首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soils in some geographical regions suffer with combined stress of sulfur (S) deficiency and cadmium (Cd) contamination. Although the independent impacts of Cd and S-deficiency on plants are well studied but there are rare reports on synergistic effects of S-deficiency and Cd stress. Thus, this study focuses to investigate the response of Arabidopsis thaliana in terms of defense and growth as influenced by Cd under limited S regime. A. thaliana (Col-0) was grown on S-sufficient MS media for 2 weeks and then subjected to S-deficiency for 15 days. Control (+S/−Cd) and S-starved (−S/−Cd) plants were exposed to Cd (50 μM CdCl2) for 3–5 days. Results show that S-deficiency (−S/−Cd) induces oxidative stress which was much lesser than Cd (+S/+Cd) but highest in combined stress of S-deficiency along with Cd (−S/+Cd). Interestingly, plant was found to elevate glutathione (GSH) biosynthetic pathway and also improved growth and antioxidative status when sulfur was present during Cd stress (+S/+Cd). Important studies in terms of photosynthetic parameters also support limited loss in +S plants as S-assimilation pathway was up-regulated. Proline accumulation was not influenced much by S-deficiency but stimulated with Cd stress strongly suggesting defense shift towards non-sulfur tolerance mechanism. Levels of glutathione and H2O2 removing catalase were also modulated to cope with oxidative stress in a better manner during S-sufficient conditions. Chloroplast ultrastructure showed loss of grana under S-deficiency, however, −S/+Cd resulted in severe disintegration of thylakoids too. Biomass accumulation was also most adversely affected with −S/+Cd followed by Cd stress alone (+S/+Cd) and S-deficiency (−S/−Cd). In conclusion, Arabidopsis maintains equilibrium between defense and growth and thus survive under limited S resource. Also S-assimilation is modulated by Cd stress and Cd-induced stress is prevented by S-nutrition.  相似文献   

2.
Mung bean seedlings inoculated with Enterobacter asburiae PSI3, a gluconic acid-producing rhizosphere isolate, enhanced plant growth in the presence of phytotoxic levels of Cd2+ in gnotobiotic pot experiments as compared to the uninoculated Cd-treated plants. Addition of organic acids to Cd-stressed seedlings promoted root elongation. Hematoxylin competition assays showed that organic acids could displace Cd2+ from the Cd2+: hematoxylin complex in the same order of effectiveness as was found for restoration of root net elongation viz. oxalate > malate > succinate while gluconate was effective at higher concentrations. Root associated Cd2+, assessed by hematoxylin staining of roots was found to be reduced when roots were treated with organic acid. Cd stress increased antioxidant enzymes such as peroxidase and superoxide dismutase in mung bean roots while organic acid treatment suppressed the up-regulation of these enzymes by Cd.  相似文献   

3.
Gao KH  Ge Y  Zhang CH 《应用生态学报》2011,22(7):1796-1802
通过设置缺硫(S)处理,研究了镉(Cd)胁迫下水稻生长情况、幼苗Cd和非蛋白巯基含量以及谷胱甘肽硫转移酶(GST)活性的动态变化.结果表明:Cd胁迫明显抑制了水稻生长,显著诱导了巯基物质[非蛋白巯基(NPT)、谷胱甘肽(GSH)、植物螯合肽(PC)]的合成,GST活性表现出先升后降的趋势.缺S处理下,尽管水稻根部对Cd的吸收和向地上部的转运都有所增加,但Cd胁迫程度并未明显增强,巯基物质含量明显降低,根部GST活性提高.表明巯基物质和GST在水稻抗Cd胁迫过程中互为补充,在一定程度上减轻了Cd的毒性效应.  相似文献   

4.
Greenhouse pot experiments were carried out to illuminate the mitigation effects of sulfur (S) on cadmium (Cd) uptake and toxicity in tobacco using two levels of exogenous sulfur of S1 and S2 containing 47 and 38% total S. Results showed that Cd1 and Cd2 treatments of 1 and 5 mg Cd kg?1 soil increased leaf Cd concentration and accumulation but reduced plant height, net photosynthetic rate (Pn) and biomass, with a much severe response in Cd2 treatment. Application of S2 fertilizer alleviates Cd toxicity, markedly decreased Cd concentration and improved photosynthesis, compared with Cd1 and Cd2 alone treatment; but S1 only alleviated Cd toxicity when tobacco was subjected to Cd1 stress. Our results suggest that S2 fertilizer was more effective in reducing Cd accumulation and toxicity in Tobacco than S1, and highlights a promising approach of S fertilizer application to lower leaf Cd accumulation in order to ensure product safety of tobacco grown in Cd polluted soils.  相似文献   

