首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data on the effects of magnesium-zinc-calcium-vitamin D co-supplementation on hormonal profiles, biomarkers of inflammation, and oxidative stress among women with polycystic ovary syndrome (PCOS) are scarce. The objective of this study was to assess the effects of magnesium-zinc-calcium-vitamin D co-supplementation on hormonal profiles, biomarkers of inflammation, and oxidative stress in women with PCOS. Sixty PCOS women were randomized into two groups and treated with 100 mg magnesium, 4 mg zinc, 400 mg calcium plus 200 IU vitamin D supplements (n = 30), or placebo (n = 30) twice a day for 12 weeks. Hormonal profiles, biomarkers of inflammation, and oxidative stress were assessed at baseline and at end-of-treatment. After the 12-week intervention, compared with the placebo, magnesium-zinc-calcium-vitamin D co-supplementation resulted in significant reductions in hirsutism (?2.4 ± 1.2 vs. ?0.1 ± 0.4, P < 0.001), serum high sensitivity C-reactive protein (?0.7 ± 0.8 vs. +0.2 ± 1.8 mg/L, P < 0.001), and plasma malondialdehyde (?0.4 ± 0.3 vs. +0.2 ± 1.0 μmol/L, P = 0.01), and a significant increase in plasma total antioxidant capacity concentrations (+46.6 ± 66.5 vs. ?7.7 ± 130.1 mmol/L, P = 0.04). We failed to find any significant effect of magnesium-zinc-calcium-vitamin D co-supplementation on free androgen index, and other biomarkers of inflammation and oxidative stress. Overall, magnesium-zinc-calcium-vitamin D co-supplementation for 12 weeks among PCOS women had beneficial effects on hormonal profiles, biomarkers of inflammation, and oxidative stress.  相似文献   

2.
The mineral levels in maternal serum change during pregnancy and may be correlated with those of newborn cord blood. The aim of this study was to evaluate the concentrations of calcium (Ca), magnesium (Mg), zinc (Zn), iron (Fe), and copper (Cu) in maternal blood before and after delivery and in umbilical cord vein and artery serum. The study was carried out in 64 Caucasian pregnant women who delivered in a district hospital in Greater Poland region, aged 28.1 ± 5.4 years, with a mean gestational age of 39.2 ± 1.3 weeks. Blood samples were taken from women 2–8 h before delivery and immediately after childbirth. The umbilical cord artery and vein blood of newborns was obtained immediately after childbirth. The levels of minerals in serum were determined by flame atomic absorption spectrometry. A significant drop in the concentrations of Mg (17.71 ± 1.51 vs 17.07 ± 1.61 μg/ml; p < 0.007), Fe (1.08 ± 0.46 vs 0.82 ± 0.35 μg/ml; p < 0.0004), and Zn (0.63 ± 0.17 vs 0.46 ± 0.16; p < 0.0001) in maternal serum was found after delivery. Moreover, higher levels of Ca, Fe, and Zn and lower levels of Cu were observed in the umbilical vein (Ca: 102.80 ± 7.80 μg/ml; p < 0.0001, Fe: 1.96 ± 0.43 μg/ml; p < 0.0001, Zn: 0.65 ± 0.16 μg/ml; p < 0.0001, Cu: 0.36 ± 0.09 μg/ml; p < 0.0001) and in the umbilical artery cord blood (Ca: 98.07 ± 8.18 μg/ml; p < 0.0001, Fe: 1.63 ± 0.30 μg/ml; p < 0.0001, Zn: 0.65 ± 0.15 μg/ml; p < 0.0001, and Cu: 0.36 ± 0.10 μg/ml; p < 0.0001) compared to the maternal serum (Ca: 85.05 ± 10.76 μg/ml, Fe: 0.82 ± 0.35 μg/ml, Zn: 0.46 ± 0.16 μg/ml, and Cu: 1.90 ± 0.35 μg/ml). Fe levels in the cord artery serum negatively correlated with blood loss during delivery (R = ?0.48; p = 0.01), while the Ca concentration in the maternal serum after birth decreased with the age of the women (R = ?0.25; p = 0.03). In conclusion, it seems that the process of birth alters the mineral levels in pregnant women’s blood. Moreover, it was found that blood loss and the age of the mother are associated with mineral concentrations in the maternal serum and cord artery blood.  相似文献   

