首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio vulnificus is an estuarine bacterium capable of causing rapidly fatal infections through both ingestion and wound infection. Like other opportunistic pathogens, V. vulnificus must adapt to potentially stressful environmental changes while living freely in seawater, upon colonization of the oyster gut, and upon infection of such diverse hosts as humans and eels. In order to begin to understand the ability of V. vulnificus to respond to such stresses, we examined the role of the alternate sigma factor RpoS, which is important in stress response and virulence in many pathogens. An rpoS mutant of V. vulnificus strain C7184o was constructed by homologous recombination. The mutant strain exhibited a decreased ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and acidic conditions. The most striking difference was a high sensitivity of the mutant to hydrogen peroxide. Albuminase, caseinase, and elastase activity were detected in the wild type but not in the mutant strain, and an additional two hydrolytic activities (collagenase and gelatinase) were reduced in the mutant strain compared to the wild type. Additionally, the motility of the rpoS mutant was severely diminished. Overall, these studies suggest that rpoS in V. vulnificus is important for adaptation to environmental changes and may have a role in virulence.  相似文献   

2.
Tian Y  Wang Q  Liu Q  Ma Y  Cao X  Zhang Y 《Archives of microbiology》2008,190(5):585-594
Vibrio alginolyticus, a marine bacterium, is an opportunistic pathogen capable of causing vibriosis with high mortality to fishes in the South China Sea. Stress resistance is very important for its survival in the natural environment and upon infection of the host. RpoS, an alternative sigma factor, is considered as an important regulator involved in stress response and virulence in many pathogens. In this study, the rpoS gene was cloned and characterized to evaluate the role of RpoS in V. alginolyticus. The predicted protein showed high identity with other reported rpoS gene products. The in-frame deleted mutation of rpoS in V. alginolyticus led to sensitivity of the strain to ethanol, hyperosmolarity, heat, and hydrogen peroxide challenges. Further studies showed that extracellular autoinducer 2 level, four of seven detected protease activities, and cytotoxicity of extracellular products were markedly decreased in the rpoS mutant compared with that in the wild-type strain. The results indicated that the global regulator RpoS was part of the regulatory networks of virulence and LuxS quorum sensing system.  相似文献   

3.
Vibrio cholerae is known to persist in aquatic environments under nutrient-limiting conditions. To analyze the possible involvement of the alternative sigma factor encoded by rpoS, which is shown to be important for survival during nutrient deprivation in several other bacterial species, a V. cholerae rpoS homolog was cloned by functional complementation of an Escherichia coli mutant by using a wild-type genomic library. Sequence analysis of the complementing clone revealed an 1.008-bp open reading frame which is predicted to encode a 336-amino-acid protein with 71 to 63% overall identity to other reported rpoS gene products. To determine the functional role of rpoS in V. cholerae, we inactivated rpoS by homologous recombination. V. cholerae strains lacking rpoS are impaired in the ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and carbon starvation. These results suggest that rpoS may be required for the persistence of V. cholerae in aquatic habitats. In addition, the rpoS mutation led to reduced production or secretion of hemagglutinin/protease. However, rpoS is not critical for in vivo survival, as determined by an infant mouse intestinal competition assay.  相似文献   

4.
Pathogens have evolved sophisticated mechanisms to survive oxidative stresses imposed by host defense systems, and the mechanisms are closely linked to their virulence. In the present study, ahpCl, a homologue of Escherichia coli ahpC encoding a peroxiredoxin, was identified among the Vibrio vulnificus genes specifically induced by exposure to H2O2. In order to analyze the role of AhpCl in the pathogenesis of V. vulnificus, a mutant, in which the ahpCl gene was disrupted, was constructed by allelic exchanges. The ahpCl mutant was hypersusceptable to killing by reactive oxygen species (ROS) such as H2O2 and t-BOOH, which is one of the most commonly used hydroperoxides in vitro. The purified AhpCl reduced H2O2 in the presence of AhpF and NADH as a hydrogen donor, indicating that V. vulnificus AhpCl is a NADH-dependent peroxiredoxin and constitutes a peroxide reductase system with AhpF. Compared to wild type, the ahpCl mutant exhibited less cytotoxicity toward INT-407 epithelial cells in vitro and reduced virulence in a mouse model. In addition, the ahpCl mutant was significantly diminished in growth with INT-407 epithelial cells, reflecting that the ability of the mutant to grow, survive, and persist during infection is also impaired. Consequently, the combined results suggest that AhpCl and the capability of resistance to oxidative stresses contribute to the virulence of V. vulnificus by assuring growth and survival during infection.  相似文献   

