首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Kinetic and equilibrium studies of the folding and unfolding of the SH3 domain of the PI3 kinase, have been used to identify a folding intermediate that forms after the rate-limiting step on the folding pathway. Folding and unfolding, in urea as well as in guanidine hydrochloride (GdnHCl), were studied by monitoring changes in the intrinsic fluorescence or in the far-UV circular dichroism (CD) of the protein. The two probes yield non-coincident equilibrium transitions for unfolding in urea, indicating that an intermediate, I, exists in equilibrium with native (N) and unfolded (U) protein, during unfolding. Hence, the equilibrium unfolding data were analyzed according to a three-state N ↔ I ↔ U mechanism. An intermediate is observed also in kinetic unfolding studies, and its presence leads to the unfolding reaction in urea as well as in GdnHCl, occurring in two steps. The fast step is complete within the initial 11 ms of unfolding and manifests itself in a burst phase change in fluorescence. At high concentrations of GdnHCl, the entire change in fluorescence during unfolding occurs during the 11 ms burst phase. CD measurements indicate, however, that I retains N-like secondary structure. An analysis of the kinetic and thermodynamic data, according to a minimal three-state N ↔ I ↔ U mechanism, positions I after the rate-limiting transition state, TS1, of folding, on the reaction coordinate of folding in GdnHCl. Hence, I is not revealed when folding is commenced from U, regardless of the nature of the probe used to follow the folding reaction. Interrupted unfolding experiments, in which the protein is unfolded transiently in GdnHCl for various lengths of time before being refolded, showed that I refolds to N much faster than does U, confirms the analysis of the direct folding and unfolding experiments, that I is formed after the rate-limiting step of refolding in GdnHCl.  相似文献   

2.
The N-terminal fragment 1-29 of horse heart apomyoglobin (apoMb(1-29)) is highly prone to form amyloid-like fibrils at low pH. Fibrillogenesis at pH 2.0 occurs following a nucleation-dependent growth mechanism, as evidenced by the thioflavin T (ThT) assay. Transmission electron microscopy (TEM) confirms the presence of regular amyloid-like fibrils and far-UV circular dichroism (CD) spectra indicate the acquisition of a high content of beta-sheet structure. ThT assay, TEM and CD highlight fast and complete disaggregation of the fibrils, if the pH of a suspension of mature fibrils is increased to 8.3. It is of interest that amyloid-like fibrils form again if the pH of the solution is brought back to 2.0. While apoMb(1-29) fibrils obtained at pH 2.0 are resistant to proteolysis by pepsin, the disaggregated fibrils are easily cleaved at pH 8.3 by trypsin and V8 protease, and some of the resulting fragments aggregate very quickly in the proteolysis mixture, forming amyloid-like fibrils. We show that the increase of amyloidogenicity of apoMb(1-29) following acidification or proteolysis at pH 8.3 can be attributed to the decrease of the peptide net charge following these alterations. The results observed here for apoMb(1-29) provide an experimental basis for explaining the effect of charge and pH on amyloid fibril formation by both unfolded and folded protein systems.  相似文献   

3.
Fibril fragmentation is considered to be an essential step in prion replication. Recent studies have revealed a strong correlation between the incubation period to prion disease and conformational stability of synthetic prions. To gain insight into the molecular mechanism that accounts for this correlation, we proposed that the conformational stability of prion fibrils controls their intrinsic fragility or the size of the smallest possible fibrillar fragments. Using amyloid fibrils produced from full-length mammalian prion protein under three growth conditions, we found a correlation between conformational stability and the smallest possible fragment sizes. Specifically, the fibrils that were conformationally less stable were found to produce shorter pieces upon fragmentation. Site-specific denaturation experiments revealed that the fibril conformational stability was controlled by the region that acquires a cross-β-sheet structure. Using atomic force microscopy imaging, we found that fibril fragmentation occurred in both directions—perpendicular to and along the fibrillar axis. Two mechanisms of fibril fragmentation were identified: (i) fragmentation caused by small heat shock proteins, including αB-crystallin, and (ii) fragmentation due to mechanical stress arising from adhesion of the fibril to a surface. This study provides new mechanistic insight into the prion replication mechanism and offers a plausible explanation for the correlation between conformational stability of synthetic prions and incubation time to prion disease.  相似文献   