3.
BackgroundSelenium (Se) plays an important role in human health, yet Se overexposure or deficiency can lead to deleterious health effects. This study aims to determine the concentration of Se in drinking water and staple cereal grain (maize, wheat, and teff) samples from the Main Ethiopian Rift (MER) Valley, and correspondingly, assesses Se biomarkers and their status as measured in the urine and fingernails of 230 individuals living in 25 MER communities.MethodThe concentration of Se in drinking water and cereal grain (maize, wheat, and teff) samples, and urine and fingernail samples were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Demographic, anthropometric, and elemental concentrations were described by their quartiles and mean ± standard deviations. The 5th and 95th percentiles were used to describe the concentrations Se biomarkers ranges. The Se biomarker distributions in different study communities were further characterized according to Se levels found in drinking water, sex, and age using ANOVA, and multivariate regression. We conducted a correlation analysis (with Pearson correlation coefficient) and fitted a regression to evaluate the associations between these variables.ResultsThe mean concentration of Se in the drinking water samples was 0.66 (range: 0.015–2.64 µg/L; n = 25), and all samples were below the threshold value of 10 μg/L for Se in drinking water set by the World Health Organiation (WHO). In Ethiopia, most rural communities rely on locally produced cereal grains. We found mean Se concentrations (µg/kg) of 357 ± 190 (n = 14), 289 ± 123 (n = 14), and 145 ± 100 (n = 14) in wheat, teff, and maize, respectively. Furthermore, Se concentrations in drinking water showed no significant correlation with biomarker measures, indicating that the primary source of dietary Se is likely from local foods including staple grains. The mean±SD (5th–95th percentiles) of Se concentrations in fingernails and urine among study subjects were 1022 ± 320 (624–1551 µg/kg), and 38 ± 30 (1.9–100 µg/L), respectively.ConclusionA sizeable share of study participants (31%) fell below the lower limits of what is considered the currently accepted Se range of 20–90 µg/L in urine, though relatively few (only 4%) had similarly low fingernail levels. On the other hand, none of the samples reached Se toxicity levels, and the biomarker levels in this study are comparable to results from other studies that find adequate Se. Our results show that Se toxicity or deficiency is unlikely in the study population.  相似文献   

4.

Background

Meconium fatty acid ethyl esters (FAEE) constitute a biomarker of heavy fetal ethanol exposure. Our objective was to measure meconium FAEE in fetal sheep following daily, relatively moderate-dose ethanol exposure in late gestation, and to evaluate their utility in identifying fetal organ-system injury.

Methods

Pregnant ewes received ethanol (0.75 g/kg; n = 14) or saline (n = 8) via 1-h IV infusion daily during the third trimester equivalent, while additional pregnant sheep served as untreated controls (n = 6). The daily ethanol regimen produced similar maximal maternal and fetal plasma ethanol concentrations of 0.11–0.12 g/dL. Ewes and fetuses were euthanized shortly before term, and meconium was collected and analyzed for FAEE (ethyl palmitate, stearate, linoleate, and oleate).

Results

Meconium total FAEE concentration was significantly higher in ethanol-exposed fetuses compared with controls, and a positive cut-off of 0.0285 nmol total FAEE/g meconium had 93.3% sensitivity and specificity for detecting fetal ethanol exposure. When the studied animals (ethanol-exposed and controls) were classified according to meconium FAEE concentration, FAEE-positive and FAEE-negative groups frequently differed with respect to previously examined pathological endpoints, including nephron endowment, lung collagen deposition, cardiomyocyte maturation, and tropoelastin gene expression in cerebral vessels. Furthermore, in all studied animals as a group (ethanol-exposed and controls combined), meconium FAEE concentration was correlated with many of these pathological endpoints in fetal organs.