5.
Plants can''t move away and are therefore continuously confronted with unfavorable environmental conditions (such as soil salinity, drought, heat, cold, flooding and heavy metal contamination). Among heavy metals, cadmium (Cd) is a non-essential and toxic metal, rapidly taken up by roots and accumulated in various plant tissues which hamper the crop growth and productivity worldwide. Plants employ various strategies to counteract the inhibitory effect of Cd, among which nutrient management is one of a possible way to overcome Cd toxicity. Sulfur (S) uptake and assimilation are crucial for determining crop yield and resistance to Cd stress. Cd affects S assimilation pathway which leads to the activation of pathway responsible for the synthesis of cysteine (Cys), a precursor of glutathione (GSH) biosynthesis. GSH, a non-protein thiol acts as an important antioxidant in mitigating Cd-induced oxidative stress. It also plays an important role in phytochelatins (PCs) synthesis, which has a proven role in Cd detoxification. Therefore, S assimilation is considered a crucial step for plant survival under Cd stress. The aim of this review is to discuss the regulatory mechanism of S uptake and assimilation, GSH and PC synthesis for Cd stress tolerance in crop plants.Key words: cadmium, cysteine, glutathione, phytochelatins, stress tolerance, sulfur  相似文献   

6.
The role of same amendment on phytoremediating different level contaminated soils is seldom known. Soil pot culture experiment was used to compare the strengthening roles of cysteine (CY), EDTA, salicylic acid (Sa), and Tween 80 (TW) on hyperaccumulator Solanum nigrum L. phytoremediating higher level of single cadmium (Cd) or Benzo(a)pyrene (BAP) and their co-contaminated soils. Results showed that the Cd capacities (ug pot?1) in shoots of S. nigrum in the combined treatment T0.1EDTA+0.9CY were the highest for the 5 and 15 mg kg?1 Cd contaminated soils. When S. nigrum remediating co-contaminated soils with higher levels of Cd and BAP, that is, 5 mg kg?1 Cd + 1 mg kg?1 BAP and 15 mg kg?1 Cd + 2 mg kg?1 BAP, the treatment T0.9CY+0.9Sa+0.3TW showed the best enhancing remediation role. This results were different with co-contaminated soil with 0.771 mg kg?1 Cd + 0.024 mg kg?1 BAP. These results may tell us that the combine used of CY, SA, and TW were more useful for the contaminated soils with higher level of Cd and/or BAP. In the combined treatments of Sa+TW, CY was better than EDTA.  相似文献   

7.
An 1H NMR (nuclear magnetic resonance) spectroscopic structural analysis of Cd2+ complexes formed with the pentapeptide phytochelatin, (NH3)+−(ψ-Glu-Cys)2−Gly−COO−(PC2), at a pH of 7.5 showed that the two thiol groups of the Cys residues and either the carbonyl or amide group of the peptide bond between Glu1 and Cys1 act as possible donor groups in the complexes at Cd2+/PC2 ratios up to 0.4. As the ratio increases, the carboxylate group of Glu2 and either the carbonyl or amide group of the peptide bond between Cys1 and Glu2 comes to serve as a donor group. The manner in which Cd2+ forms complexes with PC2 is distinctly different from Zn2+ and might account for the role of phytochelatin in Cd2+ detoxification. Electron absorption spectrometry demonstrated that the Cd2+ complexes are coordinated in a tetrahedral fashion by four thiol groups and that several sulfur atoms might bridge Cd2+ ions, resulting in the formation of polynuclear complexes. This contrasts with Zn2+ complex formation, which consists exclusively of a 1:1 complex.  相似文献   