5.
The catalase gene, katA, of the sepiolid squid symbiont Vibrio fischeri has been cloned and sequenced. The predicted amino acid sequence of KatA has a high degree of similarity to the recently defined group III catalases, including those found in Haemophilus influenzae, Bacteroides fragilis, and Proteus mirabilis. Upstream of the predicted start codon of katA is a sequence that closely matches the consensus sequence for promoters regulated in Escherichia coli by the alternative sigma factor encoded by rpoS. Further, the level of expression of the cloned katA gene in an E. coli rpoS mutant is much lower than in wild-type E. coli. Catalase activity is induced three- to fourfold both as growing V. fischeri cells approach stationary phase and upon the addition of a small amount of hydrogen peroxide during logarithmic growth. The catalase activity was localized in the periplasm of wild-type V. fischeri cells, where its role could be to detoxify hydrogen peroxide coming from the external environment. No significant catalase activity could be detected in a katA null mutant strain, demonstrating that KatA is the predominately expressed catalase in V. fischeri and indicating that V. fischeri carries only a single catalase gene. The catalase mutant was defective in its ability to competitively colonize the light organs of juvenile squids in coinoculation experiments with the parent strain, suggesting that the catalase enzyme plays an important role in the symbiosis between V. fischeri and its squid host.  相似文献   

6.
We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.  相似文献   

7.
Pseudomonas chlororaphis GP72 is an important plant growth-promoting rhizobacteria (PGPR) with a wide-spectrum antibiotic activity toward several soil-borne pathogens. The adaption of this strain to different environmental oxidative stress and redox phenazine pigment by the predicted regulator OxyR were investigated. The deletion of oxyR led to a significant reduction of the viability, production of three phenazine derivatives and resistance to hydrogen peroxide and paraquat on the KB agar plates. However, the mutant ΔoxyR grew better with shorter delay. In addition, the mutant ΔoxyR showed an increased resistance to hydrogen peroxide, which occurred at the concentration varying from 1.0 mM to 5.0 mM in the KB broth, as compared with the wild type. In addition, the biofilm formation ability was obviously enhanced and influenced by the different oxidants in the mutant. Quantitative RT-PCR experiments indicated that the expression of katG, ahpC, ahpD and phzE were increased in the oxyR mutant background in response to hydrogen peroxide. katG was mainly responsible for the enhanced resistance to hydrogen peroxide. The loss of oxyR is suggested to benefit the hydrogen peroxide inducible gene expression. Thus, OxyR is an important global regulator that regulates multiple pathways to enhance the survival of P. chlororaphis GP72 exposed to different oxidative stresses.  相似文献   

8.
Quorum sensing, bacterial cell-to-cell communication with small signal molecules, controls the virulence of many pathogens. In contrast to other vibrios, neither the VanI/VanR acylhomoserine lactone quorum sensing system, nor the three-channel quorum sensing system affects virulence of the economically important aquatic pathogen Vibrio anguillarum. Indole is another molecule that recently gained attention as a putative signal molecule. The data presented in this study indicate that indole signaling and the alternative sigma factor RpoS have a significant impact on the virulence of V. anguillarum. Deletion of rpoS resulted in increased expression of the indole biosynthesis gene tnaA and in increased production of indole. Both rpoS deletion and the addition of exogenous indole (50–100 µM) resulted in decreased biofilm formation, exopolysaccharide production (a phenotype that is required for pathogenicity) and expression of the exopolysaccharide synthesis gene wbfD. Further, indole inhibitors increased the virulence of the rpoS deletion mutant, suggesting that indole acts downstream of RpoS. Finally, in addition to the phenotypes found to be affected by indole, the rpoS deletion mutant also showed increased motility and decreased sensitivity to oxidative stress.  相似文献   

9.
The opportunistic human pathogen Vibrio vulnificus survives in a wide range of ecological environments, which demonstrates its ability to adapt to highly variable conditions. Survival and gene expression under various conditions have been extensively studied in vitro; however, little work has been done to evaluate this bacterium in its natural habitat. Therefore, this study monitored the long-term survival of V. vulnificus in situ and simultaneously evaluated the expression of stress (rpoS, relA, hfq, and groEL) and putative virulence (vvpE, smcR, viuB, and trkA) genes at estuarine sites of varying salinity. Additionally, the survival and gene expression of an rpoS and an oxyR mutant were examined under the same conditions. Differences between the sampling sites in the long-term survival of any strain were not seen. However, differences were seen in the expression of viuB, trkA, and relA but our findings differed from what has been previously shown in vitro. These results also routinely demonstrated that genes required for survival under in vitro stress or host conditions are not necessarily required for survival in the water column. Overall, this study highlights the need for further in situ evaluation of this bacterium in order to gain a true understanding of its ecology and how it relates to its natural habitat.  相似文献   

