of cross-reacting material by immunoblot and lack only long-chain 3-hydroxyacyl-CoA dehydrogenase activity. Patients in group 2 have a trace amount of cross-reacting material, with all three activities being low. We identified three patients in group 2, and analysis was made at the cDNA level. In patient 2, there was a heterozygous 71-bp deletion at position 110-180 in the alpha-subunit. In patients 1 and 3, there was an abnormal beta-subunit; patient 1 had an A-788-to-G substitution, and patient 3 had G-182-to-A and G-740-to-A substitutions in each of separate alleles. This is the first demonstration of disease-causing mutations in the beta-subunit. cDNA-expression experiments in patients' fibroblasts, using a vaccinia virus system, and gel filtration analysis, using patients' fibroblasts, revealed that the existence of both normal alpha- and beta-subunits, and possibly their association, are important for stabilizing TP and that A-788-to-G substitution on the beta-subunit in patient 1 seems to interfere with the association, the result being a rapid decomposition of TP.  相似文献   

6.
Only a single patient with 3-hydroxyisobutyryl-CoA hydrolase deficiency has been described in the literature, and the molecular basis of this inborn error of valine catabolism has remained unknown until now. Here, we present a second patient with 3-hydroxyisobutyryl-CoA hydrolase deficiency, who was identified through blood spot acylcarnitine analysis showing persistently increased levels of hydroxy-C(4)-carnitine. Both patients manifested hypotonia, poor feeding, motor delay, and subsequent neurological regression in infancy. Additional features in the newly identified patient included episodes of ketoacidosis and Leigh-like changes in the basal ganglia on a magnetic resonance imaging scan. In cultured skin fibroblasts from both patients, the 3-hydroxyisobutyryl-CoA hydrolase activity was deficient, and virtually no 3-hydroxyisobutyryl-CoA hydrolase protein could be detected by western blotting. Molecular analysis in both patients uncovered mutations in the HIBCH gene, including one missense mutation in a conserved part of the protein and two mutations affecting splicing. A carefully interpreted acylcarnitine profile will allow more patients with 3-hydroxyisobutyryl-CoA hydrolase deficiency to be diagnosed.  相似文献   

7.
Human pyruvate dehydrogenase (PDH)-complex deficiency is an inborn error of metabolism that is extremely heterogeneous in its presentation and clinical course. In a study of 14 patients (7 females and 7 males), we have found a mutation in the coding region of the E1 alpha gene in all 14 patients. Two female patients had the same 7-bp deletion at nt 927; another female patient had a 3-bp deletion at nt 931. Another female patient was found to have a deletion of exon 6 in her cDNA. Two other female patients were found to have insertions, one of 13 bp at nt 981 and one of 46 bp at nucleotide 1078. Two male patients were found to have a 4-bp insertion at nucleotide 1163. The remaining six patients all had missense mutations. A male patient and a female patient both had an A1133G mutation. The other missense mutations were C214T, C615A, and C787G (two patients). Five of these mutations are novel mutations, five have been previously reported in other patients, and two were published observations in other patients in an E1 alpha-mutation summary. In the four cases where parent DNA was available, only one mother was found to be a carrier of the same mutation as her child.  相似文献   

8.
D-bifunctional protein (DBP) deficiency is an autosomal recessive inborn error of peroxisomal fatty acid oxidation. The clinical presentation of DBP deficiency is usually very severe, but a few patients with a relatively mild presentation have been identified. In this article, we report the mutational spectrum of DBP deficiency on the basis of molecular analysis in 110 patients. We identified 61 different mutations by DBP cDNA analysis, 48 of which have not been reported previously. The predicted effects of the different disease-causing amino acid changes on protein structure were determined using the crystal structures of the (3R)-hydroxyacyl-coenzyme A (CoA) dehydrogenase unit of rat DBP and the 2-enoyl-CoA hydratase 2 unit and liganded sterol carrier protein 2-like unit of human DBP. The effects ranged from the replacement of catalytic amino acid residues or residues in direct contact with the substrate or cofactor to disturbances of protein folding or dimerization of the subunits. To study whether there is a genotype-phenotype correlation for DBP deficiency, these structure-based analyses were combined with extensive biochemical analyses of patient material (cultured skin fibroblasts and plasma) and available clinical information on the patients. We found that the effect of the mutations identified in patients with a relatively mild clinical and biochemical presentation was less detrimental to the protein structure than the effect of mutations identified in those with a very severe presentation. These results suggest that the amount of residual DBP activity correlates with the severity of the phenotype. From our data, we conclude that, on the basis of the predicted effect of the mutations on protein structure, a genotype-phenotype correlation exists for DBP deficiency.  相似文献   