8.
Brassica oleracea L. was rather insensitive to atmospheric H2S: growth was only negatively affected at ≥0.4 μl I?1. Shoots formed a sink for H2S and the uptake rate showed saturation kinetics with respect to the atmospheric concentration. The H2S uptake rate was high in comparison with other species, which may reflect the high sulfur need of Brassica. The net uptake of sulfate by roots of hydroponically grown plants was substantially reduced after one week of exposure to 0.25 μl l?1 H2S, indicating that plants switched in part from sulfate to H2S as sulfur source for plant growth. Plants were sulfur deficient after two weeks of sulfur deprivation, illustrated by reduced growth, which was more pronounced for shoots than for roots, and in enhanced shoot dry matter content. The latter could for the greater part be attributed to enhanced levels of soluble sugars and starch. Sulfur deficiency was further characterized by a low pigment content, extremely low levels of sulfate and water-soluble non-protein thiols, and by enhanced levels of nitrate and free amino acids, particularly in the shoots. Furthermore, sulfur deficient plants contained a lower total lipid content in shoots, whereas its content in roots was unaffected. The level of sulfolipids was decreased in both roots and shoots. When sulfur deprived plants were exposed to 0.25 μl I?1 H2S for one week, all sulfur deficiency symptoms were abolished and growth was restored. Furthermore, plants were able to grow with 0.4 μl I?1 H2S as the sole sulfur source. Water-soluble non-protein thiol content was enhanced in both shoots and roots of H2S exposed plants, irrespective of the sulfate supply to the roots, whereas plants grown with H2S as sole sulfur source contained very low sulfate levels. The interaction between atmospheric and pedospheric sulfur nutrition in plants is discussed.  相似文献   

9.
The alleviative effects of exogenous calcium on copper phytotoxicity were investigated in Elodea canadensis plants. There was a significant accumulation of Cu in the plants after their exposure to 0.01 mM Cu accompanied by many symptoms of toxicity. Increased uptake of Cu severely reduced content of photosynthetic pigments, soluble proteins, and free proline. The total antioxidant capacity (T-AOC), reduced glutathione (GSH), and non-protein thiol (NP-SH) were severely suppressed in Cu-stressed plants resulting in a rapid increase in content of superoxide anion (O2 ·?), hydrogen peroxide, lipid peroxidation, and cell death. Simultaneous application of Ca markedly increased the content of photosynthetic pigments, soluble proteins, free proline, T-AOC, GSH, and NP-SH, and reduced oxidative damage as indicated by lowered content of MDA, O2 ·?, and H2O2; and decreased cell death. Furthermore, application of Ca reduced Cu uptake and effectively reversed the Cu-induced nutrient imbalance.  相似文献   

10.
Salicylic acid (SA) is a potent signaling molecule in plants and is involved in eliciting specific responses to biotic and abiotic stresses. The aim of this study is to investigate whether the exogenous application of SA can improve cadmium (Cd) induced inhibition of photosynthesis in castor bean (Ricinus communis L.) plants. The effects of SA and Cd on plant growth, spectral reflectance, pigment contents, chlorophyll fluorescence and gas exchange were examined in a hydroponic cultivation system. Results indicate that Cd exposure significantly decreased the dry biomass, photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), pigment contents, quantum yield of PS II photochemistry (Fv/Fm), and effective quantum yield of PS II (??PS II) in the plants. Pretreatment with SA alone reduced the biomass and Pn in castor bean plants, whereas pigment contents, Fv/Fm and ??PS II remained unaffected. Reduced Gs, Ci and E, as well as increased stomatal limitation (Ls) and water use efficiency (WUE), were observed in plants pretreated with 500???M SA alone, whereas plants treated with 250???M SA were unaffected. Under Cd stress, SA pretreatment led to a significant decrease in Pn, Gs, E, Ci, and chlorophyll contents (Chl a, Chl b, Chl a+b, Car, Chl a/b), and an increase in Ls and WUE. Cd exposure enhanced spectral reflectance in the range 550?C680?nm and 750?C1,050?nm. It also decreased the normalized difference vegetation index (chlNDI), the modified red edge simple ratio index (mSR705), the red edge position (REP), water band index, and red/green ratio, whereas the structure independent pigment index (SIPI) was increased. Significant correlations (P?<?0.01) between spectral indices (mSR705, chlNDI, REP, red/green ratio) and pigment contents. SA significantly worsened plant growth and photosynthesis in Cd-stressed castor bean plants, in which a stomatal limitation was involved. The leaf spectral reflectance is a sensitive indicator in determining Cd toxicity in plants.  相似文献   

11.