Conclusions

We conclude that, in fetal sheep, meconium FAEE could serve as a biomarker of daily ethanol exposure in late gestation and could identify fetuses with subtle ethanol-induced toxic effects in various organs. This study illustrates the potential for using meconium FAEE to identify neonates at risk for dysfunction of major organs following in-utero ethanol exposure that does not result in overt physical signs of ethanol teratogenicity.  相似文献   

5.
《Biomarkers》2013,18(1):95-101
Background/Aim: The early detection of acute kidney injury (AKI) may be become possible by several promising early biomarkers which may facilitate the early detection, differentiation and prognosis prediction of AKI. In this study, we investigated the value of urinary liver-type fatty acid-binding protein (L-FABP), neutrophil gelatinase-associated lipocalin (NGAL) and their combination in predicting the occurrence and the severity of AKI following cardiac surgery.

Methods: We prospectively followed 109 patients undergoing open heart surgery and identified 26 that developed AKI, defined as an increase in serum creatinine of ≥0.3?mg/dl or ≥150% of baseline creatinine. Serum creatinine (SCr), urinary L-FABP, and NGAL corrected by urine creatinine were tested pre-operation, at 0 hour and 2 hours post-operation. Each marker was assessed at each time point between patients with and without AKI. Receiver operating characteristic (ROC) curves and area under curves (AUC) were used to evaluate the diagnostic accuracy of urinary L-FABP, NGAL and their combination for predicting AKI.

Results: Patients were aged 63.0?±?11.3 years, 66.1% were male and baseline SCr was 70.5?±?19.1 umol/L. Of 109 patients, 26(23.9%) developed AKI (AKIN stage I, II and III were 46.2%, 34.6% and 19.2% separately). The levels of urinary L-FABP and NGAL were significantly higher in AKI patients than non-AKI patients at 0 hour and 2 hours postoperative. AUCs for L-FABP was 0.844 (sensitivity (ST) 0.846, specificity (SP) 0.819, cut-off (CO) 2226.50 μg/g Ucr) at 0 hours and 0.832 at 2 hours (ST 0.808, SP 0.747, CO 673.09 μg/g Ucr) while 0.866 for NGAL at 0 hours (ST 0.769, SP 0.819, CO 131.12 μg/g Ucr) and 0.871 at 2 hours (ST 0.808, SP 0.831, CO 33.73 μg/g Ucr) to predict AKI occurrence. Using a combination of L-FABP and NGAL analyzed at the same timepoint as above, we were able to obtain an AUC of 0.911–0.927, p < 0.001. Similar AUCs of 0.81–0.87 were found to predict AKI stage II–III.

Conclusions: Urinary L-FABP and NGAL increased at an early stage after cardiac surgery. The combination of the two biomarkers enhanced the accuracy of the early detection of postoperative AKI after cardiac surgery before a rise in SCr.  相似文献   

6.
Nitric Oxide (NO) plays an important role in iron redistribution during exercise, while its molecular regulatory mechanism is still not clear. Our present studies were to investigate the effects of NO on iron metabolism and to elucidate the regulatory mechanism of iron transport in skeletal muscle both in vivo and in vitro. One group of male Wistar rats (300 ± 10 g) were subjected to an exercise of 30 min on a treadmill for 5 weeks (exercise group, EG, 6 rats) and the other one was placed on the treadmill without running (control group, CG, 6 rats). The cultured L6 rat skeletal muscle cells were treated with either 0.5 mM SNAP (NO donor) or not for 24 h, and their iron release and intake amount were examined by measuring radiolabelled 55Fe. The results showed: (1) The NO content (CG, 1.09 ± 0.18 μmol/g vs. EG, 1.49 ± 0.17 μmol/g) and non-heme iron in gastrocnemius (CG, 118.35 ± 11.41 μg/g vs. EG, 216.65 ± 11.10 μg/g) of EG were significantly increased compared with CG. (2) The expression of DMT1 (IRE) and TfR1 of EG was increased. (3) The iron intake was increased in L6 cells treated with SNAP (P < 0.01). (4) Western blot results showed the protein level of both TfR1 and DMT1 (IRE) in SNAP cells were up-regulated, while the expression of FPN1 was down-regulated (P < 0.05). The data suggested that the induced elevation of NO level by exercise lead to the up-regulation of both TfR1 and DMT1 (IRE), which in turn increasing the iron absorption in skeletal muscle.  相似文献   

