首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We reared juvenile Chinook salmon for two consecutive flood seasons within various habitats of the Cosumnes River and its floodplain to compare fish growth in river and floodplain habitats. Fish were placed in enclosures during times when wild salmon would naturally be rearing in floodplain habitats. We found significant differences in growth rates between salmon reared in floodplain and river enclosures. Salmon reared in seasonally inundated habitats with annual terrestrial vegetation experienced higher growth rates than those reared in a perennial pond on the floodplain. Growth of fish in the non-tidal river upstream of the floodplain varied with flow in the river. When flows were high, there was little growth and high mortality, but when the flows were low and clear, the fish grew rapidly. Fish displayed very poor growth in tidally influenced river habitat below the floodplain, a habitat type to which juveniles are commonly displaced during high flow events due to a lack of channel complexity in the main-stem river. Overall, ephemeral floodplain habitats supported higher growth rates for juvenile Chinook salmon than more permanent habitats in either the floodplain or river. Variable responses in both growth and mortality, however, indicate the importance of providing habitat complexity for juvenile salmon in floodplain reaches of streams, so fish can find optimal places for rearing under different flow conditions.  相似文献   

2.
To evaluate the influence of main channel–floodplain connectivity on fish assemblage diversity in floodplains associated with streams and small rivers, fish assemblages and habitat characteristics were surveyed at 24 stream reaches in the Champlain Valley of Vermont, U.S.A. Fish assemblages differed markedly between the main channel and the floodplain. Fish assemblage diversity was greatest at reaches that exhibited high floodplain connectivity. Whereas certain species inhabited only main channels or floodplains, others utilized both main channel and floodplain habitats. Both floodplain fish α-diversity and γ-diversity of the entire stream corridor were positively correlated with connectivity between the main channel and its floodplain. Consistent with these results, species turnover (as measured by β-diversity) was negatively correlated with floodplain connectivity. Floodplains with waterbodies characterized by a wide range of water depths and turbidity levels exhibited high fish diversity. The results suggest that by separating rivers from their floodplains, incision and subsequent channel widening will have detrimental effects on multiple aspects of fish assemblage diversity across the stream–floodplain ecosystem.  相似文献   

3.
Kuhlia sandvicensis, the aholehole, is a native Hawaiian fish found in both marine and freshwater habitats. In the lower reaches of streams, they are predators on stream fishes, invertebrates, and insects. Aholehole are an important food fish in the Hawaiian Islands and were often used by ancient Hawaiians in traditional ceremonies. Although aholehole are an important part of stream ecosystems and Hawaiian culture, little is known about their life history, specifically, whether a freshwater phase is obligatory. In this study, light microscopy and electron microprobe techniques were used to analyze otolith daily increments. The analysis estimated age of juveniles and provided information regarding salinity of a fish's habitat at specific points in its life. Sr/Ca profiles from otoliths of juvenile and adult fish from fresh and salt water indicated that this species' use of stream habitats is facultative. Unlike Hawaiian freshwater gobies and at least one other member of the Kuhliidae from the Western Pacific, there is no physiological requirement of fresh water at a specific point in the life cycle of K. sandvicensis. Future research will provide a greater understanding as to the importance of streams as nursery habitats for this species. The research is expected to bolster the argument for maintaining the stream-ocean corridor for access by amphidromous gobies and perhaps also for the aholehole.  相似文献   

4.
Larval and juvenile stages of kurosoi,Sebastes schlegeli, are described and illustrated from wild specimens. Some ecological aspects of larvae and juveniles are also described. Notochord flexion occurred between 5.6–7.5 mm SL. Transformation occurred between 13–20 mm SL. Preflexion and flexion larvae ofS. schlegeli can be distinguished from similar larvae by the pigmentation of the dorsal and ventral midlines of the tail and absence of pigmentation on the ventral portion of the rectum. After notochord flexion, the dorsal and lateral regions in both larvae and pelagic juveniles were heavily pigmented, suggesting adaptation for neustonic life style. Larvae and juveniles were caught at many coastal stations, but did not occur in cooler offshore waters. Larvae smaller than 20 mm SL inhabited surface waters. Until ca. 40 mm SL, juveniles inhabited mainly surface waters (without drifting seaweed), but also used other habitats, such as the drifting seaweed, and near the sea bed. Small larvae (<7 mm SL) fed mainly on copepod nauplii. Larger larvae fed on calanoid copepodites andEvadne nordmanni. Pelagic juveniles fed mainly on fish eggs, with fish larvae also being important food items for some individuals. Most food items taken by juveniles that were associated with drifting seaweed were eggs with attaching filaments (Cololabis saira andHyporhamphus sajori), suggesting that the high density of such food items both attracts and keeps juveniles around drifting seaweed.  相似文献   