Background and aims

Chelant-enhanced phytoextraction has given variable and often unexplained experimental results. This work was carried out to better understand the mechanisms of Cd plant uptake in the presence of EDTA and to evaluate the contributions of Cd-EDTA complexes to the uptake.

Method

A 1-D mechanistic model was implemented, which described the free Cd2+ root absorption, the dissociation and the direct absorption of the Cd-EDTA complexes. It was used to explain Cd uptake by maize in hydroponics and in soil.

Results

In hydroponics, the addition of EDTA caused a decrease in Cd uptake by maize, particularly when the ratio of total EDTA ([EDTA] T ) to total Cd ([Cd] T ) was greater than 1. At [Cd] T = 1 μM, when [EDTA] T /[Cd] T < 1, the model indicated that Cd uptake was predominantly due to the absorption of free Cd2+, whose pool was replenished by the dissociation of Cd-EDTA. When [EDTA] T /[Cd] T > 1, the low Cd uptake was mostly due to Cd-EDTA absorption. In soil spiked with 5 mg Cd kg?1, Cd uptake was not affected by the various EDTA additions, because of the buffering capacity of the soil solid phase.

Conclusions

Addition of EDTA to soil increases Cd solubility but dissociation of Cd-EDTA limits the availability of the free Cd2+ at the root surface, which finally reduces the plant uptake of the metal.  相似文献   

12.
Han  Yansha  Wang  Shaojie  Zhao  Nan  Deng  Shurong  Zhao  Chenjing  Li  Nianfei  Sun  Jian  Zhao  Rui  Yi  Huilan  Shen  Xin  Chen  Shaoliang 《Journal of Plant Growth Regulation》2016,35(3):827-837

Abscisic acid (ABA), a widely known phytohormone involved in the plant response to abiotic stress, plays a vital role in mitigating Cd2+ toxicity in herbaceous species. However, the role of ABA in ameliorating Cd2+ toxicity in woody species is largely unknown. In the present study, we investigated ABA restriction on Cd2+ uptake and the relevance to Cd2+ stress alleviation in Cd2+-hypersensitive Populus euphratica. ABA (5 μM) markedly improved cell viability and growth but reduced membrane permeability in CdCl2 (100 μM)-stressed P. euphratica cells. Moreover, ABA significantly increased the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), contributing to the scavenging of Cd2+-elicited H2O2 within P. euphratica cells during the period of CdCl2 exposure (100 μM, 24–72 h). ABA alleviation of Cd2+ toxicity was mainly the result of ABA restriction of Cd2+ uptake under Cd2+ stress. Steady-state and transient flux recordings showed that ABA inhibited Cd2+ entry into Cd2+-shocked (100 μM, 30 min) and short-term-stressed P. euphratica cells (100 μM, 24–72 h). Non-invasive micro-test technique data showed that H2O2 (3 mM) stimulated the Cd2+-elicited Cd2+ influx but that the plasma membrane (PM) Ca2+ channel inhibitor LaCl3 blocked it, suggesting that the Cd2+ influx was through PM Ca2+-permeable channels. These results suggested that ABA up-regulated antioxidant enzyme activity in Cd2+-stressed P. euphratica and that these enzymes scavenged the Cd2+-elicited H2O2 within cells. The entry of Cd2+ through the H2O2-mediated Ca2+-permeable channels was subsequently restricted; thus, Cd2+ buildup and toxicity were reduced in the Cd2+-hypersensitive species, P. euphratica.

