首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides have been extensively studied in order to elucidate their mode of action. Most of these peptides have been shown to exert a bactericidal effect on the cytoplasmic membrane of bacteria. Lactoferricin is an antimicrobial peptide with a net positive charge and an amphipatic structure. In this study we examine the effect of bovine lactoferricin (lactoferricin B; Lfcin B) on bacterial membranes. We show that Lfcin B neither lyses bacteria, nor causes a major leakage from liposomes. Lfcin B depolarizes the membrane of susceptible bacteria, and induces fusion of negatively charged liposomes. Hence, Lfcin B may have additional targets responsible for the antibacterial effect.  相似文献   

2.
抗菌肽Lactoferricin生物学功能及其应用研究进展   总被引:4,自引:0,他引:4  
概述了乳铁蛋白活性多肽(lactofericin)所具有的广谱抗菌、抗寄生虫、抗病毒、抗癌、抗氧化等多种生物学活性,讨论了lactnferricin的制备方法,并对lactnferricin作为饲料添加剂的应用前景作了初步探讨。  相似文献   

3.
Bovine lactoferricin (Lfcin B) belongs to the antimicrobial peptide family, which is the first line of defense against pathogens in many organisms. Lfcin B has important applications due to its antiviral, antifungal, antiparasitic, anticancer/tumor and antibacterial activity.In this work, we tested five triazine dyes for Lfcin B affinity interactions using surface plasmon resonance (SPR) technology. Recombinant Lfcin B was expressed as a fusion protein with GST (Lfcin B-GST) by using the baculovirus expression vector system and the dye-Sepharose matrices were assayed for Lfcin B-GST adsorption and subsequent elution.Red HE-3B and Yellow HE-4R dyes were selected and immobilized on a Sepharose-4B matrix for further purification studies. The Yellow HE-4R-Sepharose matrix was specific for Lfcin B and allowed adsorption of Lfcin B-GST directly from the culture medium even at high salt concentration.This novel application of SPR to screen possible dye–peptide interactions could be relevant to purify other peptides or proteins by using low-cost dye-affinity chromatography.  相似文献   

4.
Natural antimicrobial peptides provide fundamental protection for multicellular organisms from microbes, such as Lactoferricin B (Lfcin B). Many studies have shown that Lfcin B penetrates the cell membrane and has intracellular activities. To elucidate the intracellular behavior of Lfcin B, we first used Escherichia coli K12 proteome chips to identify the intracellular targets of Lfcin B. The results showed that Lfcin B binds to two response regulators, BasR and CreB, of the two-component system. For further analysis, we conducted several in vitro and in vivo experiments and utilized bioinformatics methods. The electrophoretic mobility shift assays and kinase assays indicate that Lfcin B inhibits the phosphorylation of the response regulators (BasR and CreB) and their cognate sensor kinases (BasS and CreC). Antibacterial assays showed that Lfcin B reduced E. coli's tolerance to environmental stimuli, such as excessive ferric ions and minimal medium conditions. This is the first study to show that an antimicrobial peptide inhibits the growth of bacteria by influencing the phosphorylation of a two-component system directly.  相似文献   

5.
Deacetylation of N-acetylhexosamine residues in structural polysaccharides and glycoconjugates is catalyzed by different families of carbohydrate esterases that, despite different structural folds, share a common metal-assisted acid/base mechanism with the metal cation coordinated with a conserved Asp-His-His triad. These enzymes serve diverse biological functions in the modification of cell-surface polysaccharides in bacteria and fungi as well as in the metabolism of hexosamines in the biosynthesis of cellular glycoconjugates. Focusing on carbohydrate de-N-acetylases, this article summarizes the background of the different families from a structural and functional viewpoint and covers advances in the characterization of novel enzymes over the last 2–3 years. Current research is addressed to the identification of new deacetylases and unravel their biological functions as they are candidate targets for the design of antimicrobials against pathogenic bacteria and fungi. Likewise, some families are also used as biocatalysts for the production of defined glycostructures with diverse applications.  相似文献   