5.
Synopsis Diel and spatial differences in distribution were determined for the larvae, juveniles, and adults of Galaxias gracilis (Galaxiidae) in a New Zealand dune lake during summer months. Larvae (mostly 10–25 mm TL) and juveniles (25–40 mm TL) inhabited shallow (0–3 m) waters of the limnetic zone and fed predominantly on two limnetic zooplankton species; Bosmina meridionalis and a calanoid copepod. At about 40 mm TL, fish moved from the limnetic to the littoral zone and expanded dietary breadth from two to over seven main prey species, including five species of littoral invertebrates. After reaching a size of about 60 mm TL, most fish moved back offshore to the deeper waters (5–15 m) of the limnetic zone during the day, moving back to the littoral zone at night to feed on invertebrates. The selection of different intra-lacustrine habitats by the various size groups of G. gracilis, and the movements between them, are interpreted as adaptive responses to the interaction between ontogenetic changes in feeding requirements and predation risk.  相似文献   

6.
In laboratory feeding trials, we analyzed the feeding behavior and selectivity of the cichlid, Sarotherodon galilaeum, for zooplankton prey from Lake Kinneret, Israel. The feeding behavior was dependent on fish size. Fish less than 20 mm SL fed on zooplankton as obligate particulate feeders. Fish from 20 to 42 mm SL fed either as particulate feeders or as filter feeders. Fish larger than 62 mm SL fed as obligate filter feeders. Particulate-feeding fish were size selective and had highest feeding electivities for large-sized zooplankton species. Filter-feeding fish had highest feeding electivities for zooplankton species with poor escape ability. In general, S. galilaeum predation pressure would be greatest on Ceriodaphnia reticulata, a large-bodied and easily captured species which is selected by both particulate-feeding and filter-feeding fish.  相似文献   

7.
Diets of the otter Lutra lutra and the American mink Mustela vison were studied by scat analysis on five woodland rivers and streams in eastern Poland. Fish constituted 51% of food biomass consumed by otters in spring‐summer and 40% in autumn‐winter, with common fish (perch Perca fluviatilis, pike Esox lucius, and roach Rutilus rutilus) being captured most frequently by the otters. Amphibians (mainly Rana temporaria, which also dominated in the living community) made up 34% of otters’ food biomass in spring‐summer and 58% in autumn‐winter. American mink relied on three prey groups: fish (40% in spring‐summer, and 10% in autumn‐winter), frogs (32% and 51%, respectively), and small mammals (21% and 36%). Out of available Micromammalia, mink strongly selected the root vole Microtus oeconomus. The cold season diet of both otter and mink depended on river size. On small rivers with forested valleys, otters and mink fed nearly exclusively on amphibians (72–90% of food biomass). With size of a river increasing and riverside habitat becoming more open (sedge and reed marshes instead of forests), otters shifted to catching predominantly fish (up to 76% in diet) and mink to preying on small mammals (up to 65% in diet).
Review of literature on otter and mink in Eurasia showed that their diets did not change with latitude (as indicators of climate severity and duration of water freezing) but they depended on habitats. In otter diet, the mean share of fish declined from 94% (SE 1.7) on sea shores, to 71% (SE 2.9) on lakes and fish ponds, to 64% (SE 2.8) on rivers and streams. The roles of amphibians and crustaceans increased in the same gradient (from 0 to 15%, and from 3 to 7%, respectively). On inland waters, the abundance of crayfish was the essential factor differentiating otters’ diet composition. In Eurasia, the staple food types of American mink on rivers and streams were fish (on average, 27% in diet, SE 3.9), mammals (30%, SE 5.0), and amphibians (17%, SE 4.8), whereas on lakes and ponds mink fed predominantly on birds (on average, 33% in diet, SE 10.1) and fish (28%, SE 9.5). In the Palaearctic region, over a wide gradient of habitats, otters appeared strongly specialised on prey taken from water, whereas American mink was a typical generalist capable of utilising several prey groups originating from both water and land.  相似文献   