  相似文献   

13.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

14.
  • Many saline-alkali soils around the world are polluted by the heavy metal Cd, restricting the development of agriculture and ecology in those regions. The halophyte Salicornia europaea L. is capable of growing healthily in Cd-contaminated saline-alkali soil, suggesting that the species is tolerant to stress caused by both salt and heavy metals. In this study, the mechanism of Cd tolerance in this species was explored under 200 mM NaCl.
  • Flame spectrophotometric assays for ions content and spectrophotometric for organic soluble substances, antioxidant enzyme activity, phytochelatins (PCs) content and phytochelatin synthase (PCS) activity, the photosynthetic parameters by portable photosynthesis measurement system, genes expression by qRT-PCR analysis were carried out.
  • Cd treatment significantly decreased the dry weight, photosynthetic rate, K+, Zn2+, and Fe2+/3+ content, while significantly increasing Na+ and Cd+, soluble organic matter, and reactive oxygen species (ROS) levels. Compared with Cd treatment at 0 mM NaCl, Cd treatment at 200 mM NaCl significantly increased dry weight and photosynthetic rate while significantly decreasing ROS content through increased antioxidant enzyme activity. When exposed to Cd stress, treatment with 200 mM NaCl significantly increased PCs content and PCS activity and up-regulated the expression of the phytochelatin synthase genes CDA1 and PCS1 were, thereby increasing resistance to Cd.
  • NaCl treatment increases the tolerance of S. europaea to the heavy metal Cd by growing rapidly, reducing the quantity of Cd2+ from entering the plant shoots, increasing the levels of PCs that chelate Cd2+, thereby reducing its toxicity.
  相似文献   

15.
The effects of 60-d cadmium (Cd) exposure on enzymatic and non-enzymatic antioxidative system of Oryza sativa L. seedlings at tillering stage were studied using soil culture experiment. Research findings showed that chlorophyll content of Oryza sativa L. declined with the increase in soil metal concentration. Cd pollution induced the antioxidant stress by inducing O2 ?1 and H2O2, which increased in plants; at the same time, MDA as the final product of peroxidation of membrane lipids, accumulated in plant. The antioxidant enzyme system was initiated under the Cd exposure, i.e. almost all the activities of superoxide dismutase (SOD), peroxidase, catalase, glutathione peroxidase, and ascorbate peroxidase were elevated both in leaves and roots. The non-protein thiols including phytochelatins and glutathione to scavenge toxic free radicals caused by Cd stress was also studied. The contents of phytochelatins and glutathione were about 3.12–6.65-fold and 3.27–10.73-fold in leaves, against control; and the corresponding values were about 3.53–9.37-fold and 1.41–5.11-fold in roots, accordingly.  相似文献   

16.
To identify some of the mechanisms involved in the high resistance to Cd2+ in the protist Euglena gracilis, we studied the effect of Cd2+ exposure on its energy and oxidative stress metabolism as well as on essential heavy metals homeostasis. In E. gracilis heterotrophic cells, as in other organisms, CdCl2 (50 μM) induced diminution in cell growth, severe oxidative stress accompanied by increased antioxidant enzyme activity and strong perturbation of the heavy metal homeostasis. However, Cd2+ exposure did not substantially modify the cellular respiratory rate or ATP intracellular level, although the activities of respiratory complexes III and IV were strongly decreased. In contrast, an enhanced capacity of the alternative oxidase (AOX) in both intact cells and isolated mitochondria was determined under Cd2+ stress; in fact, AOX activity accounted for 69-91% of total respiration. Western blotting also revealed an increased AOX content in mitochondria from Cd2+-exposed cells. Moreover, AOX was more resistant to Cd2+ inhibition than cytochrome c oxidase in mitochondria from control and Cd2+-exposed cells. Therefore, an enhanced AOX seems to be a relevant component of the resistance mechanism developed by E. gracilis against Cd2+-stress, in addition to the usual increased antioxidant enzyme activity, that enabled cells to maintain a relatively unaltered the energy status.  相似文献   

17.
18.

Main conclusion

NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd 2+ chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the halophyte Sesuvium portulacastrum. However, the processes that mediate this effect are still unclear. In this work we combined physiological, biochemical and ultrastructural studies to highlight the effects of salt on the redox balance and photosynthesis in Cd-stressed plants. Seedlings were exposed to different Cd concentrations (0, 25 and 50 µM Cd) combined with low (0.09 mM) (LS), or high (200 mM) NaCl (HS) in hydroponic culture. Plant–water relations, photosynthesis rate, leaf gas exchange, chlorophyll fluorescence, chloroplast ultrastructure, and proline and glutathione concentrations were analyzed after 1 month of treatment. In addition, the endogenous levels of stress-related hormones were determined in plants subjected to 25 µM Cd combined with both NaCl concentrations. In plants with low salt supply (LS), Cd reduced growth, induced plant dehydration, disrupted chloroplast structure and functioning, decreased net CO2 assimilation rate (A) and transpiration rate (E), inhibited the maximum potential quantum efficiency (Fv/Fm) and the quantum yield efficiency (Φ PSII) of PSII, and enhanced the non-photochemical quenching (NPQ). The addition of 200 mM NaCl (HS) to the Cd-containing medium culture significantly mitigated Cd phytotoxicity. Hence, even at similar internal Cd concentrations, HS-Cd plants were less affected by Cd than LS-Cd ones. Hence, 200 mM NaCl significantly alleviates Cd-induced toxicity symptoms, growth inhibition, and photosynthesis disturbances. The cell ultrastructure was better preserved in HS-Cd plants but affected in LS-Cd plants. The HS-Cd plants showed also higher concentrations of reduced glutathione (GSH), proline and jasmonic acid (JA) than the LS-Cd plants. However, under LS-Cd conditions, plants maintained higher concentration of salicylic acid (SA) and abscisic acid (ABA) than the HS-Cd ones. We conclude that in S. portulacastrum alleviation of Cd toxicity by NaCl is related to the modification of GSH and proline contents as well as stress hormone levels thus protecting redox balance and photosynthesis.
  相似文献   