4.
The formation of amyloid fibrils and other polypeptide aggregates depends strongly on the physico-chemical environment. One such factor affecting aggregation is the presence and concentration of salt ions. We have examined the effects of salt ions on the aggregation propensity of Alzheimer's Abeta(1-40) peptide and on the structure of the dissolved and of the fibrillar peptide. All salts examined promote aggregation strongly. The most pronounced effect is seen within the cationic series, i.e. for MgCl2. Evaluation of different possible explanations suggests that Abeta(1-40) aggregation depends on direct interaction between ions and Abeta(1-40) peptide, and correlates with ion-induced changes of the surface tension. Salts have profound effects on the fibril structure. In the presence of salts, fibrils are associated with smaller diameters, narrower crossover distances and lower amide I maxima. Since Abeta(1-40) aggregation responds to salts in a manner unlike that for other polypeptides, such as glucagon, beta2-microglobulin or alpha-synuclein; these data argue that there is no fully uniform way in which salts affect aggregation of different polypeptide chains. These observations are important for understanding and predicting aggregation on the basis of simple physico-chemical properties.  相似文献   

5.
The newly established hyphenated instrumentation of LC/DAD/SPE/NMR and LC/UV/(ESI)MS techniques have been applied for separation and structure verification of the major known constituents present in Greek Hypericum perforatum extracts. The chromatographic separation was performed on a C18 column. Acetonitrile-water was used as a mobile phase. For the on-line NMR detection, the analytes eluted from column were trapped one by one onto separate SPE cartridges, and hereafter transported into the NMR flow-cell. LC/DAD/SPE/NMR and LC/UV/MS allowed the characterization of constituents of Greek H. perforatum, mainly naphtodianthrones (hypericin, pseudohypericin, protohypericin, protopseudohypericin), phloroglucinols (hyperforin, adhyperforin), flavonoids (quercetin, quercitrin, isoquercitrin, hyperoside, astilbin, miquelianin, I3,II8-biapigenin) and phenolic acids (chlorogenic acid, 3-O-coumaroylquinic acid). Two phloroglucinols (hyperfirin and adhyperfirin) were detected for the first time, which have been previously reported to be precursors in the biosynthesis of hyperforin and adhyperforin.  相似文献   

6.
Elucidation of the structure of scrapie prion protein (PrPSc), essential to understand the molecular mechanism of prion transmission, continues to be one of the major challenges in prion research and is hampered by the insolubility and polymeric character of PrPSc. Limited proteolysis is a useful tool to obtain insight on structural features of proteins: proteolytic enzymes cleave proteins more readily at exposed sites, preferentially within loops, and rarely in β-strands. We treated PrPSc isolated from brains of hamsters infected with 263K and drowsy prions with varying concentrations of proteinase K (PK). After PK deactivation, PrPSc was denatured, reduced, and cleaved at Cys179 with 2-nitro-5-thiocyanatobenzoic acid. Fragments were analyzed by nano-HPLC/mass spectrometry and matrix-assisted laser desorption/ionization. Besides the known cleavages at positions 90, 86, and 92 for 263K prions and at positions 86, 90, 92, 98, and 101 for drowsy prions, our data clearly demonstrate the existence of additional cleavage sites at more internal positions, including 117, 119, 135, 139, 142, and 154 in both strains. PK concentration dependence analysis and limited proteolysis after partial unfolding of PrPSc confirmed that only the mentioned cleavage sites at the N-terminal side of the PrPSc are susceptible to PK. Our results indicate that besides the “classic” amino-terminal PK cleavage points, PrPSc contains, in its middle core, regions that show some degree of susceptibility to proteases and must therefore correspond to subdomains with some degree of structural flexibility, interspersed with stretches of amino acids of high resistance to proteases. These results are compatible with a structure consisting of short β-sheet stretches connected by loops and turns.  相似文献   

