首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to assess symbiotic activity (the nodules integrity and the iron use efficiency) in common bean (Phaseolus vulgaris L.) under low iron availability, the growth of plants and nodules, the concentration of leghaemoglobin and malondialdehyde, and activity of nitrogenase, catalase, peroxidase and superoxide dismutase were analysed in two (contrasting) common bean varieties subjected to iron deficiency. Results show that nitrogen fixation and leghaemoglobin accumulation decreased at limiting iron availability while malondialdehyde concentration increased under these conditions. The tolerant variety to iron deficiency, ARA14, was clearly less affected than the sensitive one, Coco blanc. A significant stimulation of peroxidase (POD) activity was observed in ARA14 under iron deficiency. At the same conditions, SOD and CAT activities in ARA14 plants were maintained at high level. It was also found that the iron use efficiency for leghaemoglobin accumulation, SOD, CAT and POD activities were critical for the protection of symbiotic system against oxidative burst and for the maintaining of an optimal functioning of N2 fixing system.  相似文献   

2.
Bactrocera dorsalis (Diptera: Tephritidae) is a serious menace to agricultural production worldwide. In order to prevent further damage, it is of paramount important that cost-effective strategies should be developed for their management. Gut bacteria has established diverse relationships with their insect hosts, which could be exploited in pest management programs to improve on control efficiency. In this study, gut bacteria isolates identified by culture dependent technique were incorporated into larval diets in an attempt to understand the roles they play in the development and survival of oriental fruit fly. From our results, the isolated bacteria belonged to four different phyla including the Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The response of the fly to different gut isolates varied greatly. Diets enriched with Enterococcus phoeniculicola had lower larval developmental duration, higher pupal weight, and an increased percentage survival. On the other hand, diets supplemented with Lactobacillus lactis had negative effects on B. dorsalis development. This study provides clues on how symbiotic bacteria could be exploited in mass rearing for an efficient implementation of the Sterile Insect Technique (SIT) in pest management programs.  相似文献   

3.
Single nucleotide polymorphism (SNP) markers have become a genetic technology of choice because of their automation and high precision of allele calls. In this study, our goal was to develop 94 SNPs and test them across well-chosen common bean (Phaseolus vulgaris L.) germplasm. We validated and accessed SNP diversity at 84 gene-based and 10 non-genic loci using KASPar technology in a panel of 70 genotypes that have been used as parents of mapping populations and have been previously evaluated for SSRs. SNPs exhibited high levels of genetic diversity, an excess of middle frequency polymorphism, and a within-genepool mismatch distribution as expected for populations affected by sudden demographic expansions after domestication bottlenecks. This set of markers was useful for distinguishing Andean and Mesoamerican genotypes but less useful for distinguishing within each gene pool. In summary, slightly greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool but polymorphism rate between genotypes was consistent with genepool and race identity. Our survey results represent a baseline for the choice of SNP markers for future applications because gene-associated SNPs could themselves be causative SNPs for traits. Finally, we discuss that the ideal genetic marker combination with which to carry out diversity, mapping and association studies in common bean should consider a mix of both SNP and SSR markers.  相似文献   

4.
A protocol for in vitro regeneration via indirect organogenesis for Phaseolus vulgaris cv. Negro Jamapa was established. The explants used were apical meristems and cotyledonary nodes dissected from the embryonic axes of germinating seeds. Several auxin/cytokinin combinations were tested for callus induction. The best callus production was obtained with medium containing 1.5 μM 2,4-dichlorophenoxyacetic acid. After 2 weeks of growth calli were transferred to shooting medium containing 22.2 μM 6-benzylaminopurine. Shoots regenerated with a frequency of approximately 0.5 shoots per callus, and upon transfer to rooting medium these shoots produced roots with 100% efficiency. Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Greenhouse grown regenerated plants showed normal development and were fertile. The protocol was reproducible for other nine P. vulgaris cultivars tested, suggesting a genotype independent procedure.  相似文献   