19.
A study quantifying the interactive effects of cadmium (Cd) and carbon nanotubes (CNTs) on plant growth and Cd accumulation of pot-cultured Spartina alterniflora was conducted. The experiment consisted of two Cd levels (50, 200 mg kg?1) as well as two CNTs levels (800, 2,400 mg kg?1). As expected, CNTs alleviated higher Cd stress (200 mg kg?1) due to restored shoot growth reduction, retrieved water content and resumed plant height. Furthermore, CNTs mitigated the deleterious effects of Cd stress through improving K+ and Ca2+ contents, while reducing Na+/K+ and Na+/Ca2+ ratios, regardless of the level of Cd stress. The proline contents in combined Cd and CNTs treatments were lower than Cd alone, suggesting that CNTs could reduce production of organic solutes under Cd stress. The results also showed higher Cd accumulation in roots than shoots, and both were improved by CNTs, except inhibition in roots under higher Cd stress (200 mg kg?1). It appears that CNTs may not significantly affect negative Cd effects on growth of S. alterniflora, but improve total Cd accumulation under lower Cd stress (50 mg kg?1). However, under higher Cd stress (200 mg kg?1), CNTs restored the reduced plant growth, improved and reduced Cd accumulation in shoots and roots, respectively. Therefore, the effects of CNTs on plant growth and Cd accumulation are different, and levels of Cd stress should be considered when evaluating the combined application of CNTs and S. alterniflora on phytoremediation of Cd pollution.  相似文献   

20.
The adverse effects of microcystin (MC) produced by cyanobacteria have drawn considerable attention from the public. Yet it remains unclear whether MC confers any benefits to the cyanobacteria themselves. One suggested function of MC is complexation, which may influence the bioaccumulation and toxicity of trace metals. To test this hypothesis, we examined Cd toxicity to wild-type Microcystis aeruginosa PCC 7806 (WT) and its MC-lacking mutant (MT) under nutrient-enriched (+NP), phosphorus-limited (-P), and nitrogen-limited (-N) conditions. The accumulation of Cd and the biochemical parameters associated with its detoxification [total phosphorus (TP), inorganic polyphosphate (Poly-P), and glutathione (GSH) in the cells as well as intra- and extra-cellular carbohydrates] were quantified. Although the –P cyanobacteria accumulated less Cd than their +NP and –N counterparts, the different nutrient-conditioned cyanobacteria were similarly inhibited by similar free ion concentration of Cd in the medium ([Cd2+]F). Such good toxicity predictability of [Cd2+]F was ascribed to the synchronous decrease in the intracellular concentrations of Cd and TP. Nevertheless, Cd toxicity was still determined by the intracellular Cd to phosphorus ratio (Cd/P), in accordance with what has been reported in the literature. On the other hand, the concentrations of TP, Poly-P, and carbohydrates went up, but GSH concentration dropped down with the enhancement of [Cd2+]F, indicating their association with Cd detoxification. Although the inactivation of MC peptide synthetase gene had some nutrient and Cd concentration dependent effects on the parameters above, both cyanobacterial strains showed the same Cd accumulation ability and displayed similar Cd sensitivity. These results suggest that MC cannot affect metal toxicity either by regulating metal accumulation or by altering the detoxification ability of the cyanobacteria. Other possible functions of MC need to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号