首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have mapped a gene in the mitochondrial DNA of Candida (Torulopsis) glabrata and shown that it is required for 5' end maturation of mitochondrial tRNAs. It is located between the tRNAfMet and tRNAPro genes, the same tRNA genes that flank the mitochondrial RNase P RNA gene in the yeast Saccharomyces cerevisiae. The gene is extremely AT rich and codes for AU-rich RNAs that display some sequence homology with the mitochondrial RNase P RNA from S. cerevisiae, including two regions of striking sequence homology between the mitochondrial RNAs and the bacterial RNase P RNAs. RNase P activity that is sensitive to micrococcal nuclease has been detected in mitochondrial extracts of C. glabrata. An RNA of 227 nucleotides that is one of the RNAs encoded by the gene that we mapped cofractionated with this mitochondrial RNase P activity on glycerol gradients. The nuclease sensitivity of the activity, the cofractionation of the RNA with activity, and the homology of the RNA with known RNase P RNAs lead us to propose that the 227-nucleotide RNA is the RNA subunit of the C. glabrata mitochondrial RNase P enzyme.  相似文献   

3.
RNAs that function in mitochondria are typically encoded by the mitochondrial DNA. However, the mitochondrial tRNAs of Trypanosoma brucei are encoded by the nuclear DNA and therefore must be imported into the mitochondrion. It is becoming evident that RNA import into mitochondria is phylogenetically widespread and is essential for cellular processes, but virtually nothing is known about the mechanism of RNA import. We have identified and characterized mitochondrial precursor tRNAs in T. brucei. The identification of mitochondrially located precursor tRNAs clearly indicates that mitochondrial tRNAs are imported as precursors. The mitochondrial precursor tRNAs hybridize to cloned nuclear tRNA genes, label with [alpha-32P]CTP using yeast tRNA nucleotidyltransferase and in isolated mitochondria via an endogenous nucleotidyltransferase-like activity, and are processed to mature tRNAs by Escherichia coli and yeast mitochondrial RNase P. We show that T. brucei mitochondrial extract contains an RNase P activity capable of processing a prokaryotic tRNA precursor as well as the T. brucei tRNA precursors. Precursors for tRNA(Asn) and tRNA(Leu) were detected on Northern blots of mitochondrial RNA, and the 5' ends of these RNAs were characterized by primer extension analysis. The structure of the precursor tRNAs and the significance of nuclear encoded precursor tRNAs within the mitochondrion are discussed.  相似文献   

4.
The gene coding for the AU-rich RNA required for mitochondrial RNase P activity in Saccharomyces cerevisiae codes for a 490-base RNA while that in Candida glabrata codes for a 227-base RNA. We have detected a 140-nucleotide RNA coded by the mitochondrial DNA from Saccharomycopsis fibuligera by hybridization with an oligonucleotide complementary to a conserved sequence found in mitochondrial and prokaryotic RNase P RNAs. DNA sequence analysis of the mitochondrial DNA from the region coding for this RNA revealed a second conserved sequence block characteristic of RNase P RNA genes and the presence of a downstream tRNA(Pro) gene. Like previously characterized mitochondrial RNase P RNAs, this small RNA is extremely AU-rich. The discovery of this 140-base RNA suggests that naturally occurring RNase P RNAs may be quite small.  相似文献   

5.
6.
Mitochondrial RNase P RNA (Rpm1r) is coded by the RPM1 gene of mitochondrial DNA in many yeasts. As an initial step to developing a genetic approach to the structure and biogenesis of yeast mitochondrial RNase P, biolistic transformation has been used to introduce wild type and altered RPM1 genes into strains containing no mitochondrial DNA. The introduced wild type gene does support RNase P activity demonstrating that pre-existing RNase P activity is not necessary for the biosynthesis of the enzyme. Mutations introduced into RPM1 in vitro result in reduced accumulation of mature tRNA and in an alteration of the processing of Rpm1r in vivo.  相似文献   

7.
Yeast mitochondrial DNA contains a genetic locus, called the tRNA synthesis locus, which codes for information necessary for mitochondrial tRNA biosynthesis. A 9S RNA molecule coded by this locus is thought to be the trans-acting element required for the removal of 5' extensions from tRNA precursors. The DNA coding for this RNA maps to a region of mitochondrial DNA known to contain strain specific restriction site polymorphisms. Comparison of the tRNA synthesis locus in two such strains by sequence analysis demonstrates that the restriction enzyme polymorphisms are due to the deletion/insertion of a 50 base pair GC-rich element in the 5' flanking sequence of the 9S RNA coding region. There are also several differences between the 9S RNA coding region of these two strains which do not interfere with the tRNA synthesis function.  相似文献   