6.
The introduction of non-natural entities into proteins by chemical modification has numerous applications in fundamental biological science and for the development and manipulation of peptide and protein therapeutics. The reduction of native disulfide bonds provides a convenient method to access two nucleophilic cysteine residues that can serve as ideal attachment points for such chemical modification. The optimum bioconjugation strategy utilizing these cysteine residues should include the reconstruction of a bridge to mimic the role of the disulfide bond, maintaining structure and stability of the protein. Furthermore, the bridging chemical modification should be as rapid as possible to prevent problems associated with protein unfolding, aggregation, or disulfide scrambling. This study reports on an in situ disulfide reduction-bridging strategy that ensures rapid sequestration of the free cysteine residues in a bridge, using dithiomaleimides. This approach is then used to PEGylate the peptide hormone somatostatin and retention of biological activity is demonstrated.  相似文献   

7.
Summary Hydrophobic and aromatic interactions are most critical for membrane peptide receptor-ligand complex stability. We have hypothesized that proper location of hydrophilic counterparts to lipophilic and/or aromatic residues may stabilize complexation with the receptor pocket. In this work, we are presenting the biological consequences of introduction of a hydroxymethyl group into the α-position of phenylalanine or tyrosine residues of enkephalin or deltorphin analogues. The consequences of such a modification are strongly dependent on the position of the primary amino acid in the peptide chain.  相似文献   

8.
Des-acyl-ghrelin is a 28 amino acid peptide secreted by both human and rat stomach. Together with ghrelin and obestatin, it is obtained by post-translational modification of a 117 aminoacid prepropeptide mainly expressed in distinct endocrine cell type in the stomach. Although its receptor has not been unambiguously identified so far, des-acyl-ghrelin is considered one of the strongest antagonists of ghrelin in activating the growth hormone secretagogue receptor (GHS-R). Here the secondary structure of des-acyl-ghrelin in different experimental conditions has been investigated and compared with that of obestatin, a bioactive peptide having similar biological functions. CD and NMR techniques have been combined for gaining the desired conformational features. The obtained structures support a steady alpha-helix structure spanning residues from 7 to 14, very similar to that observed for obestatin at the same experimental conditions, leading to suggest that a similar secondary structure can be associated with the similar biological role.  相似文献   

9.
DNA phosphorothioate (PT) modification is a recently identified epigenetic modification that occurs in the sugar-phosphate backbone of prokaryotic DNA. Previous studies have demonstrated that DNA PT modification is governed by the five DndABCDE proteins in a sequence-selective and R P stereo-specific manner. Bacteria may have acquired this physiological modification along with dndFGH as a restriction-modification system. However, little is known about the biological function of Dnd proteins, especially the smallest protein, DndE, in the PT modification pathway. DndE was reported to be a DNA-binding protein with a preference for nicked dsDNA in vitro; the binding of DndE to DNA occurs via six positively charged lysine residues on its surface. The substitution of these key lysine residues significantly decreased the DNA binding affinities of DndE proteins to undetectable levels. In this study, we conducted site-directed mutagenesis of dndE on a plasmid and measured DNA PT modifications under physiological conditions by mass spectrometry. We observed distinctive differences from the in vitro binding assays. Several mutants with lysine residues mutated to alanine decreased the total frequency of PT modifications, but none of the mutants completely eliminated PT modification. Our results suggest that the nicked dsDNA-binding capacity of DndE may not be crucial for PT modification and/or that DndE may have other biological functions in addition to binding to dsDNA.  相似文献   