8.
Synopsis Acará, Geophagus brasiliensis, and red-breasted bream, Tilapia rendalli, are important planktivorous cichlids in southern Brazilian lakes and reservoirs. In laboratory experiments, I quantified behavior and selectivity of different sizes of these two fish feeding on lake zooplankton. Feeding behavior depended on fish size. Fish < 30 mm were visual feeders. Fish 30–50 mm either visually fed or pump-filter fed depending on zooplankton size. Fish > 70 mm were pump-filter feeders. Replicate 1 h feeding trials revealed that, as the relative proportions of prey changed during an experiment, acará (30–42 mm, standard length) and tilapia (29–42 mm) shifted from visual feeding on large evasive copepods to filter feeding on small cladocerans and rotifers. Electivity and feeding rate increased with prey length, but were distinct for similar-sized cladocerans and copepods. Visual/filter-feeding fish had lowest electivities for small and poorly evasive rotifers and cyclopoid nauplii. They fed non-selectively on cyclopoid copepodites, had intermediate electivities for calanoid nauplii and small cladocerans, and had highest electivities for large cladocerans, cyclopoid adults, and calanoid copepodites and adults. Although belonging to different cichlid genera and native to South America and Africa, respectively, acará and red-breasted bream (= congo tilapia) exhibited similar selectivity for zooplankton. Apparently, few stereotyped feeding behaviors have evolved during the acquisition of microphagy in fish. Shift in feeding modes allows these two species to optimally exploit the variable and dynamic patchy distribution of planktonic resources.  相似文献   

9.
Fish size and habitat depth relationships in headwater streams   总被引:5,自引:0,他引:5  
Summary Surveys of 262 pools in 3 small streams in eastern Tennessee demonstrated a strong positive relationship between pool depth and the size of the largest fish within a pool (P<0.001). Similarly, the largest colonizers of newly-created deep pools were larger than the colonizers of shallow pools. We explored the role of predation risk in contributing to the bigger fish — deeper habitat pattern, which has been noted by others, by conducting five manipulative field experiments in two streams. Three experiments used stoneroller minnows (Campostoma anomalum); one used creek chubs (Semotilus atromaculatus); and one used striped shiners (Notropis chrysocephalus). The stoneroller experiments showed that survival of fish approximately 100 mm in total length (TL) was much lower in shallow pools (10 cm deep) than in deep (40 cm maximum) pools (19% versus 80% survival over 12 d in one experiment) and added cover markedly increased stoneroller survival in shallow pools (from 49% to 96% in an 11-d experiment). The creek chub experiment showed that, as for stonerollers, pool depth markedly influenced survival: the chubs survived an average of 4.9 d in shallow pools and >10.8 d in deep pools. In the striped shiner experiment in shallow artificial streamside troughs, no individuals 75–100 mm TL survived as long as 13 d, where-as smaller (20–25 mm) fish had 100% survival over 13 d. The results of the experiments show that predation risk from wading/diving animals (e.g., herons and raccoons) is much higher for larger fishes in shallow water than for these fishes in deeper water or for smaller fish in shallow water. We discuss the role of predation risk from two sources (piscivorous fish, which are more effective in deeper habitats, and diving/wading predators, which are more effective in shallow habitats) in contributing to the bigger fish — deeper habitat pattern in streams.  相似文献   