9.
10.
The molecular defect in a reported case of isolated 17,20-lyase deficiency in a 46XY individual has been elucidated. The patient was found to be a compound heterozygote, carrying two different mutant alleles in the CYP17 gene. One allele contains a point mutation of arginine (CGC) to cysteine (TGC) at amino acid 496 in exon 8. The second allele contains a stop codon (TAG) in place of glutamine (CAG) at position 461 in exon 8 which is located 19 amino acids to the carboxy-terminal side of the P-450(17) alpha heme binding cysteine. COS-1 cells transfected with cDNAs containing one or the other of these mutations showed dramatically reduced 17 alpha-hydroxylase and 17,20-lyase activities relative to cells transfected with the wild type P-450(17) alpha cDNA. While the in vitro data in COS 1 cells can explain the patient's physical phenotype, with female external genitalia, it was somewhat discordant with the clinical expression of isolated 17,20-lyase deficiency with relative preservation of 17 alpha-hydroxylase activity in vivo. In addition to the expression studies of these two examples of mutants in the C-terminal region of cytochrome P-450(17) alpha, a third mutant cDNA construct containing a 4-base duplication at codon 480 previously found in patients with combined 17 alpha-hydroxylase/17,20-lyase deficiency was also expressed in COS-1 cells. This expressed protein was completely inactive with respect to both activities, supporting the biochemical findings in serum and in vitro biochemical data obtained using a testis from the patient. The results from these patients clearly indicate the importance of the C-terminal region of human P-450(17) alpha in its enzymatic activities.  相似文献   

11.
12.
3-Methylcrotonylglycinuria is an inborn error of leucine catabolism and has a recessive pattern of inheritance that results from the deficiency of 3-methylcrotonyl-CoA carboxylase (MCC). The introduction of tandem mass spectrometry in newborn screening has revealed an unexpectedly high incidence of this disorder, which, in certain areas, appears to be the most frequent organic aciduria. MCC, an heteromeric enzyme consisting of alpha (biotin-containing) and beta subunits, is the only one of the four biotin-dependent carboxylases known in humans that has genes that have not yet been characterized, precluding molecular studies of this disease. Here we report the characterization, at the genomic level and at the cDNA level, of both the MCCA gene and the MCCB gene, encoding the MCC alpha and MCC beta subunits, respectively. The 19-exon MCCA gene maps to 3q25-27 and encodes a 725-residue protein with a biotin attachment site; the 17-exon MCCB gene maps to 5q12-q13 and encodes a 563-residue polypeptide. We show that disease-causing mutations can be classified into two complementation groups, denoted "CGA" and "CGB." We detected two MCCA missense mutations in CGA patients, one of which leads to absence of biotinylated MCC alpha. Two MCCB missense mutations and one splicing defect mutation leading to early MCC beta truncation were found in CGB patients. A fourth MCCB mutation also leading to early MCC beta truncation was found in two nonclassified patients. A fungal model carrying an mccA null allele has been constructed and was used to demonstrate, in vivo, the involvement of MCC in leucine catabolism. These results establish that 3-methylcrotonylglycinuria results from loss-of-function mutations in the genes encoding the alpha and beta subunits of MCC and complete the genetic characterization of the four human biotin-dependent carboxylases.  相似文献   

13.
Patients affected with Refsum disease (RD) have elevated levels of phytanic acid due to a deficiency of the peroxisomal enzyme phytanoyl-CoA hydroxylase (PhyH). In most patients with RD, disease-causing mutations in the PHYH gene have been identified, but, in a subset, no mutations could be found, indicating that the condition is genetically heterogeneous. Linkage analysis of a few patients diagnosed with RD, but without mutations in PHYH, suggested a second locus on chromosome 6q22-24. This region includes the PEX7 gene, which codes for the peroxin 7 receptor protein required for peroxisomal import of proteins containing a peroxisomal targeting signal type 2. Mutations in PEX7 normally cause rhizomelic chondrodysplasia punctata type 1, a severe peroxisomal disorder. Biochemical analyses of the patients with RD revealed defects not only in phytanic acid alpha-oxidation but also in plasmalogen synthesis and peroxisomal thiolase. Furthermore, we identified mutations in the PEX7 gene. Our data show that mutations in the PEX7 gene may result in a broad clinical spectrum ranging from severe rhizomelic chondrodysplasia punctata to relatively mild RD and that clinical diagnosis of conditions involving retinitis pigmentosa, ataxia, and polyneuropathy may require a full screen of peroxisomal functions.  相似文献   