8.
9.
The mitochondrion-associated RNase P activity (mtRNase P) was extensively purified from HeLa cells and shown to reside in particles with a sedimentation constant ( approximately 17S) very similar to that of the nuclear enzyme (nuRNase P). Furthermore, mtRNase P, like nuRNase P, was found to process a mitochondrial tRNA(Ser(UCN)) precursor [ptRNA(Ser(UCN))] at the correct site. Treatment with micrococcal nuclease of highly purified mtRNase P confirmed earlier observations indicating the presence of an essential RNA component. Furthermore, electrophoretic analysis of 3'-end-labeled nucleic acids extracted from the peak of glycerol gradient-fractionated mtRNase P revealed the presence of a 340-nucleotide RNA component, and the full-length cDNA of this RNA was found to be identical in sequence to the H1 RNA of nuRNase P. The proportions of the cellular H1 RNA recovered in the mitochondrial fractions from HeLa cells purified by different treatments were quantified by Northern blots, corrected on the basis of the yield in the same fractions of four mitochondrial nucleic acid markers, and shown to be 2 orders of magnitude higher than the proportions of contaminating nuclear U2 and U3 RNAs. In particular, these experiments revealed that a small fraction of the cell H1 RNA (of the order of 0.1 to 0.5%), calculated to correspond to approximately 33 to approximately 175 intact molecules per cell, is intrinsically associated with mitochondria and can be removed only by treatments which destroy the integrity of the organelles. In the same experiments, the use of a probe specific for the RNA component of RNase MRP showed the presence in mitochondria of 6 to 15 molecules of this RNA per cell. The available evidence indicates that the levels of mtRNase P detected in HeLa cells should be fully adequate to satisfy the mitochondrial tRNA synthesis requirements of these cells.  相似文献   

10.
11.
12.
tRNAs are synthesized as immature precursors, and on their way to functional maturity, extra nucleotides at their 5' ends are removed by an endonuclease called RNase P. All RNase P enzymes characterized so far are composed of an RNA plus one or more proteins, and tRNA 5' end maturation is considered a universal ribozyme-catalyzed process. Using a combinatorial purification/proteomics approach, we identified the components of human mitochondrial RNase P and reconstituted the enzymatic activity from three recombinant proteins. We thereby demonstrate that human mitochondrial RNase P is a protein enzyme that does not require a trans-acting RNA component for catalysis. Moreover, the mitochondrial enzyme turns out to be an unexpected type of patchwork enzyme, composed of a tRNA methyltransferase, a short-chain dehydrogenase/reductase-family member, and a protein of hitherto unknown functional and evolutionary origin, possibly representing the enzyme's metallonuclease moiety. Apparently, animal mitochondria lost the seemingly ubiquitous RNA world remnant after reinventing RNase P from preexisting components.  相似文献   

13.
A specific endonuclease involved in the processing of tRNA precursors was isolated and partially purified from the posterior silk gland of Bombyx mori, and designated as RNase P.Bmo. This enzyme was shown to catalyze the conversion of 4.5 S precursor RNA to 4.1 S RNA by trimming the 5'-additional segment from the precursor RNA. RNase P.Bmo required divalent cations, Mg2+ or Mn2+. In the presence of these divalent cations, K+ or NH4+ activated the RNase P.Bmo reaction. Optimum pH was observed around 8.0. Ribosomal RNA's and mature tRNA from the silk gland were not cleaved by RNase P.Bmo. A 4.5 S precursor RNA fraction containing formycin, an adenosine analog, was less susceptible to RNase P.Bmo than the normal one. These results indicate that RNase P.Bmo has a high substrate specificity. An additional nuclease(s) was isolated. This activity was assumed to remove the extra 3'-segment of the 4.5 S precursor RNA.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, RNase mitochondrial RNA processing (MRP) is an essential endoribonuclease that consists of one RNA component and at least nine protein components. Characterization of the complex is complicated by the fact that eight of the known protein components are shared with a related endoribonuclease, RNase P. To fully characterize the RNase MRP complex, we purified it to apparent homogeneity in a highly active state using tandem affinity purification. In addition to the nine known protein components, both Rpr2 and a protein encoded by the essential gene YLR145w were present in our preparations of RNase MRP. Precipitation of a tagged version of Ylr145w brought with it the RNase MRP RNA, but not the RNase P RNA. A temperature-sensitive ylr145w mutant was generated and found to exhibit a rRNA processing defect identical to that seen in other RNase MRP mutants, whereas no defect in tRNA processing was observed. Homologues of the Ylr145w protein were found in most yeasts, fungi, and Arabidopsis. Based on this evidence, we propose that YLR145w encodes a novel protein component of RNase MRP, but not RNase P. We recommend that this gene be designated RMP1, for RNase MRP protein 1.  相似文献   