10.
Annual flooding of the permanent Sudd swamps innundates large areas of Oryza longistaminata grasslands. Fish migration into a southeast section of the seasonal floodplain was led by Clarias gariepinus, Polypterus senegalus and several small species which were intent on spawning. Channa obscura and juveniles of Oreochromis niloticus were prominent among later entrants. From a total of 23 species caught in seasonal habitats, 7 contributed over 97% of total estimated numerical and biomass densities. The latter ranged from 435–580 kg ha–1. In the 1982–83 flood-season entry to the floodplain was essentially restricted to species tolerant of oxygen-deficient waters and thereby able to penetrate the papyrus and Typha swamps of the permanent wetland. Migrants became stranded in temporary pools and subject to heavy cropping by birds.  相似文献   

11.
1. The Gambia River is the last major West African river that has not been impounded. However, a hydroelectric dam is being constructed and substantial changes to the hydrology and ecology of the system are expected. 2. Little information is available on the impact of water impoundments in semi‐arid regions on downstream floodplain fish communities, due to the scarcity of pre‐intervention data. Because profound impacts on physical habitat, salinity and nutrient transport can occur downstream of such impoundments, a knowledge of the species‐habitat associations of biota such as fishes is necessary for understanding likely changes and how to limit them. 3. Fish were sampled using cast and hand nets along two transects on the floodplain, and with fyke nets in two ‘bolongs’ (creeks) from May to November 2005 and 2006 in the lower reaches of the Gambia River, close to the salt water front where ecological changes due to the construction of the dam are likely to be pronounced. 4. Greatest fish species richness was associated with low conductivity, low pH and deep water. Bolongs held greater species richness compared with other floodplain habitats, probably because they acted as conduits for fish moving on and off the floodplain. Species richness and catch biomass increased rapidly following the first rains and then declined. 5. Using a multivariate analysis, three main species groups were identified on the floodplain; one associated with deeper water, one with less brackish water and one with shallow, open water. Tilapia guineensis was the commonest species on the floodplains. 6. The floodplains provide nursery habitats as many fish captured were immature, particularly for species where adults are mainly encountered in the main channel. Several small‐sized floodplain specialists were also represented by a high proportion of mature individuals. 7. Impoundment is expected to reduce seasonal flooding of the floodplain in the lower Gambia River, downstream of the impoundment, resulting in reduced occurrence of aquatic habitats, especially bolongs, together with lower dissolved oxygen and increased salinity, leading to alteration of the floodplain fish communities, benefiting salt‐tolerant species, reducing overall species richness and probably reducing floodplain fish production.  相似文献   

12.
1. Conspecific populations living in habitats with different risks of predation often show phenotypic variation in defensive traits. Traits of two species of mayflies (Baetidae: Baetis bicaudatus and Baetis sp. nov.) differ between populations living in fish and fishless streams in a high altitude drainage basin in western Colorado, U.S.A. We tested for genetic differentiation between mayfly populations in these two habitat types, assuming that lack of genetic differentiation would be consistent with the hypothesis that those traits are phenotypically plastic. 2. Previous work has shown that larvae of both species behave differently and undergo different developmental pathways in adjacent fish and fishless streams. These phenotypic differences in behaviour and development have been induced experimentally, suggesting that populations from fishless streams have the genetic capability to respond to fish. 3. During summer 2001 we collected Baetis larvae from several fish and fishless streams, and from fish and fishless sections of the same streams. We used allozymes and a fragment of the cytochrome oxidase subunit 1 mitochondrial gene to examine genetic variation of Baetis individuals within and among streams. 4. Results showed that genetic variation exists among populations of the same species of Baetis from different streams, but none of that variation was associated with the presence or absence of fish. These data confirm that populations of Baetis living in fish and fishless streams are not genetically distinct, and are consistent with the hypothesis that traits associated with environments of different risk are phenotypically plastic.  相似文献   

13.