14.
Steroid sulfatase (STS) deficiency is the biochemical defect of X-linked ichthyosis (XLI), one of the most common X-linked disorders. We studied 57 European unrelated patients affected by STS deficiency. Twenty-eight patients were from Italy, 24 from the United Kingdom, 4 from The Netherlands, and 1 from Denmark. In two families XLI was associated with Kallmann syndrome (hypogonadotropic hypogonadism and anosmia). STS enzymatic activity was profoundly deficient in all cases. Direct DNA analysis, using cDNA and genomic probes from the STS gene and linked regions, demonstrated heterogeneity of the molecular defect. Forty-eight patients (84%) showed a deletion of the STS gene. In 44 cases the deletion also involved the STS flanking locus DXS237. In 1 patient a partial deletion of the STS gene was detected and in 9 patients no evidence of deletion was found. Locus DXS31 (probe M1A), previously mapped to Xp22.3-pter, was not deleted either in 24 patients with X-linked ichthyosis or in two families with X-linked ichthyosis associated with Kallmann syndrome. Consequently, the following loci order could be suggested: telomere--DXS31--(DXS237, STS)--Kallmann--centromere. Immunoblotting experiments, performed using anti-STS polyclonal antibodies, revealed the absence of cross-reacting material to STS in all cases tested, including 4 patients without evidence of deletions.  相似文献   

15.
The impact of point mutations in mitochondrial tRNA genes on the amount and stability of respiratory chain complexes and ATP synthase (OXPHOS) has been broadly characterized in cultured skin fibroblasts, skeletal muscle samples, and mitochondrial cybrids. However, less is known about how these mutations affect other tissues, especially the brain. We have compared OXPHOS protein deficiency patterns in skeletal muscle mitochondria of patients with Leigh (8363G>A), MERRF (8344A>G), and MELAS (3243A>G) syndromes. Both mutations that affect mt-tRNA(Lys) (8363G>A, 8344A>G) resulted in severe combined deficiency of complexes I and IV, compared to an isolated severe defect of complex I in the 3243A>G sample (mt-tRNA(LeuUUR). Furthermore, we compared obtained patterns with those found in the heart, frontal cortex, and liver of 8363G>A and 3243A>G patients. In the frontal cortex mitochondria of both patients, the patterns of OXPHOS deficiencies differed substantially from those observed in other tissues, and this difference was particularly striking for ATP synthase. Surprisingly, in the frontal cortex of the 3243A>G patient, whose ATP synthase level was below the detection limit, the assembly of complex IV, as inferred from 2D-PAGE immunoblotting, appeared to be hindered by some factor other than the availability of mtDNA-encoded subunits.  相似文献   

16.
Congenital disorders of glycosylation (CDG) are inherited autosomal-recessive diseases that impair N-glycosylation. Approximately 20% of patients do not survive beyond the age of 5 years old as a result of widespread organ dysfunction. Although most patients receive a CDG diagnosis based on abnormal glycosylation of transferrin, this test cannot provide a genetic diagnosis; indeed, many patients with abnormal transferrin do not have mutations in any known CDG genes. Here, we combined biochemical analysis with whole-exome sequencing (WES) to identify the genetic defect in an untyped CDG patient, and we found a 22 bp deletion and a missense mutation in DDOST, whose product is a component of the oligosaccharyltransferase complex that transfers the glycan chain from a lipid carrier to nascent proteins in the endoplasmic reticulum lumen. Biochemical analysis with three biomarkers revealed that N-glycosylation was decreased in the patient's fibroblasts. Complementation with wild-type-DDOST cDNA in patient fibroblasts restored glycosylation, indicating that the mutations were pathological. Our results highlight the power of combining WES and biochemical studies, including a glyco-complementation system, for identifying and confirming the defective gene in an untyped CDG patient. This approach will be very useful for uncovering other types of CDG as well.  相似文献   

17.
BACKGROUND/AIMS: Isolated aldosterone biosynthesis defect causing congenital hyperreninemic hypoaldosteronism with otherwise normal adrenal function usually results from aldosterone synthase deficiency. Patients present with manifestations of mineralocorticoid deficiency during the first weeks of life. The largest numbers of cases have been described in Iranian Jews, who carried concomitantly two homozygous missense mutations (R181W and V386A). In a few cases with presumed aldosterone synthase deficiency no mutations in CYP11B2 gene have been identified. We describe a molecular and endocrine evaluation of seven cases of congenital hyperreninemic hypoaldosteronism in Israel. PATIENTS/METHODS: Two of the six Jewish patients are of Iranian origin. The parents of five other patients originated from Yemen, Syria and Morocco. One patient is a Muslim-Arab. CYP11B2's exons, exon-intron boundaries and promoter region were sequenced by multiple PCR amplifications. Gene size determination was performed either by long-range PCR or by Southern blot analysis. RESULTS: Only two patients (Iranian Jews) carried a known homozygous R181W, V386A mutations, other two were compound heterozygotes for either the R181W or V386A and one additional novel amino acid substitution (A319V or D335G), and one patient was found to be a carrier of the two novel variations (A319V and D335G). We could not find a molecular defect in 2 patients: one was a carrier of the D335G mutation and the other had no detectable molecular change in the coding and promoter regions. CONCLUSION: The genetic and molecular basis of congenital hyperreninemic hypoaldosteronism is more heterogeneous than previously described. The significance of amino acid substitutions identified in this study remains to be determined.  相似文献   

