首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin VI, an actin-based motor protein, and Disabled 2 (Dab2), a molecule involved in endocytosis and cell signalling, have been found to bind together using yeast and mammalian two-hybrid screens. In polarised epithelial cells, myosin VI is known to be associated with apical clathrin-coated vesicles and is believed to move them towards the minus end of actin filaments, away from the plasma membrane and into the cell. Dab2 belongs to a group of signal transduction proteins that bind in vitro to the FXNPXY sequence found in the cytosolic tails of members of the low-density lipoprotein receptor family. The central region of Dab2, containing two DPF motifs, binds to the clathrin adaptor protein AP-2, whereas a C-terminal region contains the binding site for myosin VI. This site is conserved in Dab1, the neuronal counterpart of Dab2. The interaction between Dab2 and myosin VI was confirmed by in vitro binding assays and coimmunoprecipitation and by their colocalisation in clathrin-coated pits/vesicles concentrated at the apical domain of polarised cells. These results suggest that the myosin VI–Dab2 interaction may be one link between the actin cytoskeleton and receptors undergoing endocytosis.  相似文献   

2.
Clathrin-coated pits at the cell surface select material for transportation into the cell interior. A major mode of cargo selection at the bud site is via the micro 2 subunit of the AP-2 adaptor complex, which recognizes tyrosine-based internalization signals. Other internalization motifs and signals, including phosphorylation and ubiquitylation, also tag certain proteins for incorporation into a coated vesicle, but the mechanism of selection is unclear. Disabled-2 (Dab2) recognizes the FXNPXY internalization motif in LDL-receptor family members via an N-terminal phosphotyrosine-binding (PTB) domain. Here, we show that in addition to binding AP-2, Dab2 also binds directly to phosphoinositides and to clathrin, assembling triskelia into regular polyhedral coats. The FXNPXY motif and phosphoinositides contact different regions of the PTB domain, but can stably anchor Dab2 to the membrane surface, while the distal AP-2 and clathrin-binding determinants regulate clathrin lattice assembly. We propose that Dab2 is a typical member of a growing family of cargo-specific adaptor proteins, including beta-arrestin, AP180, epsin, HIP1 and numb, which regulate clathrin-coat assembly at the plasma membrane by synchronizing cargo selection and lattice polymerization events.  相似文献   

3.
Clathrin-mediated endocytosis regulates the internalization of many nutrient and signaling receptors. Clathrin and endocytic accessory proteins are recruited to receptors by specific adaptors. The adaptor Disabled-2 (Dab2) recruits its cargoes, including the low-density lipoprotein receptor (LDLR), and mediates endocytosis, even when the major adaptor protein AP2 is depleted. We hypothesized that the accessory proteins normally recruited by AP2 may be recruited by Dab2 if AP2 is absent. We identified one such accessory protein, the F-BAR protein FCH domain only-2 (FCHO2), as a major Dab2-interacting protein. The μ-homology domain (μHD) of FCHO2 binds directly to DPF sequences in Dab2 that also bind AP2. Disrupting the Dab2-FCHO2 interaction inhibited Dab2-mediated LDLR endocytosis in AP2-depleted cells. Depleting FCHO2 reduced the number but increased the size of clathrin structures on the adherent surface of HeLa cells and inhibited LDLR and transferrin receptor clustering. However, LDLR was internalized efficiently by FCHO2-deficient cells when additional time was provided for LDLR to enter the enlarged structures before budding, suggesting that later steps of endocytosis are normal under these conditions. These results indicate FCHO2 regulates the size of clathrin structures, and its interaction with Dab2 is needed for LDLR endocytosis under conditions of low AP2.  相似文献   

4.
F9 embryonic carcinoma (EC) cells undergo extra-embryonic endodermal (ExE) differentiation in response to retinoic acid (RA) treatment, which induces the expression of two isoforms (p96 and p67) of the adaptor protein, Disabled-2 (Dab2). In the current study, constitutive and ectopic expression of the p96 isoform induced ExE differentiation in F9 EC cells in the absence of RA treatment via the activation of GATA-4 by p96. During the RA-induced differentiation process, Dab2 expression is induced by the GATA factors in a coherent feed-forward loop; on the other hand, we showed that p96 regulates GATA-4 in a positive feed-back manner in this study. Our results indicate that p96 Dab2 plays a key role in the ExE differentiation process.  相似文献   