7.
The objective of the present study is to calculate linear regressions between a mother and her child with respect to their selenium concentration (ng/g) in the following traits: maternal blood and umbilical cord blood, maternal and child hair, maternal milk and child umbilical cord blood, maternal milk and meconium, maternal blood plasma, and child meconium. The data were collected at Research Hospital of the University of Yüzüncü Yıl from 30 pairs of mothers and their newborn baby. The mean maternal serum Se level in 30 mothers was 68.52 ± 3.57 ng/g and cord plasma level was 119.90 ± 18.08 ng/g. The Se concentration in maternal and neonatal hair was 330.84 ± 39.03 and 1,124.76 ± 186.84 ng/g, respectively. The Se concentration of maternal milk at day 14 after delivery was determined as 68.63 ± 7.78 ng/g (n = 13) and the concentration of Se was 418.90 ± 45.49 ng/g (n = 22) for meconium of neonatal. There was no significant difference between maternal blood and milk Se levels. However, hair Se concentration was significantly higher than milk and maternal blood Se level. For each trait comparison, the average absolute difference in log10-transformed Se concentration was calculated between a mother and her child. The observed average absolute difference was compared with a test distribution of 1,000 resampled bootstrap averages where the number of samples was maintained but the relationship between a mother and her child was randomized among samples (α = 0.05).  相似文献   

8.
The aims of this study were to determine the effect of breast milk zinc, copper, and iron concentrations on infants’ growth and their possible correlations with maternal dietary intake. Milk samples and information on food intake were collected from 182 lactating women. Concentrations of zinc, copper, and iron in milk were analyzed using atomic absorption spectrophotometry. The infant’s weight for age Z-score (WAZ) and height for age Z-score (HAZ) were calculated. The mean milk zinc, copper, and iron concentrations were 1.85?±?0.5, 0.53?±?0.3, and 0.85?±?0.2 mg/l, respectively. Only zinc mean level was lower than the recommended range. Association between zinc, copper, and iron concentrations of milk and WAZ or HAZ of infants were not significant. However, the WAZ of infants whose mothers' milk zinc was more than 2 mg/l was significantly (P?<?0.039) higher than for others. The mean dietary zinc (5.31?±?2.3 mg/day) and copper (1.16?±?0.7 mg/day) intake of mothers was significantly less than the required daily intake (RDA) recommendations (P?<?0.05). The mean dietary iron intake (11.8?±?8.2 mg/day) was significantly higher than RDA recommendation (P?<?0.001). No significant association was found between maternal mean dietary zinc, copper, and iron intakes with their concentrations in milk. Dietary consultation or/and zinc supplementation is suggested for lactating women and infants.  相似文献   

9.
Reduced nitric oxide availability and a heterogeneous pattern of nitric oxide synthase activity in some tissues have been reported in hypothyroidism. This study aimed at determining the effects of oral nitrate and l-arginine administration on serum, heart, and aorta nitric oxide metabolite concentrations in fetal hypothyroid rats. In an experimental study, pregnant Wistar rats were administrated tap water or 0.02 % of 6-propyl-2-thiouracil in drinking water during pregnancy and their male pups were followed (n?=?8/group). In adult progeny, serum, heart, and aorta nitric oxide metabolite concentrations were measured by the Griess method after 1-week administration of sodium nitrate (500 mg/L) or l-arginine (2 %) in drinking water. Serum thyroid hormone and thyroid-stimulating hormone levels were also measured. Compared to controls, fetal hypothyroid progeny had significantly lower nitric oxide metabolite concentrations in heart (0.32?±?0.07 vs. 0.90?±?0.14 nmol/mg protein, p?=?0.004) and aorta (2.98±0.56 vs. 6.15±0.74 nmol/mg protein, p?=?0.011) tissues. Nitrate therapy restored heart nitric oxide metabolite levels decreased by fetal hypothyroidism, while l-arginine administration further decreased aorta nitric oxide metabolite levels. Sodium nitrate increased and l-arginine decreased serum nitric oxide metabolite levels in both control and fetal hypothyroid animals. In conclusion, nitrate therapy restores decreased heart nitric oxide metabolite levels, whereas l-arginine decreases aorta nitric oxide metabolite levels even further in fetal hypothyroid rats, findings relevant to the cardiovascular consequences of congenital hypothyroidism in adulthood.  相似文献   

