首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An NADPH-dependent 7 alpha-hydroxysteroid dehydrogenase acting on 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid was partially purified 160-fold with a yield of 13% from rat liver microsomes using DEAE-cellulose, hydroxyapatite and Affi-Gel Blue column chromatography. The specific activity of the purified enzyme was 91.3 nmol chenodeoxycholic acid formed/min per mg of protein. The reaction was reversible, and the optimum pH of the enzyme for the oxidation was about 8.5, whereas that for the reduction was about 5.0 A molecular weight of the enzyme was estimated to be about 130,000 by Superose 6TM gel filtration chromatography. The apparent Km value for 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid was 35.7 microM and that for NADPH was 90.9 microM. The preferred substrate for the enzyme was 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid rather than 3 alpha,12 alpha-dihydroxy-7-keto-5 beta-cholanoic acid, a 7-keto-bile acid analogue. The enzyme also preferred the unconjugated form to the conjugated forms. The enzyme activity was inhibited by p-chloromercuribenzoate; however, the inhibition was prevented by addition of reduced form of glutathione to the reaction mixture, indicating that the enzyme requires a sulfhydryl group for activity.  相似文献   

2.
A reductase catalyzing the reduction of the 3-ketone group of 7 alpha,12 alpha-dihydroxy-5 beta-cholestan-3-one and 7 alpha-hydroxy-5 beta-cholestan-3-one, which are the intermediates in the conversion of cholesterol to cholic acid and chenodeoxycholic acid, respectively, into the 3 alpha-hydroxyl group, was purified about 250-fold as judged by the activity from the 100,000 X g supernatant of rat liver homogenate. The purified enzyme was electrophoretically homogeneous, and its molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretography was 32,000. The absorption spectrum of the purified enzyme showed only a peak at 280 nm due to aromatic amino acids, precluding the presence of a chromophoric prosthetic group in the molecule. The enzyme showed activity toward a variety of substrates, including 3-oxo-5 beta-cholanoic acid, androsterone, 9,10-phenanthrenquinone, p-nitrobenzaldehyde, but not toward glucuronic acid, DL-glyceraldehyde, and glycolaldehyde. The optimal pH for the reduction of 7 alpha-hydroxy-5 beta-cholestan-3-one was 7.4, and the cofactor required was either NADPH or NADH, though the former gave the higher activity. Judging from the chromatography behavior as well as substrate specificity, the enzyme was identified as 3 alpha-hydroxysteroid dehydrogenase (3 alpha-hydroxysteroid:NAD(P)+ oxidoreductase, EC 1.1.1.50).  相似文献   

3.
We previously reported that the 7 alpha-dehydroxylation of cholic acid appears to be carried out by a multi-step pathway in intestinal anaerobic bacteria both in vitro and in vivo. The pathway is hypothesized to involve an initial oxidation of the 3 alpha-hydroxy group and the introduction of a double bond at C4-C5 generating a 3-oxo-4-cholenoic bile acid intermediate. The loss of water generates a 3-oxo-4,6-choldienoic bile acid which is reduced (three steps) yielding deoxycholic acid. We synthesized, in radiolabel, the following putative bile acid intermediates of this pathway 7 alpha,12 alpha-dihydroxy-3-oxo-4-cholenoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, 12 alpha-dihydroxy-3-oxo-4,6-choldienoic acid, and 12 alpha-hydroxy-3-oxo-4-cholenoic acid and showed that they could be converted to 3 alpha,12 alpha-dihydroxy-5 beta-cholanoic acid (deoxycholic acid) by whole cells or cell extracts of Eubacterium sp. VPI 12708. During studies of this pathway, we discovered the accumulation of two unidentified bile acid intermediates formed from cholic acid. These bile acids were purified by thin-layer chromatography and identified by gas-liquid chromatography-mass spectrometry as 12 alpha-hydroxy-3-oxo-5 alpha-cholanoic acid and 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic (allo-deoxycholic acid). Allo-deoxycholic acid was formed only in cell extracts prepared from bacteria induced by cholic acid, suggesting that their formation may be a branch of the cholic acid 7 alpha-dehydroxylation pathway in this bacterium.  相似文献   

4.
The hydroxylation of lithocholic acid (3 alpha-hydroxy-5 beta-cholanoic acid) by adult male Sprague-Dawley rat liver microsomes supplemented with NADPH was studied. Metabolites were separated by a combination of thin-layer chromatography and high pressure liquid chromatography, both with and without prior methylation and acetylation of the samples. The resulting products were characterized by thin-layer, gas-liquid, and high pressure liquid chromatography by comparison with authentic bile acid standards; final structure determination was by proton nuclear magnetic resonance spectroscopy and by mass spectrometry. The following reaction products were found: 3 alpha, 6 beta-dihydroxy-5 beta-cholanoic acid (80% of total metabolites) and 3 alpha, 6 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 7 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 6 beta,7 beta-trihydroxy-5 beta-cholanoic, and 3 alpha-hydroxy-6-oxo-5 beta-cholanoic acids (less than or equal to 5% each). In addition, one unidentified trihydroxylic bile acid and several minor compounds were present. It is concluded that four different hydroxylation reactions of lithocholic acid, namely the predominant 6 beta as well as the minor 6 alpha, 7 alpha, and 7 beta hydroxylations, are catalyzed by rat hepatic microsomes; 7 beta-hydroxylation may occur only with dihydroxylated bile acids but not with lithocholate itself. The presence of the 6-oxo bile acid can be explained either by direct oxidation of a hydroxyl group by cytochrome P-450, or by the action of microsomal dehydrogenase(s) which could also catalyze the epimerization of hydroxyl groups via their oxidation. The results form the basis of a proposed scheme of the oxidative metabolism of lithocholic acid in rat liver microsomes.  相似文献   