5.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) channel expressed in the apical plasma membrane of fluid-transporting epithelia, where the plasma membrane abundance of CFTR is in part controlled by clathrin-mediated endocytosis. The protein networks that control CFTR endocytosis in epithelial cells have only been partially explored. The assembly polypeptide-2 complex (AP-2) is the prototypical endocytic adaptor critical for optimal clathrin coat formation. AP-2 is essential for recruitment of cargo proteins bearing the YXXΦ motif. Although AP-2 interacts directly with CFTR in vitro and facilitates CFTR endocytosis in some cell types, it remains unknown whether it is critical for CFTR uptake into clathrin-coated vesicles (CCVs). Disabled-2 (Dab2) is a clathrin-associated sorting protein (CLASP) that contributes to clathrin recruitment, vesicle formation, and cargo selection. In intestinal epithelial cells Dab2 was not found to play a direct role in CFTR endocytosis. By contrast, AP-2 and Dab2 were shown to facilitate CFTR endocytosis in human airway epithelial cells, although the specific mechanism remains unknown. Our data demonstrate that Dab2 mediates AP-2 independent recruitment of CFTR to CCVs in polarized human airway epithelial cells. As a result, it facilitates CFTR endocytosis and reduces CFTR abundance and stability in the plasma membrane. These effects are mediated by the DAB homology domain. Moreover, we show that in human airway epithelial cells AP-2 is not essential for CFTR recruitment to CCVs.  相似文献   

6.
Transmembrane proteins destined to endosomes are selectively accumulated in clathrin-coated pits at the plasma membrane and rapidly internalized in clathrin-coated vesicles. The recognition of specific sequence motifs in transmembrane cargo by coated-pit proteins confers specificity on the endocytic process. Interaction of membrane cargo with the clathrin adaptor protein complex AP-2 is the major mechanism of cargo sorting into coated pits in mammalian cells. Recent studies have revealed a variety of alternative mechanisms of cargo recruitment involving additional adaptor proteins. These alternative mechanisms appear to be particularly important during clathrin-mediated endocytosis of signaling receptors.  相似文献   

7.
Reelin is a large secreted signaling protein that binds to two members of the low density lipoprotein receptor family, the apolipoprotein E receptor 2 and the very low density lipoprotein receptor, and regulates neuronal positioning during brain development. Reelin signaling requires activation of Src family kinases as well as tyrosine phosphorylation of the intracellular adaptor protein Disabled-1 (Dab1). This results in activation of phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt, and the inhibition of glycogen synthase kinase 3beta, a protein that is implicated in the regulation of axonal transport. Here we demonstrate that PI3K activation by Reelin requires Src family kinase activity and depends on the Reelin-triggered interaction of Dab1 with the PI3K regulatory subunit p85alpha. Because the Dab1 phosphotyrosine binding domain can interact simultaneously with membrane lipids and with the intracellular domains of apolipoprotein E receptor 2 and very low density lipoprotein receptor, Dab1 is preferentially recruited to the neuronal plasma membrane, where it is phosphorylated. Efficient Dab1 phosphorylation and activation of the Reelin signaling cascade is impaired by cholesterol depletion of the plasma membrane. Using a neuronal migration assay, we also show that PI3K signaling is required for the formation of a normal cortical plate, a step that is dependent upon Reelin signaling.  相似文献   

8.
The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake.  相似文献   

9.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

10.
The clathrin-associated AP-2 adaptor protein is a major polyphosphoinositide-binding protein in mammalian cells. A high affinity binding site has previously been localized to the NH(2)-terminal region of the AP-2 alpha subunit (Gaidarov et al. 1996. J. Biol. Chem. 271:20922-20929). Here we used deletion and site- directed mutagenesis to determine that alpha residues 21-80 comprise a discrete folding and inositide-binding domain. Further, positively charged residues located within this region are involved in binding, with a lysine triad at positions 55-57 particularly critical. Mutant peptides and protein in which these residues were changed to glutamine retained wild-type structural and functional characteristics by several criteria including circular dichroism spectra, resistance to limited proteolysis, and clathrin binding activity. When expressed in intact cells, mutated alpha subunit showed defective localization to clathrin-coated pits; at high expression levels, the appearance of endogenous AP-2 in coated pits was also blocked consistent with a dominant-negative phenotype. These results, together with recent work indicating that phosphoinositides are also critical to ligand-dependent recruitment of arrestin-receptor complexes to coated pits (Gaidarov et al. 1999. EMBO (Eur. Mol. Biol. Organ.) J. 18:871-881), suggest that phosphoinositides play a critical and general role in adaptor incorporation into plasma membrane clathrin-coated pits.  相似文献   

11.
Here we identify a new regulator of endocytosis called RME-6. RME-6 is evolutionarily conserved among metazoans and contains Ras-GAP (GTPase-activating protein)-like and Vps9 domains. Consistent with the known catalytic function of Vps9 domains in Rab5 GDP/GTP exchange, we found that RME-6 binds specifically to Caenorhabditis elegans RAB-5 in the GDP-bound conformation, and rme-6 mutants have phenotypes that indicate low RAB-5 activity. However, unlike other Rab5-associated proteins, a rescuing green fluorescent protein (GFP)-RME-6 fusion protein primarily localizes to clathrin-coated pits, physically interacts with alpha-adaptin, a clathrin adaptor protein, and requires clathrin to achieve its cortical localization. In rme-6 mutants, transport from the plasma membrane to endosomes is defective, and small 110-nm endocytic vesicles accumulate just below the plasma membrane. These results suggest a mechanism for the activation of Rab5 in clathrin-coated pits or clathrin-coated vesicles that is essential for the delivery of endocytic cargo to early endosomes.  相似文献   