5.
Pseudomonas syringae pv. phaseolicola is an important disease that causes halo blight in common bean. The genetic mechanisms underlying quantitative halo blight resistance are poorly understood in this species, as most disease studies have focused on qualitative resistance. The present work examines the genetic basis of quantitative resistance to the nine halo blight races in different organs (primary and trifoliate leaf, stem and pod) of an Andean recombinant inbred line (RIL) progeny. Using a multi-environment quantitative trait locus (QTL) mapping approach, 76 and 101 main-effect and epistatic QTLs were identified, respectively. Most of the epistatic interactions detected were due to loci without detectable QTL additive main effects. Main and epistatic QTLs detected were mainly consistent across the environment conditions. The homologous genomic regions corresponding to 26 of the 76 main-effect detected QTLs were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins and known defence genes. Main-effect QTLs for resistance to races 3, 4 and 5 in leaf, stem and pod were located on chromosome 2 within a 3.01-Mb region, where a cluster of nine NL genes was detected. The NL gene Phvul.002G323300 is located in this region, which can be considered an important putative candidate gene for the non-organ-specific QTL identified here. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for halo blight resistance in common bean.  相似文献   

6.
The two-spotted spider mite, Tetranychus uticae Koch (Acari: Tetranychidae), is globally one of the most devastating pests that feed on numerous crops, including common bean (Phaseolus vulgaris L.). This study was aimed to evaluate the effects of genotype and morphological attributes of common bean on T. uticae. Forty common bean accessions were used to investigate antixenosis and antibiosis through assessing mite feeding preference and reproduction under laboratory conditions. Three resistant (i.e., 56, 63, 238) and two susceptible (i.e., 182, 236) accessions, along with cultivars Naz (resistant) and Akhtar (susceptible), were used in a life-table study. Both antixenosis and antibiosis mechanism were observed in all of the accessions, albeit a negative correlation occurred. Significant differences were observed for all traits of T. urticae: developmental time of immature stages, reproduction, adult longevity and life-table parameters. Based on the intrinsic rate of increase, the accessions 56, 63, 182, 238, and cv. Naz impose high antibiotic effects on T. urticae. Although significant variation existed among accessions for morphological factors, only glandular trichomes correlated with mite fecundity and feeding preference.  相似文献   

7.
Polymorphism of microsatellite markers is often associated with the simple sequence repeat motif targeted. AT-rich microsatellites tend to be highly variable and this appears to be notable, especially in legume genomes. To analyze the value of AT-rich microsatellites for common bean (Phaseolus vulgaris L.), we developed a total of 85 new microsatellite markers, 74 of which targeted ATA or other AT-rich motif loci and 11 of which were made for GA, CA or CAC motif loci. We evaluated the loci for the level of allelic diversity in comparison to previously characterized microsatellites using a panel of 18 standard genotypes and genetically mapped any loci polymorphic in the DOR364 × G19833 population. The majority of the microsatellites produced single bands and detected single loci, however, 15 of the AT-rich microsatellites produced multiple or double banding patterns; while only one of the GA or CA-rich microsatellites did. The polymorphism information content (PIC) values averaged 0.892 and 0.600 for the AT and ATA motif microsatellites, respectively, but only 0.140 for the CA-rich microsatellites. GA microsatellites, which had a large average number of repeats, had high to intermediate PIC, averaging 0.706. A total of 45 loci could be genetically mapped and distribution of the loci across the genome was skewed towards non-distal locations with a greater prevalence of loci on linkage groups b02, b09 and b11. AT-rich microsatellites were found to be a useful source of polymorphic markers for mapping and diversity assessment in common bean that appears to uncover higher diversity than other types of simple sequence repeat markers.  相似文献   

8.
The effects of lead were investigated in bean plants (Phaseolus vulgaris L. cv. Zlota Saxa) grown hydroponically in nutrient solution and exposed to Pb(NO3)2 (0.1, 0.5, 1 mM) with or without equimolar concentrations of chelator ethylenediaminetetraacetic acid (EDTA). The roots treated only with Pb(NO3)2 accumulated up to 25 g(Pb) kg−1(d.m.), during 4-d exposure. However, in bean plants exposed to 0.5 mM Pb + 0.5 mM EDTA or 1 mM Pb + 1 mM EDTA 2.5 times less Pb was determined. In bean plants treated only with Pb, less than 6 % of total lead accumulated was transported to the aboveground parts, while in the case of plants grown with Pb + EDTA, around 50 % of total Pb was transported to the shoots.  相似文献   

