首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao Y  Sanner MF 《Proteins》2007,68(3):726-737
Conformational changes of biological macromolecules when binding with ligands have long been observed and remain a challenge for automated docking methods. Here we present a novel protein-ligand docking software called FLIPDock (Flexible LIgand-Protein Docking) allowing the automated docking of flexible ligand molecules into active sites of flexible receptor molecules. In FLIPDock, conformational spaces of molecules are encoded using a data structure that we have developed recently called the Flexibility Tree (FT). While the FT can represent fully flexible ligands, it was initially designed as a hierarchical and multiresolution data structure for the selective encoding of conformational subspaces of large biological macromolecules. These conformational subspaces can be built to span a range of conformations important for the biological activity of a protein. A variety of motions can be combined, ranging from domains moving as rigid bodies or backbone atoms undergoing normal mode-based deformations, to side chains assuming rotameric conformations. In addition, these conformational subspaces are parameterized by a small number of variables which can be searched during the docking process, thus effectively modeling the conformational changes in a flexible receptor. FLIPDock searches the variables using genetic algorithm-based search techniques and evaluates putative docking complexes with a scoring function based on the AutoDock3.05 force-field. In this paper, we describe the concepts behind FLIPDock and the overall architecture of the program. We demonstrate FLIPDock's ability to solve docking problems in which the assumption of a rigid receptor previously prevented the successful docking of known ligands. In particular, we repeat an earlier cross docking experiment and demonstrate an increased success rate of 93.5%, compared to original 72% success rate achieved by AutoDock over the 400 cross-docking calculations. We also demonstrate FLIPDock's ability to handle conformational changes involving backbone motion by docking balanol to an adenosine-binding pocket of protein kinase A.  相似文献   

2.
Reliability in docking of ligand molecules to proteins or other targets is an important challenge for molecular modeling. Applications of the docking technique include not only prediction of the binding mode of novel drugs, but also other problems like the study of protein-protein interactions. Here we present a study on the reliability of the results obtained with the popular AutoDock program. We have performed systematical studies to test the ability of AutoDock to reproduce eight different protein/ligand complexes for which the structure was known, without prior knowledge of the binding site. More specifically, we look at factors influencing the accuracy of the final structure, such as the number of torsional degrees of freedom in the ligand. We conclude that the Autodock program package is able to select the correct complexes based on the energy without prior knowledge of the binding site. We named this application blind docking, as the docking algorithm is not able to "see" the binding site but can still find it. The success of blind docking represents an important finding in the era of structural genomics.  相似文献   

3.
Park H  Lee J  Lee S 《Proteins》2006,65(3):549-554
A major problem in virtual screening concerns the accuracy of the binding free energy between a target protein and a putative ligand. Here we report an example supporting the outperformance of the AutoDock scoring function in virtual screening in comparison to the other popular docking programs. The original AutoDock program is in itself inefficient to be used in virtual screening because the grids of interaction energy have to be calculated for each putative ligand in chemical database. However, the automation of the AutoDock program with the potential grids defined in common for all putative ligands leads to more than twofold increase in the speed of virtual database screening. The utility of the automated AutoDock in virtual screening is further demonstrated by identifying the actual inhibitors of various target enzymes in chemical databases with accuracy higher than the other docking tools including DOCK and FlexX. These results exemplify the usefulness of the automated AutoDock as a new promising tool in structure-based virtual screening.  相似文献   

4.
The adenylyl cyclase toxins produced by bacteria (such as the edema factor (EF) of Bacillus anthracis and CyaA of Bordetella pertussis) are important virulence factors in anthrax and whooping cough. Co-crystal structures of these proteins differ in the number and positioning of metal ions in the active site. Metal ions bound only to the ligands in the crystal structures are not included during the docking. To determine what effect these "missing" metals have on docking results, the AutoDock, LigandFit/Cerius2, and FlexX programs were compared for their ability to correctly place substrate analogues and inhibitors into the active sites of the crystal structures of EF, CyaA, and mammalian adenylate cyclase. Protonating the phosphates of substrate analogues improved the accuracy of docking into the active site of CyaA, where the grid did not account for one of the three Mg2+ ions in the crystal structure. The AutoDock ranking (based on docking energies) of a test group of compounds was relatively unaffected by protonation of carboxyl groups. However, the ranking by FlexX-ChemScore varied significantly, especially for docking to CyaA, suggesting that alternate protonation states should be tested when screening compound libraries with this program. When the charges on the bound metal were set correctly, AutoDock was the most reliable program of the three tested with respect to positioning substrate analogues and ranking compounds according to their experimentally determined ability to inhibit EF.  相似文献   