10.
Gastrin releasing peptide (GRP) is a 27-residue peptide hormone which is analogous to the amphibian peptide bombesin. GRP serves a variety of physiological functions and has been implicated as an autocrine factor in the growth regulation of small cell lung cancer cells. We have developed a series of potent GRP antagonists by modification of the COOH terminus of N-acetyl-GRP-20-27. The most potent member of this series, N-acetyl-GRP-20-26-OCH2CH3, exhibits an IC50 of 4 nM in a competitive binding inhibition assay. This compound blocks GRP-stimulated mitogenesis in Swiss 3T3 mouse fibroblasts, inhibits GRP-dependent release of gastrin in vitro, and blocks GRP-induced elevation of [Ca2+]i in H345 small cell lung cancer cells. These results demonstrate that while residues 20-27 of GRP influence binding of the parent peptide to its receptor, the COOH-terminal amino acid is primarily responsible for triggering the subsequent biological response.  相似文献   

11.
To identify the DNA binding site(s) in Escherichia coli DNA polymerase I (pol I) (Klenow fragment), we have used an active-site-directed reagent, phenylglyoxal (PG), which specifically reacts with arginine residues. Preincubation of DNA pol I with PG resulted in the loss of polymerase, 3'-5'-exonuclease, and DNA binding functions. Furthermore, the presence of DNA but not deoxynucleoside triphosphates protected the enzyme from inactivation. Labeling studies with [7-14C]PG indicated that two arginine residues were modified per mole of enzyme. In order to locate the site of PG modification, we digested the PG-treated enzyme with trypsin and V-8 protease. The resulting peptides from each digest were then resolved on reverse-phase hydrophobic columns. An appearance of a new peptide peak was observed in both tryptic and V-8 protease digests. Since inclusion of template-primer during PG modification of enzyme blocks the appearance of these peaks, these peptides were concluded to represent the template-primer binding domain of pol I. Indeed, the extent of inactivation of enzyme by PG treatment correlated very well with the quantitative increase in the new tryptic peptide peak. Amino acid composition analysis of both tryptic peptide and V-8 peptide revealed that the two peptides were derived from the same general region; tryptic peptide spanned between residues 837 and 857 while V-8 peptide spanned between residues 841 and 870 in the primary sequence of pol I. Sequence analysis of tryptic peptide further identified arginine-841 as the site of PG modification, which implicates this residue in the DNA binding function of pol I.  相似文献   

12.
L-cell proliferation was markedly enhanced by addition to the medium of a synthetic peptide corresponding to residues 1-18 of human beta-casein. Experiments using several synthetic peptides of decreasing length demonstrated that L-S-S-S-E-E (residues 7-12), a major phosphorylation site in beta-casein, appeared to be important for the activity. The phosphorylated beta-casein peptide showed no activity. Recent findings have demonstrated that a similar sequence, S-E-E-E or S-D-D-E, is commonly present in many oncoproteins derived from nuclear oncogenes such as myc, myb and E1A, and plays an important role in transformation functions. The beta-casein peptide may affect mammalian cell proliferation through a modification of of the oncoprotein functions.  相似文献   

13.
Oligopeptidases, and the emergence of the prolyl oligopeptidase family.   总被引:7,自引:0,他引:7  
Oligopeptidases are endopeptidases that are not proteinases in the strict sense, since they do not hydrolyse peptide bonds in proteins, but act only on smaller polypeptides or oligopeptides. These enzymes apparently perform important, specialized biological functions that include the modification or destruction of peptide messenger molecules. Oligopeptidases have few naturally occurring inhibitors, and their distinctive specificity prevents them from interacting with alpha 2-macroglobulin, unlike the great majority of endopeptidases. The specificity of these specialized endopeptidases doubtless depends upon the three-dimensional structure of the active site, but no crystallographic structure is yet available for an oligopeptidase. Study of the primary structure of prolyl oligopeptidase has recently shown that it is a member of a new family of serine-type peptidases most of which are exopeptidases. The alignment of the sequences leads to the identification of some catalytic triad residues that have not yet been elucidated experimentally.  相似文献   