9.
The East African highlands are a region of important common bean production and high varietal diversity for the crop. The objective of this study was to uncover the diversity and population structure of 192 landraces from Ethiopia and Kenya together with four genepool control genotypes using morphological phenotyping and microsatellite marker genotyping. The germplasm represented different common bean production ecologies and seed types common in these countries. The landraces showed considerable diversity that corresponded well to the two recognized genepools (Andean and Mesoamerican) with little introgression between these groups. Mesoamerican genotypes were predominant in Ethiopia while Andean genotypes were predominant in Kenya. Within each country, landraces from different collection sites were clustered together indicating potential gene flow between regions within Kenya or within Ethiopia. Across countries, landraces from the same country of origin tended to cluster together indicating distinct germplasm at the national level and limited gene flow between the two countries highlighting divided social networks within the regions and a weak trans-national bean seed exchange especially for landrace varieties. One exception to this may be the case of small red-seeded beans where informal cross-border grain trade occurs. We also observed that genetic divergence was slightly higher for the Ethiopian landraces compared to Kenyan landraces and that Mesoamerican genotypes were more diverse than the Andean genotypes. Common beans in eastern Africa are often cultivated in marginal, risk-prone farming systems and the observed landrace diversity should provide valuable alleles for adaptation to stressful environments in future breeding programs in the region.  相似文献   

10.
The Andean gene pool of common bean (Phaseolus vulgaris L.) has high levels of morphological diversity in terms of seed color and size, growth habit and agro-ecological adaptation, but previously was characterized by low levels of molecular marker diversity. Three races have been described within the Andean gene pool: Chile, Nueva Granada and Peru. The objective of this study was to characterize a collection of 123 genotypes representing Andean bean diversity with 33 microsatellite markers that have been useful for characterizing race structure in common beans. The genotypes were from both the primary center of origin as well as secondary centers of diversity to which Andean beans spread and represented all three races of the gene pool. In addition we evaluated a collection of landraces from Colombia to determine if the Nueva Granada and Peru races could be distinguished in genotypes from the northern range of the primary center. Multiple correspondence analyses of the Andean race representatives identified two predominant groups corresponding to the Nueva Granada and Peru races. Some of the Chile race representatives formed a separate group but several that had been defined previously as from this race grouped with the other races. Gene flow was more notable between Nueva Granada and Peru races than between these races and the Chile race. Among the Colombian genotypes, the Nueva Granada and Peru races were identified and introgression between these two races was especially notable. The genetic diversity within the Colombian genotypes was high, reaffirming the importance of this region as an important source of germplasm. Results of this study suggest that the morphological classification of all climbing beans as Peru race genotypes and all bush beans as Nueva Granada race genotypes is erroneous and that growth habit traits have been mixed in both races, requiring a re-adjustment in the concept of morphological races in Andean beans.  相似文献   

11.
Fluorescent in situ hybridisation of pooled, closely linked RFLP markers was used to integrate the genetic linkage map and the mitotic chromosome map of the common bean. Pooled RFLP probes showed clear and reproducible signals and allowed the assignment of all linkage groups to the chromosomes of two Phaseolus vulgaris cultivars, Saxa and Calima. Low extension values for signals originating from clustered RFLPs suggest that these clones are physically close to each other and that clusters in the genetic map are not a result of suppression of recombination due to the occurrence of chromosome rearrangements. For linkage group K, clustering of markers could be associated with proximity to centromeres. High variation in the number of 45S rDNA loci was observed among cultivars, suggesting that these terminal sites are highly recombinogenic in common bean.  相似文献   

12.
Plasmid profile analysis is useful to characterize Rhizobium strains within the same species. Among the 16 Rhizobium strains examined, 14 had distinct plasmid profiles. The size of plasmids ranged from 40 to 650 kb, and three plasmids of 650, 510 and 390 kb were common to several strains. Plasmid analysis revealed that Rhizobium etli contained a mega-plasmid, similar in size to Rhizobium tropici. All the salt-tolerant strains examined had a plasmid of 250 kb, except for strain EBRI 29. This suggests that this plasmid may play an important adaptive role under salt stress conditions.  相似文献   