10.
This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus and Vibrio vulnificus were assessed in natural seawater and in the Eastern oyster, Crassostrea virginica. The pathogens examined were V. vulnificus strain VV1003, V. parahaemolyticus O1:KUT (KUT stands for K untypeable), and V. parahaemolyticus O3:K6 and corresponding O3:K6 mutants deficient in the toxRS virulence regulatory gene or the rpoS alternative stress response sigma factor gene. Vibrios were selected for streptomycin resistance, which facilitated their enumeration. In natural seawater, oysters bioconcentrated each Vibrio strain for 24 h at 22°C; however, counts rapidly declined to near negligible levels by 72 h. In natural seawater with or without oysters, vibrios decreased more than 3 log units to near negligible levels within 72 h. Neither toxRS nor rpoS had a significant effect on Vibrio levels. In autoclaved seawater, V. parahaemolyticus O3:K6 counts increased 1,000-fold over 72 h. Failure of the vibrios to persist in natural seawater and oysters led to screening of the water samples for VPB on lawns of V. parahaemolyticus O3:K6 host cells. Many VPB, including Bdellovibrio and like organisms (BALOs; Bdellovibrio bacteriovorus and Bacteriovorax stolpii) and Micavibrio aeruginosavorus-like predators, were detected by plaque assay and electron microscopic analysis of plaque-purified isolates from Atlantic, Gulf Coast, and Hawaiian seawater. When V. parahaemolyticus O3:K6 was added to natural seawater containing trace amounts of VPB, Vibrio counts diminished 3 log units to nondetectable levels, while VPB increased 3 log units within 48 h. We propose a new paradigm that VPB are important modulators of pathogenic vibrios in seawater and oysters.  相似文献   

11.
12.
Francisella tularensis is a facultative intracellular pathogen. Its capacity to induce disease depends on the ability to invade and multiply within a wide range of eukaryotic cells, such as professional phagocytes. The comparative disinterest in tularemia in the past relative to other human bacterial pathogens is reflected in the paucity of information concerning the mechanisms of pathogenesis. Only a few genes and gene products associated with Francisella virulence are known to date. The aim of this study was to find and identify proteins of F. tularensis live vaccine strain induced in the presence of hydrogen peroxide, and to investigate the role of the IglC protein in the regulation of genes expressed upon peroxide stress. The [(35)S]-radiolabelled protein patterns were examined for both the wild live vaccine strain and its DeltaiglC1+2 mutant defective in synthesis of the IglC protein that was found to be strongly up-regulated during intracellular growth in murine macrophages in vitro and upon exposure to hydrogen peroxide. Globally, we found 21 protein spots whose levels were significantly altered in the presence of hydrogen peroxide in both the wild-type and mutant strains.  相似文献   

13.
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::strr null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::strr. Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits.  相似文献   

14.
We have cloned a nuclease gene, vvn, from Vibrio vulnificus, an estuarine bacterium that causes wound infections and septicemia in humans and eels. The gene contained a 696-bp open reading frame encoding 232 amino acids (aa), including a signal sequence of 18 aa. The deduced amino acid sequence of the mature nuclease predicted a molecular mass of 25 kDa, which was confirmed by vital stain, and a pI of 8.6. Vvn was produced in the periplasm of either V. vulnificus or recombinant Escherichia coli strains and was active in the oxidized (but not the reduced) form. This nuclease was able to digest DNA and RNA, with differential thermostability in DNase and RNase activities. Expression of Vvn in E. coli DH5α reduced the frequencies of transformation with the divalent ion-treated cells and electroporation by about 6 and 2 logs, respectively. In addition, the transformation frequency of a Vvn-deficient V. vulnificus mutant (ND) was 10-fold higher than that of the parent strain. These data suggested that Vvn may be involved in preventing uptake of foreign DNA by transformation. However, Vvn expressed in the recipients had little effect on the conjugation frequency in either E. coli or V. vulnificus. Some other DNase(s) may be present in the periplasm and responsible for a residual DNase activity, which was about one-fourth of that of the parent strain, detected in the ND mutant. We also demonstrated that Vvn was not required for the virulence of V. vulnificus mice.  相似文献   