14.
Hydrophobic and aromatic interactions are most critical for membrane peptide receptor-ligand complex stability. We have hypothesized that proper location of hydrophilic counterparts to lipophilic and/or aromatic residues may stabilize complexation with the receptor pocket. In this work, we are presenting the biological consequences of introduction of a hydroxymethyl group into the -position of phenylalanine or tyrosine residues of enkephalin or deltorphin analogues. The consequences of such a modification are strongly dependent on the position of the primary amino acid in the peptide chain.  相似文献   

15.
Peptide-based hydrogels are attractive biological materials. Study of their self-assembly pathways from their monomer structures is important not only for undertaking the rational design of peptide-based materials, but also for understanding their biological functions and the mechanism of many human diseases relative to protein aggregation. In this work, we have monitored the conformation, morphological, and mechanical properties of a hydrogel-forming peptide during hydrogelation in different dimethylsulfoxide (DMSO)/H2O solutions. The peptide shows nanofiber morphologies in DMSO/H2O solution with a ratio lower than 4:1. Increased water percentage in the solution enhanced the hydrogelation rate and gel strength. One-dimensional and two-dimensional proton NMR and electron microscopy studies performed on the peptide in DMSO/H2O solution with different ratios indicate that the peptide monomer tends to adopt a more helical structure during the hydrogelation as the DMSO/H2O ratio is reduced. Interestingly, at the same DMSO/H2O ratio, adding Ca2+ not only promotes peptide hydrogelation and gel strength, but also leads to special shear-thinning and recovery properties of the hydrogel. Without changing the peptide conformation, Ca2+ binds to the charged Asp residues and induces the change of interfiber interactions that play an important role in hydrogel properties.  相似文献   

16.
In the presence of O2, Fe(III) or Cu(II), and an appropriate electron donor, a number of enzymic and nonenzymic oxygen free radical-generating systems are able to catalyze the oxidative modification of proteins. Whereas random, global modification of many different amino acid residues and extensive fragmentation occurs when proteins are exposed to oxygen radicals produced by high energy radiation, only one or a few amino acid residues are modified and relatively little peptide bond cleavage occurs when proteins are exposed to metal-catalyzed oxidation (MCO) systems. The available evidence indicates that the MCO systems catalyze the reduction of Fe(III) to Fe(II) and of O2 to H2O2 and that these products react at metal-binding sites on the protein to produce active oxygen (free radical?) species (viz; OH, ferryl ion) which attack the side chains of amino acid residues at the metal-binding site. Among other modifications, carbonyl derivatives of some amino acid residues are formed; prolyl and arginyl residues are converted to glutamylsemialdehyde residues, lysyl residues are likely converted to 2-amino-adipylsemialdehyde residues; histidyl residues are converted to asparagine and/or aspartyl residues; prolyl residues are converted to glutamyl or pyroglutamyl residues; methionyl residues are converted to methionylsulfoxide residues; and cysteinyl residues to mixed-disulfide derivatives. The biological significance of these metal ion-catalyzed reactions is highlighted by the demonstration: (i) that oxidative modification of proteins "marks" them for degradation by most common proteases and especially by the cytosolic multicatalytic proteinase from mammalian cells; (ii) protein oxidation contributes substantially to the intracellular pool of catalytically inactive and less active, thermolabile forms of enzymes which accumulate in cells during aging, oxidative stress, and in various pathological states, including premature aging diseases (progeria, Werner's syndrome), muscular dystrophy, rheumatoid arthritis, cataractogenesis, chronic alcohol toxicity, pulmonary emphysema, and during tissue injury provoked by ischemia-reperfusion. Furthermore, the metal ion-catalyzed protein oxidation is the basis of biological mechanisms for regulating changes in enzyme levels in response to shifts from anaerobic to aerobic metabolism, and probably from one nutritional state to another. It is also involved in the killing of bacteria by neutrophils and in the loss of neutrophil function following repeated cycles of respiratory burst activity.  相似文献   