5.
Lee J  Seok C 《Proteins》2008,70(3):1074-1083
Computational prediction of protein-ligand binding modes provides useful information on the relationship between structure and activity needed for drug design. A statistical rescoring method that incorporates entropic effect is proposed to improve the accuracy of binding mode prediction. A probability function for two sampled conformations to belong to the same broad basin in the potential energy surface is introduced to estimate the contribution of the state represented by a sampled conformation to the configurational integral. The rescoring function is reduced to the colony energy introduced by Xiang et al. (Proc Natl Acad Sci USA 2002;99:7432-7437) when a particular functional form for the probability function is used. The scheme is applied to rescore protein-ligand complex conformations generated by AutoDock. It is demonstrated that this simple rescoring improves prediction accuracy substantially when tested on 163 protein-ligand complexes with known experimental structures. For example, the percentage of complexes for which predicted ligand conformations are within 1 A root-mean-square deviation from the native conformations is doubled from about 20% to more than 40%. Rescoring with 11 different scoring functions including AutoDock scoring functions were also tested using the ensemble of conformations generated by Wang et al. (J Med Chem 2003;46:2287-2303). Comparison with other methods that use clustering and estimation of conformational entropy is provided. Examination of the docked poses reveals that the rescoring corrects the predictions in which ligands are tightly fit into the binding pockets and have low energies, but have too little room for conformational freedom and thus have low entropy.  相似文献   

6.
Chen R  Mintseris J  Janin J  Weng Z 《Proteins》2003,52(1):88-91
We have developed a nonredundant benchmark for testing protein-protein docking algorithms. Currently it contains 59 test cases: 22 enzyme-inhibitor complexes, 19 antibody-antigen complexes, 11 other complexes, and 7 difficult test cases. Thirty-one of the test cases, for which the unbound structures of both the receptor and ligand are available, are classified as follows: 16 enzyme-inhibitor, 5 antibody-antigen, 5 others, and 5 difficult. Such a centralized resource should benefit the docking community not only as a large curated test set but also as a common ground for comparing different algorithms. The benchmark is available at (http://zlab.bu.edu/~rong/dock/benchmark.shtml).  相似文献   

7.
Understanding the principles of protein receptor recognition, interaction, and association with molecular substrates and inhibitors is of principal importance in the drug discovery process. MOLSDOCK is a molecular docking method that we have recently developed. It uses mutually orthogonal Latin square sampling (together with a variant of the mean field technique) to identify the optimal docking conformation and pose of a small molecule ligand in the appropriate receptor site. Here we report the application of this method to simultaneously identify both the low energy conformation and the one with the best pose in the case of 62 protein-bound nucleotide ligands. The experimental structures of all these complexes are known. We have compared our results with those obtained from two other well-known molecular docking software, viz. AutoDock 4.2.3 and GOLD 5.1. The results show that the MOLSDOCK method was able to sample a wide range of binding modes for these ligands and also scores them well.  相似文献   

8.
This paper presents an approach and a software, BetaDock, to the docking problem by putting the priority on shape complementarity between a receptor and a ligand. The approach is based on the theory of the β-complex. Given the Voronoi diagram of the receptor whose topology is stored in the quasi-triangulation, the β-complex corresponding to water molecule is computed. Then, the boundary of the β-complex defines the β-shape which has the complete proximity information among all atoms on the receptor boundary. From the β-shape, we first compute pockets where the ligand may bind. Then, we quickly place the ligand within each pocket by solving the singular value decomposition problem and the assignment problem. Using the conformations of the ligands within the pockets as the initial solutions, we run the genetic algorithm to find the optimal solution for the docking problem. The performance of the proposed algorithm was verified through a benchmark test and showed that BetaDock is superior to a popular docking software AutoDock 4.  相似文献   

9.
Thomsen R 《Bio Systems》2003,72(1-2):57-73
The docking of ligands to proteins can be formulated as a computational problem where the task is to find the most favorable energetic conformation among the large space of possible protein-ligand complexes. Stochastic search methods such as evolutionary algorithms (EAs) can be used to sample large search spaces effectively and is one of the commonly used methods for flexible ligand docking. During the last decade, several EAs using different variation operators have been introduced, such as the ones provided with the AutoDock program. In this paper we evaluate the performance of different EA settings such as choice of variation operators, population size, and usage of local search. The comparison is performed on a suite of six docking problems previously used to evaluate the performance of search algorithms provided with the AutoDock program package. The results from our investigation confirm that the choice of variation operators has an impact on the search-capabilities of EAs. The introduced DockEA using the best settings found obtained the overall best docking solutions compared to the Lamarckian GA (LGA) provided with AutoDock. Furthermore, the DockEA proved to be more robust than the LGA (in terms of reproducing the results in several runs) on the more difficult problems with a high number of flexible torsion angles.  相似文献   