The effects of feed deprivation were evaluated for 1 week and 2 weeks in Lutjanus guttatus juveniles. A significant reduction in body mass was observed in both feed deprivation schemes, as well as in hepatosomatic, viscerosomatic and mesenteric fat indexes. The composition of fasted fish was characterized by a decrease in lipid content; the liver displayed an intense reduction of lipid reserves in both fasted groups, and increased expression of the lysosomal acid lipase. 1 week after re-feeding, both experimental groups showed an increase in specific growth rate, feed intake and feed conversion ratio. A recovery in hepatic lipid reserves was observed, and the expression of the lysosomal acid lipase decreased, although lipid content in both groups was still significantly lower than in control groups. Hepatic expression of the growth hormone receptor decreased after fasting, and remained low even after the fish were fed, whereas the expression of insulin-like growth factor 1 and 2 increased after fasting and decreased in both groups when fish were fed again. Altogether, these results showed a partial compensatory growth response in L. guttatus juveniles after fasting, with enhanced growth rates and improved feed efficiency. Fish used stored lipid reserves as the main energy source, and the expression of growth-related and lipid mobilization marker genes in the liver showed similar patterns in both fasting schemes. Based on the results, we suggest as much as 1-week fasting intervals during grow-out programmes to reduce visceral fat and increase growth rate in this species.

  相似文献   

14.
The Gambia River of West Africa is a large unobstructed river, characterized by a natural flow regime and lateral connectivity across its floodplain. Construction of a major dam, however, is planned. We compared patterns of fish diversity, habitat use, assemblage structure, and the distribution of trophic position and body morphology in riverine and floodplain habitats in Niokolo Koba National Park, located downstream of the planned dam site. A total of 49 fish species were captured, revealing a lognormal distribution as expected for species‐rich assemblages. Fish species exhibited a range of habitat use patterns, from generalist to highly habitat‐specific, and appeared to migrate laterally among habitats between seasons. Species richness was homogenous among habitats in the wet season yet appeared to increase with isolation from the main river in the dry season. Fish assemblage structure was best explained by the interaction between habitat type and season, underlining the importance of the natural flow regime and lateral connectivity among floodplain habitats. The abundance of fishes having elongate bodies increased with isolation from the main channel in the wet season only. The distribution of fishes having compressed cross‐sectional morphology decreased with isolation from the main channel in the dry season only. These patterns of trait distribution support the conclusion that variation in hydrologic connectivity structures the fish assemblage. Our results suggest that altered flow regimes and loss of floodplain habitats after damming could lead to both decreased taxonomic and functional diversity of the fish assemblage.  相似文献   

15.
This paper reports on the studies on growth of juveniles, 20–140 mm in length, of Cynoscion striatus in the sea and in aquaria. The monthly growth of these juveniles in the sea was determined by means of the analysis of length-frequency distributions of 5500 individuals throughout the year. Fish in aquaria were measured and weighed every two weeks, and were fed on known amounts of food. The relationship between the length and the weight of fish, and between the length, width and thickness of the otoliths and the length of fish were calculated and were expressed as exponential functions. On the basis of the analysis of length-frequency distributions and of back calculations it was determined that the formation of the first annulus in the otoliths of juveniles of this species occurs in specimens of 45–100 mm in length and of 1.16–10.0 g in weight. In the majority of the individuals the first annual ring was formed at a size of about 70–80 mm. In juveniles of 79–102 mm, at a temperature of 15–22° C, the maintenance requirement was 0.189 g, and the gross efficiency is 0.310 g of shrimp per gram fish per week. The efficiency of food conversion is high, its value being of 18.8%. The increment in length in these juveniles was 2.01 mm per week and the increment in weight was 0.896 g per week.  相似文献   