10.
Electron paramagnetic resonance (EPR) signals at g′ = 4.3 are commonly encountered in biological samples owing to mononuclear high-spin (S = 5/2) Fe3+ ions in sites of low symmetry. The present study was undertaken to develop the experimental method and a suitable g′ = 4.3 intensity standard and for accurately quantifying the amount of Fe3+ responsible for such signals. By following the work of Aasa and Vänngård (J. Magn. Reson. 19:308–315, 1975), we present equations relating the EPR intensity of S = 5/2 ions to the intensities of S = 1/2 standards more commonly employed in EPR spectrometry. Of the chelates tested, Fe3+–EDTA (1:3 ratio) in 1:3 glycerol/water (v/v), pH 2, was found to be an excellent standard for frozen-solution S = 5/2 samples at 77 K. The spin concentrations of Cu2+–EDTA and aqua VO2+, both S = 1/2 ions, and of Fe3+–transferrin, an S = 5/2 ion, were measured against this standard and found to agree within 2.2% of their known metal ion concentrations. Relative standard deviations of ±3.6, ±5.3 and ±2.9% in spin concentration were obtained for the three samples, respectively. The spin concentration determined for Fe3+–desferrioxamine of known Fe3+ concentration was anomalously low suggesting the presence of EPR-silent multimeric iron species in solution.  相似文献   

11.
Cell-impermeant iron chelator desferrioxamine (DFO) can have access to organelles if appended to suitable vectors. Mitochondria are important targets for the treatment of iron overload-related neurodegenerative diseases. Triphenylphosphonium (TPP) is a delocalized lipophilic cation used to ferry molecules to mitochondria. Here we report the synthesis and characterization of the conjugate TPP–DFO as a mitochondrial iron chelator. TPP–DFO maintained both a high affinity for iron and the antioxidant activity when compared to parent DFO. TPP–DFO was less toxic than TPP alone to A2780 cells (IC50 = 135.60 ± 1.08 and 4.34 ± 1.06 μmol L?1, respectively) and its native fluorescence was used to assess its mitochondrial localization (Rr = +0.56). These results suggest that TPP–DFO could be an interesting alternative for the treatment of mitochondrial iron overload e.g. in Friedreich’s ataxia.  相似文献   

12.
Mutual clinical and molecular interactions between iron and glucose metabolism have been reported. We aimed to investigate a potential effect of glucose on iron homeostasis. We found that serum iron concentrations gradually decreased over 180 min after the administration of 75 g of glucose from 109.8±45.4 mg/L to 94.4±40.4 mg/L (P<.001; N= 40) but remained unchanged in control subjects receiving tap water (N= 21). Serum hepcidin, the key iron regulatory hormone which is mainly derived from hepatocytes but also expressed in pancreatic β-cells, increased within 120 min after glucose ingestion from 19.7±9.9 nmol/L to 31.4±21.0 nmol/L (P<.001). In cell culture, glucose induced the secretion of hepcidin and insulin into the supernatant of INS-1E cultures, but did not change the amount of hepcidin detectable in the hepatocyte cell culture HepG2. We additionally confirmed the expression of hepcidin in a human islet cell preparation. These results suggest that glucose acts as a regulator of serum iron concentrations, most likely by triggering the release of hepcidin from β-cells.  相似文献   