10.
We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms.  相似文献   

11.
12.
Lee HS  Zhang Y 《Proteins》2012,80(1):93-110
We developed BSP‐SLIM, a new method for ligand–protein blind docking using low‐resolution protein structures. For a given sequence, protein structures are first predicted by I‐TASSER; putative ligand binding sites are transferred from holo‐template structures which are analogous to the I‐TASSER models; ligand–protein docking conformations are then constructed by shape and chemical match of ligand with the negative image of binding pockets. BSP‐SLIM was tested on 71 ligand–protein complexes from the Astex diverse set where the protein structures were predicted by I‐TASSER with an average RMSD 2.92 Å on the binding residues. Using I‐TASSER models, the median ligand RMSD of BSP‐SLIM docking is 3.99 Å which is 5.94 Å lower than that by AutoDock; the median binding‐site error by BSP‐SLIM is 1.77 Å which is 6.23 Å lower than that by AutoDock and 3.43 Å lower than that by LIGSITECSC. Compared to the models using crystal protein structures, the median ligand RMSD by BSP‐SLIM using I‐TASSER models increases by 0.87 Å, while that by AutoDock increases by 8.41 Å; the median binding‐site error by BSP‐SLIM increase by 0.69Å while that by AutoDock and LIGSITECSC increases by 7.31 Å and 1.41 Å, respectively. As case studies, BSP‐SLIM was used in virtual screening for six target proteins, which prioritized actives of 25% and 50% in the top 9.2% and 17% of the library on average, respectively. These results demonstrate the usefulness of the template‐based coarse‐grained algorithms in the low‐resolution ligand–protein docking and drug‐screening. An on‐line BSP‐SLIM server is freely available at http://zhanglab.ccmb.med.umich.edu/BSP‐SLIM . Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; and 2) increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFRAutoDock for Flexible Receptors (ADFR), a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA) and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1) SEQ17 –a receptor diversity set containing 17 pairs of apo-holo structures; and 2) CDK2 –a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we show that down-weighting the receptor internal energy improves the ranking of correctly docked poses and that runtime for AutoDockFR scales linearly when side-chain flexibility is added.  相似文献   

14.
Gorelik B  Goldblum A 《Proteins》2008,71(3):1373-1386
Multiple near-optimal conformations of protein-ligand complexes provide a better chance for accurate representation of biomolecular interactions, compared with a single structure. We present ISE-dock--a docking program which is based on the iterative stochastic elimination (ISE) algorithm. ISE eliminates values that consistently lead to the worst results, thus optimizing the search for docking poses. It constructs large sets of such poses with no additional computational cost compared with single poses. ISE-dock is validated using 81 protein-ligand complexes from the PDB and its performance was compared with those of Glide, GOLD, and AutoDock. ISE-dock has a better chance than the other three to find more than 60% top single poses under RMSD = 2.0 A and more than 80% under RMSD = 3.0 A from experimental. ISE alone produced at least one 3.0 A or better solutions among the top 20 poses in the entire test set. In 98% of the examined molecules, ISE produced solutions that are closer than 2.0 A from experimental. Paired t-tests (PTT) were used throughout to assess the significance of comparisons between the performances of the different programs. ISE-dock provides more than 100-fold docking solutions in a similar time frame as LGA in AutoDock. We demonstrate the usefulness of the large near optimal populations of ligand poses by showing a correlation between the docking results and experiments that support multiple binding modes in p38 MAP kinase (Pargellis et al., Nat Struct Biol 2002;9:268-272] and in Human Transthyretin (Hamilton, Benson, Cell Mol Life Sci 2001;58:1491-1521).  相似文献   

15.
16.
Park MS  Gao C  Stern HA 《Proteins》2011,79(1):304-314
To investigate the effects of multiple protonation states on protein-ligand recognition, we generated alternative protonation states for selected titratable groups of ligands and receptors. The selection of states was based on the predicted pK(a) of the unbound receptor and ligand and the proximity of titratable groups of the receptor to the binding site. Various ligand tautomer states were also considered. An independent docking calculation was run for each state. Several protocols were examined: using an ensemble of all generated states of ligand and receptor, using only the most probable state of the unbound ligand/receptor, and using only the state giving the most favorable docking score. The accuracies of these approaches were compared, using a set of 176 protein-ligand complexes (15 receptors) for which crystal structures and measured binding affinities are available. The best agreement with experiment was obtained when ligand poses from experimental crystal structures were used. For 9 of 15 receptors, using an ensemble of all generated protonation states of the ligand and receptor gave the best correlation between calculated and measured affinities.  相似文献   