17.
The utilization of peptide ligands in biosensors and bioassays is dependent on achieving high affinity of these peptides toward their targets. In a previous report, we identified 12-mer peptides that could selectively bind to Staphylococcal enterotoxin B (SEB) using a phage-display library. In this study, we explore for new modification approaches to enhance the affinity of two different SEB-binding peptides. In order to identify the binding regions of selected peptides, the charged residues and the ones, critical for the structure of peptide, were replaced with alanine. However, a specific binding region could not be suggested as all mutant peptides have lost their affinities toward SEB completely. The modifications for the affinity enhancement were done by repeating the 12-mer peptide sequences. A 10-fold increase was observed in the binding affinity of one of the two-repeated peptides, while this modification did not affect the affinity of the other tested peptide. The peptide, with enhanced affinity, was further modified as three repeats; however the affinity of the peptide decreased. The structural basis of the affinity difference between modified peptides was examined by molecular dynamics simulation. The results showed that the conformational differences hold the key for affinity of peptides modified by repeating the sequence. This high affinity peptide with increased affinity is a promising molecular recognition agent to be used in the detection of SEB to be utilized in biosensing systems.  相似文献   

18.
A number of recent studies have shown that heparan sulfate can control several important biological events on the cell surface through changes in sulfation pattern. The in vivo modification of sugar chains with sulfates, however, is complicated, and the discrimination of different sulfation patterns is difficult. Heparin, which is primarily produced by mast cells, is closely approximated by the structural analog heparan sulfate. Screening of heparin-associating peptides using phage display and antithrombin-bound affinity chromatography identified a peptide, heparin-associating peptide Y (HappY), that acts as a target of immobilized heparin. The peptide consists of 12 amino acid residues with characteristic three arginines and exclusively binds to heparin and heparan sulfate but does not associate with other glycosaminoglycans. HappY recognizes three consecutive monosaccharide residues in heparin through its three arginine residues. HappY should be a useful probe to detect heparin and heparan sulfate in studies of glycobiology.  相似文献   

19.
M Goodman 《Biopolymers》1985,24(1):137-155
A general approach to study peptide structure is presented using three areas of ongoing research in our laboratories. The first involves the molecular basis for taste of peptide derivatives. We synthesized dipeptides based on L -aspartyl-α-aminocycloalkane carboxylic acid methyl ester. A homologous series of cycloalkane derivatives was studied. The cyclopropane, cyclobutane, and cyclopentane derivatives are sweet, the cyclohexane and cycloheptane peptides are bitter, and the cyclooctane homolog is tasteless. The related acyclic analog L -aspartyl-aminoisobutyric acid methyl ester is sweet, while the L -aspartyl diethyl glycine carboxylic acid methyl ester is tasteless. A model is presented to explain these experimental observations. The second area involves depsipeptides as isosteric replacements of α-hydroxy acids for amino acid residues in peptide chains. We have synthesized sequentially defined polydepsipeptides as model systems for polypeptides. A detailed analysis of the conformational order for these polydepsipeptides is presented. The third area involves partial retro–inverso peptide modifications of isomeric cyclic enkephalin analogs, which illustrate the relationship between the modification and biological activity. We are probing the intramolecular hydrogen-bonding features for these biologically active molecules. From such findings we are relating the structural and conformational preferences deduced from spectroscopy and molecular mechanics to biological activity.  相似文献   

20.
NO is a versatile free radical that mediates numerous biological functions within every major organ system. A molecular pathway by which NO accomplishes functional diversity is the selective modification of protein cysteine residues to form S-nitrosocysteine. This post-translational modification, S-nitrosylation, impacts protein function, stability, and location. Despite considerable advances with individual proteins, the in vivo biological chemistry, the structural elements that govern the selective S-nitrosylation of cysteine residues, and the potential overlap with other redox modifications are unknown. In this minireview, we explore the functional features of S-nitrosylation at the proteome level and the structural diversity of endogenously modified residues, and we discuss the potential overlap and complementation that may exist with other cysteine modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号