13.
Zinc is one of the most important trace elements in the body and zinc homeostasis plays a critical role in maintaining cellular structure and function. Zinc dyshomeostasis can lead to many diseases, such as cardiovascular disease. Our aim was to investigate whether there is a relationship between zinc and left ventricular hypertrophy (LVH). A total of 519 patients was enrolled and their serum zinc levels were measured in this study. We performed analyses on the relationship between zinc levels and LVH and the four LV geometry pattern patients: normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH. We performed further linear and multiple regression analyses to confirm the relationship between zinc and left ventricular mass (LVM), left ventricular mass index (LVMI), and relative wall thickness (RWT). Our data showed that zinc levels were 710.2 ± 243.0 μg/L in the control group and were 641.9 ± 215.2 μg/L in LVH patients. We observed that zinc levels were 715 ± 243.5 μg/L, 694.2 ± 242.7 μg/L, 643.7 ± 225.0 μg/L, and 638.7 ± 197.0 μg/L in normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH patients, respectively. We further found that there was a significant inverse linear relationship between zinc and LVM (p = 0.001) and LVMI (p = 0.000) but did not show a significant relationship with RWT (p = 0.561). Multiple regression analyses confirmed that the linear relationship between zinc and LVM and LVMI remained inversely significant. The present study revealed that serum zinc levels were significantly decreased in the LVH patients, especially in the eccentric LVH and concentric LVH patients. Furthermore, zinc levels were significantly inversely correlated with LVM and LVMI.  相似文献   

14.
Abstract

Three temperate forages, sainfoin, birdsfoot trefoil, and chicory, characterized by elevated contents of plant secondary compounds, were compared to a ryegrass-clover mixture (control) in dried (Experiment 1) and ensiled form (Experiment 2) in their palatability and nutritional value. Palatability was measured in adult wethers (n = 6) allowed to choose between the familiar control forage and one of the three test plants. Palatability index was calculated from differences in intake of control and test plants measured after given times. Generally at first contact, palatability of the unfamiliar plants was low. Lag time until palatability index approached or exceeded a value of 100 was 2 – 5 d, but could not be related to the content of condensed tannins. Sainfoin had a high palatability, the highest content of condensed tannins (77.4 ± 10.23 g/kg DM), a high content of duodenally utilisable crude protein (94.7 ± 16.87 g/100 g CP), and a high content of metabolizable energy (9.5 ± 0.38 MJ ME/kg DM), making this plant most promising for various purposes including anthelmintic action.  相似文献   

15.
Increased sea level is the climate change effect expected to have the greatest impact on mangrove forest survival. Mangroves have survived extreme fluctuations in sea level in the past through sedimentation and belowground carbon (C) accumulation, yet it is unclear what factors may influence these two parameters. We measured sedimentation, vertical accretion, and belowground C accumulation rates in mangrove forests from the Republic of Palau and Vietnam to examine how diversity (high-Vietnam vs. low-Palau), land use, and location (fringe vs. interior) might influence these parameters. Land use in this study was identified as disturbance and restoration for all mangrove forests sampled in Palau and Vietnam, respectively. Vertical accretion rates were significantly greater in Vietnam (2.44 ± 1.38 cm/year) than Palau mangrove forests (0.47 ± 0.08 cm/year; p < 0.001, F1,17 = 24.96). Vertical accretion rates were positively correlated to diversity (R = 0.43, p < 0.05). However, stronger correlations of accretion to bulk density (R = 0.64, p < 0.01) and significantly higher bulk densities in Vietnamese (0.67 ± 0.04 g/cm3) than Palau mangroves (0.30 ± 0.03 g/cm3; p < 0.001, F1,17 = 54.4) suggests that suspended sediments played a greater role in mangrove forest floor maintenance relative to sea level rise. Average vertical accretion rates were similar between naturally colonized (1.01 ± 0.10 cm/year) and outplanted sites (1.06 ± 0.05 cm/year) and between fringe (1.06 ± 0.12 cm/year) and interior mangrove (0.99 ± 0.09 cm/year) in Vietnam. In Palau, vertical accretion rates did not differ between disturbed (0.42 ± 0.11 cm/year) and undisturbed (0.51 ± 0.13 cm/year) mangrove forests and were higher in fringe (0.61 ± 0.15 cm/year) than interior sites (0.33 ± 0.09 cm/year; p = 0.1, F1,7 = 3.45). Belowground C accumulation rates did not differ between any factors examined. C accumulation rates (69–602 gC/m2/year) were similar to those reported elsewhere in the literature and suggest that intact coastal ecosystems play an important role in the global C cycle, sequestering C at rates that are 10–20× greater than upland forests. Assuming vertical accretion rates measured using 210Pb are an effective proxy for surface elevation, the Vietnamese and Palauan mangroves appear to be keeping up with current rates of sea level rise.  相似文献   