16.
A mediterranean-type climate exists in five widely separated regions; the Mediterranean basin, parts of western North America, parts of western and southern Australia, southwestern South Africa and parts of central Chile. Streams in these regions feature seasonal disturbances of contrasting hydrology with high predictability of the timing of flooding and drying but low constancy. We would expect fish living in these streams to avoid scouring flow and breed after cessation of the flood period. The aim of the present study was to examine the adaptation of the Yarqon bleak, Acanthobrama telavivensis, an endemic cyprinid in the coastal streams of Israel, to mediterranean-type stream (mediterranean—written with a small m, is used in connection with climate or ecological region and is distinguished from Mediterranean that is used in a geographical context, referring to the Mediterranean basin.) conditions. For that we studied its reproductive strategy (age at maturity and life span, gonad activity, oocyte maturation, spawning activity and habitats, appearance of juveniles), in a major costal stream (Yarqon). Our findings show that the Yarqon bleak exhibits life history traits attuned with a mediterranean-climate hydrologic regime. It breeds in late winter and early spring, a window of opportunity between flash floods and habitat desiccation. Being a multiple spawner allows the fish to compensate for the potential loss of part of its reproductive output due to scouring flows of late floods. The ability of the Yarqon bleak to spawn on different substrate-types enables it to take advantage of different stream conditions that pertain in different years. The fish attains pre-adult size (ca. 33–42 mm) within the first year, prior to drying out of most stream reaches, and matures by the beginning of the second year (males >41; females >42 mm). The cost of these tactics is a short life span (4–5 age groups). The reproductive strategy of the Yarqon bleak falls into the category of in-channel breeding but, unlike the case suggested by a low flow recruitment model, the fish breed during the period of flood cessation, a transitional time between high and low flows, rather than at the time of low flow. Breeding at this time of the year in mediterranean-type streams puts early stages somewhat at risk of being washed away by late floods, but gains them a longer period of growth under favorable conditions. We suggest an additional positive tradeoff that should be investigated: the reduced competition with age 0 of other fish that breed later in the season. This suggested model of recruitment during the period of flood cessation seems appropriate for fish in streams with seasonal contrasting flows of high predictability but low constancy.  相似文献   

17.
The African bonytongue, Heterotis niloticus (Osteoglossidae), is an important fisheries and aquaculture species in West Africa. This species has frequently been characterized either as an omnivore, insectivore or detritivore, the latter, in part, because of its benthic feeding habitats and possession of a gizzard (thick-walled pyloric stomach). We examined diets of two populations of H. niloticus in the Sô River in southern Benin. A population from the river channel and seasonally flooded marginal plains was dominated by juvenile and subadult size classes. Adults size classes were common in a second population from Lake Hlan, a natural lake in the river floodplain located upstream from the channel study region. Heterotis of all sizes consumed a variety of food resources, ranging from aquatic invertebrates to small seeds. Aquatic invertebrates composed a large proportion of the diets of juveniles, and adults consumed a mixture of aquatic invertebrates, seeds, and detritus. Seasonal dietary variation was observed in both populations, and diet breadth was not significantly different between populations. Aquatic invertebrates remained significant in diets of larger size classes; diets of fish between 100 and 200 mm began to include seeds and detritus, with a marked increase in the volumetric proportion of detritus in diets of fish between 300 and 400 mm in Lake Hlan and between 500 600 mm in the river. Relative gut length was inversely related to body size, which supports the notion that Heterotis is an omnivore and not a specialized detritivore. The thick-walled gizzard of Heterotis, which generally contained sand, probably aids digestion of seed coats. Because Heterotis consume mostly invertebrates and grass seeds in shallow waters of seasonal aquatic habitats and lakes the river floodplain, foraging success and fishery production should be strongly dependent on the annual flood pulse.  相似文献   

18.
Direct underwater observation of micro‐habitat use by 1838 young Atlantic salmon Salmo salar [mean LT 7·9 ± 3.1(s.d.) cm, range 3·19] and 1227 brown trout Salmo trutta (LT 10·9 ± 5·0 cm, range 3·56) showed both species were selective in habitat use, with differences between species and fish size. Atlantic salmon and brown trout selected relatively narrow ranges for the two micro‐habitat variables snout water velocity and height above bottom, but with differences between size‐classes. The smaller fishes <7 cm held positions in slower water closer to the bottom. On a larger scale, the Atlantic salmon more often used shallower stream areas, compared with brown trout. The larger parr preferred the deeper stream areas. Atlantic salmon used higher and slightly more variable mean water velocities than brown trout. Substrata used by the two species were similar. Finer substrata, although variable, were selected at the snout position, and differences were pronounced between size‐classes. On a meso‐habitat scale, brown trout were more frequently observed in slow pool‐glide habitats, while young Atlantic salmon favoured the faster high‐gradient meso‐habitats. Small juveniles <7 cm of both species were observed most frequently in riffle‐chute habitats. Atlantic salmon and brown trout segregated with respect to use of habitat, but considerable niche overlap between species indicated competitive interactions. In particular, for small fishes <7 cm of the two species, there was almost complete niche overlap for use of water depth, while they segregated with respect to water velocity. Habitat suitability indices developed for both species for mean water velocity and water depth, tended to have their optimum at lower values compared with previous studies in larger streams, with Atlantic salmon parr in the small streams occupying the same habitat as favoured by brown trout in larger streams. The data indicate both species may be flexible in their habitat selection depending on habitat availability. Species‐specific habitat overlap between streams may be complete. However, between‐species habitat partitioning remains similar.  相似文献   