12.
Autosomal recessive hypercholesterolemia is characterized by a cell type-specific defect in low density lipoprotein receptor (LDLR) endocytosis. LDLR-mediated uptake of LDL is impaired in the liver, but not in fibroblasts of subjects with this disorder. The disease is caused by mutations in ARH, which encodes a putative adaptor protein that interacts with the cytoplasmic tail of the LDLR, phospholipids, and two components of the clathrin endocytic machinery, clathrin and adaptor protein-2 (AP-2) in vitro. To determine the physiological relevance of these interactions, we examined the effect of mutations in the ARH on LDLR location and function in polarized hepatocytes (WIF-B). The integrity of the FDNPVY sequence in the LDLR cytoplasmic tail was required for ARH-associated LDLR clustering into clathrin-coated pits. The phosphotyrosine binding domain of ARH plus either the clathrin box or the AP-2 binding region were required for both clustering and internalization of the LDLR. Parallel studies performed in vivo with the same recombinant forms of ARH in livers of Arh(-/-) mice confirmed the relevance of the cell culture findings. These results demonstrate that ARH must bind the LDLR tail and either clathrin or AP-2 to promote receptor clustering and internalization of LDL.  相似文献   

13.
14.
Disabled-2 (Dab2) is an intracellular adaptor protein proposed to function in endocytosis. Here, we investigate the intestinal and renal Dab2 expression versus maturation. Dab2 mRNA levels measured by RT-PCR are greater in the small than in the large intestine. Immunological studies localize Dab2 to the terminal web domain of the enterocytes and reveal the presence of a 96-kDa Dab2 isoform in the apical membrane of the jejunum, ileum, and renal cortex of the suckling and adult rat. A 69-kDa Dab2 isoform is only observed in the apical membranes of the suckling ileum. During the suckling period, the Dab2 mRNA levels measured in the enterocytes and crypts and those of the 96-kDa Dab2 isoform are greater in the ileum than in the jejunum. No segmental differences are observed in the adult intestine. In the intestine, the levels of Dab2 mRNA and those of the 96-kDa Dab2 isoform decrease to adult values at weaning, whereas in the kidney they increase with development. Weaning the pups on a commercial milk diet slows the periweaning decline in the levels of Dab2 mRNA in the crypts and of those of the 96-kDa isoform. This is the first report showing that the 96-kDa Dab2 isoform is expressed at the apical domain of rat small intestine, that ontogeny regulates Dab2 gene expression in intestine and kidney and that retarding weaning affects intestinal Dab2 gene expression.  相似文献   

15.
Clathrin and the adaptor protein complex (AP-2) constitute the major coat components of clathrin-coated vesicles. In the September issues of the Journal of Cell Biology and the Journal of Biological Chemistry, three reports reveal that AP-2, while essential for internalization of transferrin, is not essential for internalization of EGF. These novel data suggest the intriguing possibility that the major role of AP-2 is in cargo recruitment, and not in assembly of functionally active clathrin-coated pits.  相似文献   

16.
The synaptic vesicle protein synaptotagmin was proposed to act as a major docking site for the recruitment of clathrin coats implicated in endocytosis, including the recycling of synaptic vesicles. We show here that the C2B domain of synaptotagmin binds mu2- and alpha-adaptin, two of the four subunits of the endocytic adaptor complex AP-2. mu2 represents the major interacting subunit of AP-2 within this complex. Its binding to synaptotagmin is mediated by a site in subdomain B that is distinct from the binding site for tyrosine-based sorting motifs located in subdomain A. The presence of the C2B domain of synaptotagmin at the surface of liposomes enhances the recruitment of AP-2 and clathrin. Conversely, perturbation of the interaction between synaptotagmin and AP-2 by synprint, the cytoplasmic synaptotagmin-binding domain of N-type calcium channels, inhibits transferrin internalization in living cells. We conclude that a dual interaction of synaptotagmin with the clathrin adaptor AP-2 plays a key physiological role in the nucleation of endocytic clathrin-coated pits.  相似文献   