15.
Ribonuclease P (RNase P) is a ribonucleoprotein that catalyzes the 5′ maturation of precursor transfer RNA in the presence of magnesium ions. The bacterial RNase P holoenzyme consists of one catalytically active RNA component and a single essential but catalytically inactive protein. In contrast, yeast nuclear RNase P is more complex with one RNA subunit and nine protein subunits. We have devised an affinity purification protocol to gently and rapidly purify intact yeast nuclear RNase P holoenzyme for transient kinetic studies. In pre-steady-state kinetic studies under saturating substrate concentrations, we observed an initial burst of tRNA formation followed by a slower, linear, steady-state turnover, with the burst amplitude equal to the concentration of the holoenzyme used in the reaction. These data indicate that the rate-limiting step in turnover occurs after pre-tRNA cleavage, such as mature tRNA release. Additionally, the steady-state rate constants demonstrate a large dependence on temperature that results in nonlinear Arrhenius plots, suggesting that a kinetically important conformational change occurs during catalysis. Finally, deletion of the 3′ trailer in pre-tRNA has little or no effect on the steady-state kinetic rate constants. These data suggest that, despite marked differences in subunit composition, the minimal kinetic mechanism for cleavage of pre-tRNA catalyzed by yeast nuclear RNase P holoenzyme is similar to that of the bacterial RNase P holoenzyme.  相似文献   

16.
Ribonuclease P (RNase P) is a ribozyme required for the 5' maturation of all tRNA. RNase P and the ribosome are the only known ribozymes conserved in all organisms. We set out to determine whether this ribonucleoprotein enzyme interacts with other cellular components, which may imply other functions for this conserved ribozyme. Incubation of the Bacillus subtilis RNase P holoenzyme with fractionated B. subtilis cellular extracts and purified ribosomal subunits results in the formation of a gel-shifted complex with the 30S ribosomal subunit at a binding affinity of approximately 40 nM in 0.1 M NH(4)Cl and 10 mM MgCl(2). The complex does not form with the RNase P RNA alone and is disrupted by a mRNA mimic polyuridine, but is stable in the presence of high concentrations of mature tRNA. Endogenous RNase P can also be detected in the 30S ribosomal fraction. Cleavage of a pre-tRNA substrate by the RNase P holoenzyme remains the same in the presence of the 30S ribosome, but the cleavage of an artificial non-tRNA substrate is inhibited eightfold. Hydroxyl radical protection and chemical modification identify several protected residues located in a highly conserved region in the RNase P RNA. A single mutation within this region significantly reduces binding, providing strong support on the specificity of the RNase P-30S ribosome complex. Our results also suggest that the dimeric form of the RNase P is primarily involved in 30S ribosome binding. We discuss several models on a potential function of the RNase P-30S ribosome complex.  相似文献   

17.
RNase P RNA mediated cleavage: substrate recognition and catalysis   总被引:1,自引:0,他引:1  
Kirsebom LA 《Biochimie》2007,89(10):1183-1194
The universally conserved endoribonuclease P consists of one RNA subunit and, depending on its origin, a variable number of protein subunits. RNase P is involved in the processing of a large variety of substrates in the cell, the preferred substrate being tRNA precursors. Cleavage activity does not require the presence of the protein subunit(s) in vitro. This is true for both prokaryotic and eukaryotic RNase P RNA suggesting that the RNA based catalytic activity has been preserved during evolution. Progress has been made in our understanding of the contribution of residues and chemical groups both in the substrate as well as in RNase P RNA to substrate binding and catalysis. Moreover, we have access to two crystal structures of bacterial RNase P RNA but we still lack the structure of RNase P RNA in complex with its substrate and/or the protein subunit. Nevertheless, these recent advancements put us in a new position to study the way and nature of interactions between in particular RNase P RNA and its substrate. In this review I will discuss various aspects of the RNA component of RNase P with an emphasis on our current understanding of the interaction between RNase P RNA and its substrate.  相似文献   

18.
RNase P is the endonuclease that removes 5' extensions from tRNA precursors. In its best-known form, the enzyme is composed of a catalytic RNA and a protein moiety variable in number and mass. This ribonucleoprotein enzyme is widely considered ubiquitous and apparently reached its highest complexity in the eukaryal nucleus, where it is typically composed of at least ten subunits. Here, we show that in the protist Trypanosoma brucei, two proteins are the sole forms of RNase P. They localize to the nucleus and the mitochondrion, respectively, and have RNase P activity each on their own. The protein-RNase P is, moreover, capable of replacing nuclear RNase P in yeast cells. This shows that complex ribonucleoprotein structures and RNA catalysis are not necessarily required to support tRNA 5' end formation in eukaryal cells.  相似文献   

19.
RPM2 is identified here as a high-copy suppressor of isp42-3, a temperature-sensitive mutant allele of the mitochondrial protein import channel component, Isp42p. RPM2 already has an established role as a protein component of yeast mitochondrial RNase P, a ribonucleoprotein enzyme required for the 5' processing of mitochondrial precursor tRNAs. A relationship between mitochondrial tRNA processing and protein import is not readily apparent, and, indeed, the two functions can be separated. Truncation mutants lacking detectable RNase P activity still suppress the isp42-3 growth defect. Moreover, RPM2 is required for normal fermentative yeast growth, even though mitochondrial RNase P activity is not. The portion of RPM2 required for normal growth and suppression of isp42-3 is the same. We conclude that RPM2 is a multifunctional gene. We find Rpm2p to be a soluble protein of the mitochondrial matrix and discuss models to explain its suppression of isp42-3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号