19.
1. Floodplain inundation provides many benefits to fish assemblages of floodplain river systems, particularly those with a predictable annual flood pulse that drives yearly peaks in fish production. In arid‐zone rivers, hydrological patterns are highly variable and the influence of irregular floods on fish production and floodplain energy subsidies may be less clear‐cut. To investigate the importance of floodplain inundation to a dryland river fish assemblage, we sampled fish life stages on the floodplain of Cooper Creek, an Australian arid‐zone river. Sampling was focused around Windorah during a major flood in January 2004 and in isolated waterholes in March 2004 following flood drawdown. 2. Of the 12 native species known to occur in this region, 11 were present on the floodplain, and all were represented by at least two of three life‐stages – larvae, juveniles or adult fish. Late stage larvae of six fish species were found on the floodplain. There were site‐specific differences in larval species assemblages, individual species abundances and larval distribution patterns among floodplain sites. 3. Significant growth was evident on the floodplain, particularly by larval and juvenile fish, reflecting the combination of high water temperatures and shallow, food rich habitats provided by the relatively flat floodplain. 4. Low variation in biomass, species richness and presence/absence of juvenile and adult fish across four floodplain sites indicates consistently high fish productivity across an extensive area. 5. Similarities and differences in fish biomass between the floodplain and isolated post‐flood waterholes suggest high rates of biomass transfer (involving the most abundant species) into local waterholes and, potentially, biomass transfer by some species to other waterholes in the catchment during floodplain inundation and after floods recede. 6. The high concentration of fish on this shallow floodplain suggests it could be a key area of high fish production that drives a significant proportion of waterhole productivity in the vicinity. The Windorah floodplain provides favourable conditions necessary for the spawning of some species and juvenile recruitment of the majority of species. It is also appears to be a significant conduit for the movements of fish that underpin high genetic similarity, hence population mixing, of many species throughout the Cooper Creek catchment. The high floodplain fish production in turn provides a significant energy subsidy to waterholes after floodwaters recede. 7. The identification of key sites of high fish production, such as the Windorah floodplain, may be important from a conservation perspective. Key management principles should be: maintenance of the natural flooding regime; identification of the most productive floodplain areas; and maintenance of their connectivity to anastomosing river channels and the remnant aquatic habitats that ultimately sustain this fish assemblage through long‐term dry/drought and flood cycles.  相似文献   

20.
Synopsis We experimentally manipulated fish grazing pressure to determine whether fish herbivory played an important role in the structure of a Costa Rican stream. Non-planktonic plant matter represented a significant percentage ( 25%) of the diet of 77% of the 17 fish species in the community. We prevented fish grazing on macrophytes, tree leaves, and periphyton using fish exclusion cages. Fish grazedPanicum sp., used as a generalized aquatic macrophyte, to the stems after 6 days in control areas, and consumed all or much ofFicus insipida andMonstera sp. leaves when placed in the stream after 48 hours. Plants and leaves experimentally protected by cages remained intact. In periphyton studies, fifty percent more ash free dry weight occurred on 25 × 25 cm floor tiles protected from fish grazing by cages than on tiles in roofless controls exposed to fish grazing for 19 days, suggesting a reduction in periphyton biomass. These results demonstrate that fish herbivory affects macrophyte abundance, and impacts the amount of leaf litter in the stream. Fish herbivory may also have an important effect on overall periphyton biomass. Herbivorous fish species generally represent a larger proportion of the total fish community in tropical compared to temperate streams; thus fish grazing is more likely to have an important influence on plant and animal abundances and distributions in tropical streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号