17.
Newly developed benzo[1,2‐b:4,5‐b′]dithiophene (BDT) block with 3,4‐ethylenedioxythiophene (EDOT) side chains is first employed to build efficient photovoltaic copolymers. The resulting copolymers, PBDTEDOT‐BT and PBDTEDOTFBT, have a large bandgap more than 1.80 eV, which is attributed to the increased steric hindrance between the BDT and EDOT skeletons. Both copolymers possess the satisfied absorptions, low‐lying highest occupied molecular orbital (HOMO) levels and high crystallinity. Using the fluorination strategy, PBDTEDOT‐FBT exhibits a wider and stronger absorption and a deeper HOMO level than those of PBDTEDOT‐BT. PBDTEDOT‐FBT:[6,6]‐Phenyl C71 butyric acid methyl ester (PC71BM) blend also shows the higher hole mobility and better surface morphology compared with the PBDTEDOTBT:PC71BM blend. Combination of above advantages, PBDTEDOT‐FBT devices exhibit much higher power conversion efficiency (PCE) of 10.11%, with an improved open circuit voltage (Voc) of 0.86 V, short circuit current densities (Jsc) of 16.01 mA cm?2, and fill factor (FF) of 72.6%. This work not only provides a newly efficient candidate of BDT donor block modified with EDOT conjugated side chains, but also achieves high‐performance large bandgap copolymers for polymer solar cells (PSCs) via the synergistic effect of fluorination and side chain engineering strategies.  相似文献   

18.
The automated docking program AutoDock was used to dock nine phosphatidic acids (PAs), six phosphatidylcholines, five phosphatidylethanolamines, four phosphatidylglycerols, one phosphatidylinositol and two phosphatidylserines, which have two identical saturated fatty acid residues with an even numbers of carbon atoms, onto the active site of Streptomyces sp. PMF phospholipase D (PLD). Two PAs with one double bond on the fatty acid chain linked to the C2 of the glycerol residue were also docked. In general, binding energies become progressively more negative as fatty acid residues become longer. When these residues are of sufficient length, one is coiled against a hydrophobic cliff in a well that also holds the glycerol and phosphate residues and the head group, while the other generally is bound by a hydrophobic surface outside the well. Phosphatidylcholines have the only head group that is firmly bound by the active site, giving a possible structural explanation for the low selectivity of Streptomyces PLD for other phospholipid substrates.  相似文献   

19.
Abstract

Molecular dynamics (MD) simulation using the AMBER force field has been performed on the neurotensin (NT) receptor, a class A type G-protein-coupled receptor in its activated conformation co-crystallized with the non-peptide agonists. For structure-based hit molecule identification via natural chemical compound library, orthosteric sites on NT receptor have been mapped by docking using AutoDock4.0 and Vina with the known agonists and antagonists SR48692, SR142948, ML301 and ML314 of the receptor. Furthermore, clustering analysis on the MD trajectories by SIMULAID has been performed to filter receptor conformations for the allosteric binders from the Otava natural compound library. Comparative mappings of contrasting binding region patterns have been done between the crystal structure orthosteric sites as well as the binding regions in the SIMULAID-based cluster center conformations from MD trajectories with the FTmap server using the small organic molecule fragments as the probes. The distinct binding region in the cluster-based conformations in the extracellular region of the receptor has been identified for targeted docking by Otava natural chemical compound library using AutoDock4.0 and Vina docking suites to obtain putative allosteric binders. A group of compounds from the Otava library has been identified as showing high free energy in both AutoDock4.0 and Vina docking suites. Biophysical assessments on the natural compound computational hit molecules will be done to identify lead structures from the hit molecules.

Communicated by Ramaswamy H. Sarma  相似文献   

20.
宋新蕊  李达  陈洁  赵勇 《生物信息学》2014,12(4):300-304
先导化合物发现是创新药物研发的最重要环节之一。针对目前海量功能不明确的小分子化合物,本文构建了一个用来实现快速发现先导化合物,有效降低药物研发成本的计算机辅助药物筛选平台。该平台采用分布式架构思想,集成了Auto Dock Vina和多个小分子库,具有数据安全、计算与存储的负载均衡以及实时监控的特点。应用平台进行先导化合物筛选,在较短时间发现了有针对性的活性小分子化合物,命中率高,大大缩短先导化合物发现周期。该平台具有很好的实用性和良好的扩展性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号