16.
Remediation of AMD Contaminated Soil by Two Types of Reeds   总被引:1,自引:0,他引:1  
Acid mine drainage (AMD) adversely impacts many regions in the world. The interactions among citric acid (CA), rhizosphere bacteria and metal uptake in different types of Phragmites australis cultured in spiked AMD contaminated soil were investigated. Compared with non-contaminated reeds cultured under the same conditions, wild reeds harvested from a contaminated site accumulated more metals into tissues. Rhizosphere iron oxidizing bacteria (Fe(II)OB) enhanced the development of Fe plaque but had no significant impact on the formation of Mn and Al plaque on the root surface of either reeds. Plaque may restrain the accumulation of Fe and Mn into tissues of reeds. CA inhibited the growth of Fe(II)OB, reduced the formation of metal plaque and significantly elevated metal accumulations into both underground and aboveground biomass of reeds. The concentrations of Fe, Al and Mn were higher in belowground organs than aboveground tissues. The roots contained 0.28 ± 0.01 mg/g Mn, 3.09 ± 0.51 mg/g Al, 94.47 ± 5.75 mg/g Fe, while the stems accumulated 0.19 ± 0.01 mg/g Mn, 1.34 ± 0.02 mg/g Al, 10.32 ± 0.60 mg/g Fe in wild reeds cultured in soil added with 33,616 ppm CA. Further field investigations may be required to study the effect of CA to enhance phytoremediation of metals from real AMD contaminated sites.  相似文献   

17.
Metal contamination in sediment of the Mianyuan River (one of the major upper reaches of the Yangtze River) in Longmenshan Region (China) was investigated in 2012. Means of metal concentrations in sediment (<74μm) were Cr: 59.93 ± 19.8% mg/kg; As: 7.21 ± 50.2% mg/kg; Se: 0.45 ± 66.3% mg/kg; Pb: 19.89 ± 29.3% mg/kg; Zn: 78.98 ± 31.9% mg/kg; Cd: 0.69 ± 28.3% mg/kg; Ba: 0.71 ± 34.0% g/kg; Mn: 0.55 ± 62.2% g/kg. This study suggested: (1) concentrations of Cd, As, Cr, and Pb in Mianyuan River sediment were lower than those of the middle and lower reaches of the Yangtze River; (2) the increase of metals during the period from 2006 to 2009 was probably related to the destruction of tailings piles by the Wen Chun earthquake in 2008; (3) organic materials decided the distribution of Cd, Se, As, Ba, and Mn in the upstream sediment, while the iron and manganese minerals controlled the distribution of Ba, Cr, and Zn in the downstream sediment; (4) sources of Cd, Se, and As were geogenic, while sources of Cr, Zn, Ba, and Mn were anthropogenic; (5) the source of Pb in the upstream sediment was probably automobile exhaust, but that of Pb in the downstream sediment was geogenic.  相似文献   