7.
Prion diseases are infectious fatal neurodegenerative diseases including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. The misfolding and conversion of cellular PrP in such mammals into pathogenic PrP is believed to be the key procedure. Rabbits are among the few mammalian species that exhibit resistance to prion diseases, but little is known about the molecular mechanism underlying such resistance. Here, we report that the crowding agents Ficoll 70 and dextran 70 have different effects on fibrillization of the recombinant full-length PrPs from different species: although these agents dramatically promote fibril formation of the proteins from human and cow, they significantly inhibit fibrillization of the rabbit protein by stabilizing its native state. We also find that fibrils formed by the rabbit protein contain less β-sheet structure and more α-helix structure than those formed by the proteins from human and cow. In addition, amyloid fibrils formed by the rabbit protein do not generate a proteinase K-resistant fragment of 15–16-kDa, but those formed by the proteins from human and cow generate such proteinase K-resistant fragments. Together, these results suggest that the strong inhibition of fibrillization of the rabbit PrP by the crowded physiological environment and the absence of such a protease-resistant fragment for the rabbit protein could be two of the reasons why rabbits are resistant to prion diseases.  相似文献   

8.
Shaikh FA  Müllegger J  He S  Withers SG 《FEBS letters》2007,581(13):2441-2446
The mechanism-based inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro-beta-d-galactopyranoside (DNP2FGal) was used to inactivate the Family 42 beta-galactosidase (YesZ) from Bacillus subtilis via the trapping of a glycosyl-enzyme intermediate, thereby tagging the catalytic nucleophile in the active site. Proteolytic digestion of the inactivated enzyme and of a control sample of unlabeled enzyme, followed by comparative high-performance liquid chromatography and mass spectrometric analysis identified a labelled peptide of the sequence ETSPSYAASL. These data, combined with sequence alignments of this region with representative members of Family 42, unequivocally identify the catalytic nucleophile in this enzyme as Glu-295, thereby providing the first direct experimental proof of the identity of this residue within Family 42.  相似文献   

9.
Dihydropyrimidinase is involved in the reductive pathway of pyrimidine degradation, catalysing the reversible hydrolysis of the cyclic amide bond (–CO–NH–) of 5,6-dihydrouracil and 5,6-dihydrothymine to the corresponding N-carbamoyl-β-amino acids. This enzyme is an attractive candidate for commercial production of D-amino acids, which are used in the production of semi-synthetic β-lactams, antiviral agents, artificial sweeteners, peptide hormones and pesticides. We have obtained the crystal structure of the dihydropyrimidinase from Sinorhizobium meliloti (SmelDhp) in the presence of zinc ions, but we have not been able to obtain good diffracting crystals in its absence. Then, the role of the ion in the structure of the protein, and in its stability, remains to be elucidated. In this work, the stability and the structure of SmelDhp have been studied in the absence and in the presence of zinc. In its absence, the protein acquired a tetrameric functional structure at pH ∼ 6.0, which is stable up to pH ∼ 9.0, as concluded from fluorescence and CD. Chemical-denaturation occurred via a monomeric intermediate with non-native structure. The addition of zinc caused: (i) an increase of the helical structure, and changes in the environment of aromatic residues; and, (ii) a higher thermal stability. However, chemical-denaturation still occurred through a monomeric intermediate. This is the first hydantoinase whose changes in the stability and in the secondary structure upon addition of zinc are described and explained, and one of the few examples where the zinc exclusively alters the secondary helical structure and the environment of some aromatic residues in the protein, leaving unchanged the quaternary structure.  相似文献   