18.
Steroid 21-hydroxylase deficiency is the most common enzymatic defect causing congenital adrenal hyperplasia, an inherited disorder of cortisol biosynthesis. All mutations thus far characterized that cause this disorder appear to result from recombinations between the gene encoding the enzyme, CYP21B (CYP21), and the adjacent pseudogene, CYP21A (CYP21P). These are either deletions caused by unequal crossing-over during meiosis or apparent transfers of deleterious sequences from CYP21A to CYP21B, a phenomenon termed gene conversion. However, a small percentage of alleles do not carry such a mutation. We analyzed DNA from a patient with the mild, nonclassic form of 21-hydroxylase deficiency, who carried one allele that had no gene conversions detectable by hybridization with oligonucleotide probes. Sequence analysis revealed that this allele carried two missense mutations, R339H and P453S, neither of which has been previously observed in CYP21A or CYP21B. Each of these mutations was introduced into CYP21 cDNA which was then expressed in COS1 cells using a vaccinia virus system. Each mutation reduced the ability of the enzyme to 21-hydroxylate 17-hydroxyprogesterone to 50% of normal and the ability to metabolize progesterone to 20% of normal. Thus, each of these mutations represents a potential nonclassic 21-hydroxylase deficiency allele that is not the result of an apparent gene conversion.  相似文献   

19.
In this report, we reinvestigate the only patient ever reported with a deficiency of peroxisomal 3-ketoacyl-CoA thiolase (THIO). At the time when they were described, the abnormalities in this patient, which included accumulation of very-long-chain fatty acids and the bile-acid intermediate trihydroxycholestanoic acid, were believed to be the logical consequence of a deficiency of the peroxisomal beta-oxidation enzyme THIO. In light of the current knowledge of the peroxisomal beta-oxidation system, however, the reported biochemical aberrations can no longer be explained by a deficiency of this thiolase. In this study, we show that the true defect in this patient is at the level of d-bifunctional protein (DBP). Immunoblot analysis revealed the absence of DBP in postmortem brain of the patient, whereas THIO was normally present. In addition, we found that the patient had a homozygous deletion of part of exon 3 and intron 3 of the DBP gene, resulting in skipping of exon 3 at the cDNA level. Our findings imply that the group of single-peroxisomal beta-oxidation-enzyme deficiencies is limited to straight-chain acyl-CoA oxidase, DBP, and alpha-methylacyl-CoA racemase deficiency and that there is no longer evidence for the existence of THIO deficiency as a distinct clinical entity.  相似文献   

20.
Porphobilinogen deaminase (PBGD) is a key enzyme of the heme biosynthetic pathway. Defects in the PBGD gene lead to an autosomal dominant disease, acute intermittent porphyria (AIP). Almost all AIP patients with rare exceptions are heterozygous for the defective gene. To date, at least 160 different mutations causing AIP are identified. Extensive investigations along this line are conducted in many countries of the world. In Russia these studies had not been hitherto performed. Here we report the results of molecular genetic examination of four Russian patients with AIP diagnosed from clinical symptoms. By direct sequencing of the PBGD gene or the corresponding cDNA, we have detected four mutations, three of which were not previously encountered in the world population. These are TAAG deletion in intron 7 between positions +2 and +5 (IVS7 2–5 delTAAG); T deletion in the initiation codon ATG of exon 3, and the G for C replacement at position –1 of intron 5 (IVS5 as –1 G–C), which disrupts splicing. In addition, in one female patient, a known deletion CT in codon 68 was revealed. In two patients, expression of PBGD gene alleles was significantly disproportional, so that normal mRNA prevailed in one case and mutant mRNA of nonerythroid type in the other. Deletion in intron 7 was easily detectable due to the formation of a heteroduplex fragment with abnormal electrophoretic mobility directly in PCR. This simple heteroduplex analysis allowed us to exclude AIP carriage in son and daughter of a female patient with the genetic defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号