17.
The adaptor protein ARH escorts megalin to and through endosomes   总被引:4,自引:0,他引:4       下载免费PDF全文
Megalin is an endocytic receptor that binds multiple ligands and is essential for many physiological processes such as brain development and uptake of proteins by the kidney tubule, yolk sac, and thyroid. The cytoplasmic tail of megalin contains two FXNPXY motifs. Autosomal recessive hypercholesterolemia (ARH) is an adaptor protein that binds to the FXNPXY motif of the low-density lipoprotein receptor as well as clathrin and AP-2. We found that ARH also binds to the first FXNPXY motif of megalin in two-hybrid, pull-down and coimmunoprecipitation assays. ARH colocalizes with megalin in clathrin coated pits and in recycling endosomes in the Golgi region. When cells are treated with nocodazole, the recycling endosomes containing megalin and ARH disperse. On internalization of megalin, ARH and megalin are first seen in clathrin coated pits followed by sequential localization in early endosomes and tubular recycling endosomes in the pericentriolar region followed by their reappearance at the cell surface. Expression of ARH in Madin-Darby canine kidney cells expressing megalin mini-receptors enhances megalin-mediated uptake of 125I-lactoferrin, a megalin ligand. These results show that ARH facilitates endocytosis of megalin, escorts megalin along its endocytic route and raise the possibility that transport through the endosomal system is selective and requires interaction with specific adaptor proteins.  相似文献   

18.
The formation of the primitive endoderm layer on the surface of the inner cell mass is one of the earliest epithelial morphogenesis in mammalian embryos. In mouse embryos deficient of Disabled-2 (Dab2), the primitive endoderm cells lose the ability to position on the surface, resulting in defective morphogenesis. Embryonic stem cells lacking Dab2 are also unable to position on the surface of cell aggregates and fail to form a primitive endoderm outer layer in the embryoid bodies. The cellular function of Dab2, a cargo-selective adaptor, in mediating endocytic trafficking of clathrin-coated vesicles is well established. We show here that Dab2 mediates directional trafficking and polarized distribution of cell surface proteins such as megalin and E-cadherin and propose that loss of polarity is the underlying mechanism for the loss of epithelial cell surface positioning in Dab2-deficient embryos and embryoid bodies. Thus, the findings indicate that Dab2 is a surface positioning gene and suggest a novel mechanism of epithelial cell surface targeting.  相似文献   

19.
The autosomal recessive hypercholesterolemia protein (ARH) is well known for its role in clathrin-mediated endocytosis of low-density lipoprotein receptors (LDLRs). During uptake, ARH directly binds to the FxNPxY signal in the cytoplasmic tail of LDLR. Interestingly, the same FxNPxY motif is used in basolateral exocytosis of LDLR from recycling endosomes (REs), which is facilitated by the epithelial-specific clathrin adaptor AP-1B. However, AP-1B directly interacts with neither the FxNPxY motif nor the second more distally located YxxØ sorting motif of LDLR. Here, we show that ARH colocalizes and cooperates with AP-1B in REs. Knockdown of ARH in polarized epithelial cells leads to specific apical missorting of truncated LDLR, which encodes only the FxNPxY motif (LDLR-CT27). Moreover, a mutation in ARH designed to disrupt the interaction of ARH with AP-1B specifically abrogates exocytosis of LDLR-CT27. We conclude that in addition to its role in endocytosis, ARH cooperates with AP-1B in basolateral exocytosis of LDLR from REs.  相似文献   

20.
BACKGROUND: Disabled-1 (Dab1) is an intracellular adaptor protein that regulates migrations of various classes of neurons during mammalian brain development. Dab1 function depends on its tyrosine phosphorylation, which is stimulated by Reelin, an extracellular signaling molecule. Reelin increases the stoichiometry of Dab1 phosphorylation and downregulates Dab1 protein levels. Reelin binds to various cell surface receptors, including two members of the low-density lipoprotein receptor family that also bind to Dab1. Mutations in Dab1, its phosphorylation sites, Reelin, or the Reelin receptors cause a common phenotype. However, the molecular mechanism whereby Reelin regulates Dab1 tyrosine phosphorylation is poorly understood.RESULTS: We found that Reelin-induced Dab1 tyrosine phosphorylation in neuron cultures is inhibited by acute treatment with pharmacological inhibitors of Src family, but not Abl family, kinases. In addition, Reelin stimulates Src family kinases by a mechanism involving Dab1. We analyzed the Dab1 protein level and tyrosine phosphorylation stoichiometry by using brain samples and cultured neurons that were obtained from mouse embryos carrying mutations in Src family tyrosine kinases. We found that fyn is required for proper Dab1 levels and phosphorylation in vivo and in vitro. When fyn copy number is reduced, src, but not yes, becomes important, reflecting a partial redundancy between fyn and src.CONCLUSIONS: Reelin activates Fyn to phosphorylate and downregulate Dab1 during brain development. The results were unexpected because Fyn deficiency does not cause the same developmental phenotype as Dab1 or Reelin deficiency. This suggests additional complexity in the Reelin signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号