10.
Sulfolobus solfataricus 5′-deoxy-5′-melthylthioadenosine phosphorylase II (SsMTAPII), is a hyperthermophilic hexameric protein with two intrasubunit disulfide bonds (C138–C205 and C200–C262) and a CXC motif (C259–C261). To get information on the role played by these covalent links in stability and folding, the conformational stability of SsMTAPII and C262S and C259S/C261S mutants was studied by thermal and guanidinium chloride (GdmCl)-induced unfolding and analyzed by fluorescence spectroscopy, circular dichroism, and SDS-PAGE. No thermal unfolding transition of SsMTAPII can be obtained under nonreducing conditions, while in the presence of the reducing agent Tris-(2-carboxyethyl) phosphine (TCEP), a Tm of 100 °C can be measured demonstrating the involvement of disulfide bridges in enzyme thermostability. Different from the wild-type, C262S and C259S/C261S show complete thermal denaturation curves with sigmoidal transitions centered at 102 °C and 99 °C respectively. Under reducing conditions these values decrease by 4 °C and 8 °C respectively, highlighting the important role exerted by the CXC disulfide on enzyme thermostability. The contribution of disulfide bonds to the conformational stability of SsMTAPII was further assessed by GdmCl-induced unfolding experiments carried out under reducing and nonreducing conditions. Thermal unfolding was found to be reversible if the protein was heated in the presence of TCEP up to 90 °C but irreversible above this temperature because of aggregation. In analogy, only chemical unfolding carried out in the presence of reducing agents resulted in a reversible process suggesting that disulfide bonds play a role in enzyme denaturation. Thermal and chemical unfolding of SsMTAPII occur with dissociation of the native hexameric state into denatured monomers, as indicated by SDS-PAGE.  相似文献   

11.
Human synovial fluid (SF) provides nutrition and lubrication to the articular cartilage. Particularly in arthritic diseases, SF is extensively accumulating in the synovial junction. During the last decade lipids have attracted considerable attention as their role in the development and resolution of diseases became increasingly recognized. Here, we describe a capillary LC–MS/MS screening platform that was used for the untargeted screening of lipids present in human SF of rheumatoid arthritis (RA) patients. Using this platform we give a detailed overview of the lipids and lipid‐derived mediators present in the SF of RA patients. Almost 70 different lipid components from distinct lipid classes were identified and quantification was achieved for the lysophosphatidylcholine and phosphatidylcholine species. In addition, we describe a targeted LC–MS/MS lipid mediator metabolomics strategy for the detection, identification and quantification of maresin 1, lipoxin A4 and resolvin D5 in SF from RA patients. Additionally, we present the identification of 5S,12S-diHETE as a major marker of lipoxygenase pathway interactions in the investigated SF samples. These results are the first to provide a comprehensive approach to the identification and profiling of lipids and lipid mediators present in SF and to describe the presence of key anti-inflammatory and pro-resolving lipid mediators identified in SF from RA patients.  相似文献   

12.
Human Meibomian gland secretions (MGS) are a complex mixture of diverse lipids that are produced by Meibomian glands that are located in the upper and the lower eyelids. During blinking, MGS are excreted onto the ocular surface, spread and mix with aqueous tears that are produced by lachrymal glands, and form an outermost part of an ocular structure called “the tear film” (TF). The main physiological role of TF is to protect delicate ocular structures (such as cornea and conjunctiva) from desiccating. Lipids that are produced by Meibomian glands are believed to “seal” the aqueous portion of TF by creating a hydrophobic barrier and, thus, retard evaporation of water from the ocular surface, which enhances the protective properties of TF. As lipids of MGS are interacting with underlying aqueous sublayer of TF, the chemical composition of MGS is critical for maintaining the overall stability of TF. There is a consensus that a small, but important part of Meibomian lipids, namely polar, or amphiphilic lipids, is of especial importance as it forms an intermediate layer between the aqueous layer of TF and its upper (and much thicker) lipid layer formed mostly of very nonpolar lipids, such as wax esters and cholesteryl esters. The purpose of this review is to summarize the current knowledge on the lipidomics of human MGS, including the discussions of the most effective modern analytical techniques, chemical composition of MGS, biophysical properties of Meibomian lipid films, and their relevance for the physiology of TF. Previously published results obtained in numerous laboratories, as well as novel data generated in the author’s laboratory, are discussed. It is concluded that despite a substantial progress in the area of Meibomian glands lipidomics, there are large areas of uncertainty that need to be addressed in future experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号