15.
Cellular robustness is an important trait for industrial microbes, because the microbial strains are exposed to a multitude of different stresses during industrial processes, such as fermentation. Thus, engineering robustness in an organism in order to push the strains toward maximizing yield has become a significant topic of research. We introduced the deinococcal response regulator DR1558 into Escherichia coli (strain Ec-1558), thereby conferring tolerance to hydrogen peroxide (H2O2). The reactive oxygen species (ROS) level in strain Ec-1558 was reduced due to the increased KatE catalase activity. Among four regulators of the oxidative-stress response, OxyR, RpoS, SoxS, and Fur, we found that the expression of rpoS increased in Ec-1558, and we confirmed this increase by Western blot analysis. Electrophoretic mobility shift assays showed that DR1558 bound to the rpoS promoter. Because the alternative sigma factor RpoS regulates various stress resistance-related genes, we performed stress survival analysis using an rpoS mutant strain. Ec-1558 was able to tolerate a low pH, a high temperature, and high NaCl concentrations in addition to H2O2, and the multistress tolerance phenotype disappeared in the absence of rpoS. Microarray analysis clearly showed that a variety of stress-responsive genes that are directly or indirectly controlled by RpoS were upregulated in strain Ec-1558. These findings, taken together, indicate that the multistress tolerance conferred by DR1558 is likely routed through RpoS. In the present study, we propose a novel strategy of employing an exogenous response regulator from polyextremophiles for strain improvement.  相似文献   

16.
Vibrio vulnificus is a ubiquitous marine bacterium that is responsible for infections and some seafood-related illnesses and deaths in the United States, mainly in individuals with compromised health status in the Gulf of Mexico region. Most phylogenetic studies focus on V. vulnificus strains isolated in the southern United States, but almost no genetic data are available on northeastern bacterial isolates of clinical or environmental origin. Our goal in this study was to examine the genetic diversity of environmental strains isolated from commercially-produced oysters and in clinical strains of known pathogenicity in northeastern United States. We conducted analyses of a total of eighty-three strains of V. vulnificus, including 18 clinical strains known to be pathogenic. A polyphasic, molecular-typing approach was carried out, based upon established biotypes, vcg, CPS, 16S rRNA types and three other genes possibly associated with virulence (arylsulfatase A, mtlABC, and nanA). An established Multi Locus Sequence Typing (MLST) method was also performed. Phylogenetic analyses of these markers and MLST results produced similar patterns of clustering of strains into two main lineages (we categorized as ‘LI’ and ‘LII’), with clinical and environmental strains clustering together in both lineages. Lineage LII was comprised primarily but not entirely of clinical bacterial isolates. Putative virulence markers were present in both clinical and environmental strains. These results suggest that some northeastern environmental strains of V. vulnificus are phylogenetically close to clinical strains and probably are capable of virulence. Further studies are necessary to assess the risk of human illness from consuming raw oysters harvested in the northeastern US.  相似文献   

17.
The Erwinia amylovora rpoS gene, encoding the alternative sigma factor RpoS, has been cloned and characterized. Though highly sensitive to a number of environmental stresses, an E. amylovora rpoS mutant was not compromised in its ability to grow or cause disease symptoms within apple seedlings or in an overwintering model.  相似文献   

18.
19.
Isolation of Vibrio vulnificus during winter months is difficult due to the entrance of these cells into the viable but nonculturable (VBNC) state. While several studies have investigated in vitro gene expression upon entrance into and persistence within the VBNC state, to our knowledge, no in situ studies have been reported. We incubated clinical and environmental isolates of V. vulnificus in estuarine waters during winter months to monitor the expression of several genes during the VBNC state and compared these to results from in vitro studies. katG (periplasmic catalase) was down-regulated during the VBNC state in vitro and in situ compared to the constitutively expressed gene tufA. Our results indicate that the loss of catalase activity we previously reported is a direct result of katG repression, which likely accounts for the VBNC response of this pathogen. While expression of vvhA (hemolysin) was detectable in environmental strains during in situ incubation, it ceased in all cases by ca. 1 h. These results suggest that the natural role of hemolysin in V. vulnificus may be in osmoprotection and/or the cold shock response. Differences in expression of the capsular genes wza and wzb were observed in the two recently reported genotypes of this species. Expression of rpoS, encoding the stress sigma factor RpoS, was continuous upon entry into the VBNC state during both in situ and in vitro studies. We found the half-life of mRNA to be less than 60 minutes, confirming that mRNA detection in these VBNC cells is a result of de novo RNA synthesis.  相似文献   

20.
The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号