13.
Evolutionary studies in plant and animal breeding are aimed at understanding the structure and organization of genetic variations of species. We have identified and characterized a genomic sequence in Phaseolus vulgaris of 1,200 bp (PvSHP1) that is homologous to SHATTERPROOF-1 (SHP1), a gene involved in control of fruit shattering in Arabidopsis thaliana. The PvSHP1 fragment was mapped to chromosome Pv06 in P. vulgaris and is linked to the flower and seed color gene V. Amplification of the PvSHP1 sequence from the most agronomically important legume species showed a high degree of interspecies diversity in the introns within the Phaseoleae, while the coding region was conserved across distant taxa. Sequencing of the PvSHP1 sequence in a sample of 91 wild and domesticated genotypes that span the geographic distribution of this species in the centers of origin showed that PvSHP1 is highly polymorphic and, therefore, particularly useful to further investigate the origin and domestication history of P. vulgaris. Our data confirm the gene pool structure seen in P. vulgaris along with independent domestication processes in the Andes and Mesoamerica; they provide additional evidence for a single domestication event in Mesoamerica. Moreover, our results support the Mesoamerican origin of this species. Finally, we have developed three indel-spanning markers that will be very useful for bean germplasm characterization, and particularly to trace the distribution of the domesticated Andean and Mesoamerican gene pools.  相似文献   

14.
Balali GR  Kowsari M 《Mycopathologia》2004,158(3):377-384
Rhizoctonia disease, caused by Rhizoctonia solani is one of the most important fungal diseases in bean fields in Isfahan, Iran. Bean plants showing stem and root cankers were collected and Rhizoctonia-like fungi obtained from the samples were identified by anastomosis. Pure cultures of bean isolates of R. solani were identified as AG-4. There were also AG-4 isolates from tomato, potato, cucumber, alfalfa and sugar beet in the areas sampled. A total of 163 isolates of R. solani AG-4 originating from stem and root cankers of beans were examined using pectic zymogram electrophoresis. Polygalacturonase (PG) and pectin estrase isozymes were observed in all AG-4 isolates tested. One (PG) and one pectic esterase (PE) band was found in common between all isolates examined. The electrophoretic patterns were grouped into seven zymogram groups (ZGs) according to the diagnostic PG and PE bands. One ZG occurred in a high frequency throughout the areas sampled. A pathogenicity test was conducted and representative isolates of each ZG were used to inoculate healthy bean plants. The results showed that each ZG caused different symptoms with varying severity. Isolates belonging to two ZGs were highly pathogenic causing root, stem and hypocotyl cankers whereas isolates of the other ZGs produced weak or no symptoms.  相似文献   

15.
Drought and salinity are environmental constraints that affect crop yields worldwide. In nature, both stresses are multifaceted problems that are usually associated with other adverse circumstances which limit plant performance such as water shortage and nutrient deficits. In order to assess common features of both stresses, the effects of mannitol-induced osmotic stress were monitored using two Phaseolus vulgaris cultivars, Cv. ‘Flamingo’ (tolerant) and Cv. ‘Coco Blanc’ (sensitive) which differed in their drought and salinity tolerance. Growth, water relations, organic and inorganic compound accumulation and soluble protein contents were measured in leaves and nodules of these N2-fixing plants. The aim of the present study was to check whether osmotic stress tolerance is associated with accumulation of some of these compounds either in leaves, nodules or both organs. At the whole-plant level, Cv. ‘Flamingo’ showed a better maintenance of plant biomass and shoot water status. At the cell level, this was related to a better osmotic adjustment ability both in leaves and nodules and also to a better adjustment of the cell wall elasticity. At the metabolic level, the contrasting accumulation of the different amino acids in nodules of each cultivar suggested that amino acids pathways can be regulated to different degrees under stress conditions. At the metabolic level, it seems that symbiosis in the sink organ (the nodule) plays a crucial role in conferring drought and salinity tolerance in the common bean.  相似文献   