18.
The purpose of this study was to assess hair selenium levels of liver patients suffering from hepatic simple steatosis and non-alcoholic steatohepatitis (NASH) in central areas of China. Selenium was measured by an atomic absorption spectrophotometer equipped with the hydride generation system. The levels of selenium in healthy individuals ranged between 0.3 and 0.9 μg/g, and mean hair selenium levels in the male population and female population were 0.59?±?0.18 and 0.57?±?0.15 μg/g, respectively. These concentrations did not vary significantly (P?>?0.05) in relation to the gender. One hundred-eighteen individuals of both sexes aged between 15 and 60 years with hepatic simple steatosis and NASH were selected for this study. The mean and standard deviation of hair selenium concentrations observed in male and female patients with hepatic simple steatosis were 0.54?±?0.16 and 0.50?±?0.15 μg/g, respectively, while the mean and standard deviation of hair selenium concentrations observed in male and female patients with NASH were 0.40?±?0.14 and 0.41?±?0.12 μg/g. Analysis of t test showed a significant difference between NASH (P?<?0.001) patients in hair selenium concentrations when compared with controls.  相似文献   

19.
The incidence of cardiac damage is high during acute cerebral hemorrhage. The animal data on the relationship between cerebral apoplexy and cardiac damage are lacking. Thus, the aim of the study was to evaluate the effects of cerebral hemorrhage on plasma concentrations of monoamine transmitter noradrenalin (NA), creatine kinase muscle and brain (CK-MB) isoenzyme fraction, and cardiomyocyte changes in the rat model. In this study, 140 Wistar rats were randomly and equally divided into experimental and control groups, and collagenase was injected into the right caudate nucleus to induce cerebral hemorrhage in the experimental group. Plasma NA was analyzed using high-performance liquid chromatography with electrochemical detection and serum CK-MB was measured by enzyme reaction rate method. We found that both NA and CK-MB were elevated (p < 0.05) at 6 h after cerebral hematoma formation; the levels were 2.46 ± 0.05 μg/L and 3.51 ± 0.23 μkat/L, respectively. NA and CK-MB concentrations reached peak levels at 24 h which were found to be 3.52 ± 0.06 μg/L and 5.47 ± 0.49 μkat/L, respectively. Thereafter, NA and CK-MB concentrations decreased gradually. Plasma NA declined to the preoperative level (1.66 ± 0.03 μg/L) at 72 h, while CK-MB level (2.71 ± 0.17 μkat/L) was found to be still higher than its preoperative level. It was, therefore, concluded that plasma NA might be involved in the induction and development of cardiomyocytes damage during cerebral hemorrhage.  相似文献   

20.
We aim to investigate whether overweight/obese pregnant women have elevated plasma levels of adenosine associated with increased consumption of high-calorie food. Sixty women were included. They were divided into lean (n = 23 and n = 12) or overweight/obese (n = 7 and n = 18) non-pregnant and pregnant women, respectively. Clinical records and maternal blood samples were collected after informed consent. A self-reported dietary questionnaire was also completed. Plasma adenosine levels were determined with high-performance liquid chromatography. Biochemical parameters, including glucose, total protein, and lipid profile, were determined using standard colorimetric assays. Adenosine levels were higher in pregnant women than in non-pregnant women (18.7 ± 1.6 vs 10.8 ± 1.3 nM/μg protein, respectively, p < 0.0001). Overweight/obese pregnant women (21.9 ± 2.5 nM/μg protein) exhibited higher adenosine levels than lean pregnant (14.5 ± 1.0 nM/μg protein, p = 0.04) or non-pregnant women (11.7 ± 1.5 nM/μg protein, p = 0.0005). Also, pregnant women with elevated weight gain exhibited higher (26.2 ± 3.7 nM/μg protein) adenosine levels than those with adequate weight gain (14.9 ± 1.4 nM/μg protein, p = 0.03). These differences were not statistically significant compared with those of pregnant women with reduced weight gain (17.4 ± 2.1 nM/μg protein, p = 0.053). Body mass index and adenosine only in pregnant women were positively correlated (r = 0.39, p = 0.02). While, polyunsaturated fatty acid (PUFA) consumption was negatively correlated with plasma adenosine levels only in non-pregnant women (r = ?0.33, p = 0.03). Pregnancy is associated with high plasma adenosine levels, which are further elevated in pregnant women who are overweight/obese. High PUFA intake might reduce plasma adenosine levels in non-pregnant women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号