16.
Legumes are unique in their ability to establish symbiotic interactions with rhizobacteria, providing a source of assimilable nitrogen; this symbiosis is regulated by complex signaling process between the plant and the bacteria. The participation of specific protein kinases during the initial steps of the nodulation process has been established. However, their substrates or the signaling networks implicated are not fully understood. Herein, a phosphoproteomic analysis of Phaseolus vulgaris roots treated for 24 h with specific Nod factors was performed using an immobilized metal ion affinity chromatography enrichment and two-dimensional gel electrophoresis approach with mass spectrometry identification. A total of 33 protein spots showing more than 1.5-fold shift were identified (17 protein spots in which the relative abundance increased and 16 that decreased). The majority of the identified root phosphoproteins displaying an increased relative abundance are presumed to have functions related to the biosynthesis and folding of proteins, energy metabolism, or cytoskeleton rearrangements, which reflect the metabolic status of the roots as being part of the developmental processes leading to nodule initiation and the importance of cytoskeleton rearrangement in the P. vulgaris–rhizobia symbiosis. The proteins in which relative abundance decreased are associated with defense and oxido-reduction processes, which could indicate a suppression of plant defense responses during the establishment of the rhizobia–legume interaction and an increase of reactive oxygen species production.  相似文献   

17.
THE movement of abscisic acid (ABA) in plants seems to have been studied only in isolated segments of tissue1–4. We have used 14C-labelled ABA of relatively high specific activity to investigate its movement in a number of plant species, in both isolated tissue segments and whole plants. The movement of 2-14C-ABA in intact seedlings of Phaseolus vulgaris is described here.  相似文献   

18.
Bean common mosaic potyvirus (BCMV) is an important seed borne pathogen of French bean. Differential inoculation with bean common mosaic virus at cotylodonary trifoliate leaf stage and pre-flowering stage of crop growth revealed that cotyledonary leaf infection favored maximum disease expression. Under immunosorbent electron microscopy (ISEM) the virus particles of filamentous structure having a diameter of 750 nm (l) and 15 nm (w) were observed. These particles gave positive precipitin tests with polyclonal antiserum of Potato virus Y.  相似文献   

19.
The Rhizobium-legume symbiosis is a complex partnership with many factors, with initial bacterial colonization of the plant root surface and primary infection as key early stages. Two molecules are strongly involved in these processes: the structural carbohydrate cellulose and the enzyme cellulase, which breaks down the former and allows rhizobia to infect the roots. Here, we report the effect on common bean (Phaseolus vulgaris L.) after co-inoculation of the non-nodulating, cellulase-overproducing strain Rhizobium cellulosilyticum ALA10B2T and the P. vulgaris-nodulating R. leguminosarum strain TPV08. In order to elucidate the effect of combined inoculation with both strains, we designed greenhouse assays, including single inoculation with strain TPV08, co-inoculation with both strains and an uninoculated treatment in non-sterile peat. Chemical fertilizers were not added. Chlorophyll content in the leaves was measured after the flowering stage by spectrophotometry and was considered to be indicative of the nutrient status of the plants. Nodule formation was observed on roots of the inoculated plants, while no nodulation was observed on roots of the uninoculated plants. The results indicate a synergistic effect between the two Rhizobium strains. Co-inoculated plants exhibited significant increases in seed yield and nitrogen content in comparison with the uninoculated control plants and with plants inoculated with a single strain. It is suggested that co-inoculation with strain ALA10B2T greatly increased the efficiency of N fixation by strain TPV08.  相似文献   

20.
Disease-resistant genes (R genes) encode proteins that are involved in protecting plants from their pathogens and pests. Availability of complete genome sequences from soybean and common bean allowed us to perform a genome-wide identification and analysis of the Toll interleukin-1 receptor-like nucleotide-binding site leucine-rich repeat (TNL) proteins. Hidden Markov model (HMM) profiling of all protein sequences resulted in the identification of 117 and 77 regular TNL genes in soybean and common bean, respectively. We also identified TNL gene homologs with unique domains, and signal peptides as well as nuclear localization signals. The TNL genes in soybean formed 28 clusters located on 10 of the 20 chromosomes, with the majority found on chromosome 3, 6 and 16. Similarly, the TNL genes in common bean formed 14 clusters located on five of the 11 chromosomes, with the majority found on chromosome 10. Phylogenetic analyses of the TNL genes from Arabidopsis, soybean and common bean revealed less divergence within legumes relative to the divergence between legumes and Arabidopsis. Syntenic blocks were found between chromosomes Pv10 and Gm03, Pv07 and Gm10, as well as Pv01 and Gm14. The gene expression data revealed basal level expression and tissue specificity, while analysis of available microRNA data showed 37 predicted microRNA families involved in targeting the identified TNL genes in soybean and common bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号