5.
Biosynthetic pathways to bile acids have been studied in HepG2 cells, a well-differentiated human hepatoblastoma cell line. Cholesterol metabolites, in total 29, were isolated from culture media and cells by liquid-solid extraction and anion-exchange chromatography and were identified by gas-liquid chromatography-mass spectrometry. The production rates/concentrations of cholic acid (CA) and chenodeoxycholic acid (CDCA) in media from control cells were 71 and 74 ng/10(7) cells/h, respectively. Major bile acid precursors were 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA), 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholestenoic acid, 7 alpha-hydroxy-3-oxo-4-cholenoic acid, and 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-cholanoic acid, their concentrations being 60, 30, 23, and 10 ng/10(7) cells/h, respectively. These and nine other isolated intermediates formed essentially complete metabolic sequences from cholesterol to CA and CDCA. The remaining steroids were metabolites of the intermediates or autooxidation products of cholesterol. These findings and the observed effect of dexamethasone on production rates suggest that in HepG2 cells the major biosynthetic pathways to primary bile acids start with 7 alpha-hydroxylation of cholesterol and oxidation to 7 alpha-hydroxy-4-cholesten-3-one followed by hydroxylation at either the 26 or 12 alpha position. CDCA is formed by the sequence of 26-hydroxylation, oxidation, and degradation of the side chain and A-ring reduction. CA is formed by the sequence of 12 alpha-hydroxylation, 26-hydroxylation, oxidation, and degradation of the side chain and reduction of the A-ring. An alternative pathway to CA included A-ring reduction of the intermediate 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholestenoic acid to form THCA prior to side chain cleavage. These pathways are not limited to HepG2 cells but may also be important in humans.  相似文献   

6.
Freshly isolated cultures (2060) of human intestinal bacteria of the predominant flora, among them 1029 strains of saccharolytic Bacteroides species, were tested for cholic acid transformation. Eight Bacteroides strains reduced cholate to chenodeoxycholate, while 73 strains dehydroxylated at C7, producing deoxycholate. Concurrent oxidation of hydroxyl groups, mainly at C7, was seen with many strains. No strain was able to dehydroxylate simultaneously at C7 and C12. One isolate, identified as a mixed culture of Bacteroides fragilis and B. uniformis, epimerized cholic acid at C5 and simultaneously epimerized, oxidized and dehydroxylated at C7. The following transformation products were identified: 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholanoic acid, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholanoic acid (ursocholic acid), 3 alpha,12 alpha-dihydroxy-7-keto-5 beta-cholanoic acid, 3 alpha,12 alpha-dihydroxy-5 alpha-cholanoic acid and a 3 alpha,12 alpha-dihydroxy-5 alpha-cholenoic acid. Dehydroxylating and epimerizing abilities were detected when fresh isolates were tested first for cholate transformation. They were no longer recognizable after some serial transfers. Dehydroxylation at C12 of cholate could not be demonstrated with mixed fecal cultures. The possible intermediate, however, 3 alpha,7 alpha-dihydroxy-5 beta-chol-11-enoate, was abundantly hydrogenated by stool suspensions.  相似文献   

7.
This report describes the chemical synthesis of six new bile acid analogs, namely, 3 alpha,7 alpha,12 alpha-trihydroxy-7 beta-methyl-5 beta-cholanoic acid (7 beta-methyl-cholic acid), 3 alpha,7 beta,12 alpha-trihydroxy-7 alpha-methyl-5 beta-cholanoic acid (7 alpha-methyl-ursocholic acid), 3 alpha,12 alpha-dihydroxy-7 xi-methyl-5 beta-cholanoic acid (7 xi-methyl-deoxycholic acid), 3 alpha,12 alpha-dihydroxy-7-methyl-5 beta-chol-7-en-24-oic acid, 3 alpha,12 alpha-dihydroxy-7-methyl-5 beta-chol-6-en-24-oic acid, and 3 alpha,12 alpha-dihydroxy-7-methylene-5 beta-cholan-24-oic acid. The carboxyl group of the starting material 3 alpha,12 alpha-dihydroxy-7-oxo-5 beta-cholanoic acid was protected by conversion to its oxazoline derivative. A Grignard reaction of the bile acid oxazoline with CH3MgI followed by acid hydrolysis gave two epimeric trihydroxy-7-methyl-cholanoic acids and three dehydration products. The latter were purified by silica gel column chromatography and silica gel-AgNO3 column chromatography of their methyl ester derivatives. Catalytic hydrogenation of 3 alpha,12 alpha-dihydroxy-7-methyl-5 beta-chol-6-en-24-oic acid and 3 alpha,12 alpha-dihydroxy-7-methylene-5 beta-cholan-24-oic acid gave 3 alpha,12 alpha-dihydroxy-7 xi-methyl-5 beta-cholanoic acid. The configuration of the 7-methyl groups and the position of the double bonds were assigned by proton nuclear magnetic resonance spectroscopy and the chromatographic and mass spectrometric properties of the new compounds. These compounds were synthesized for the purpose of exploring new and potentially more effective cholelitholytic agents. The hydrophilic bile acids 7 beta-methyl-cholic acid and 7 alpha-methyl-ursocholic acid are of particular interest because they should be resistant to bacterial 7-dehydroxylation.  相似文献   

8.
The mono- and disubstituted cholanoic acids present in human feces have been investigated. Extracts of feces were fractionated on silicic acid column and individual bile acids were isolated by preparative thin-layer chromatography. The isolated compounds were studied by gas-liquid chromatography of the methyl esters, partial trimethylsilyl ethers, oxidation products, and trifluoroacetates. The probable structures deduced were confirmed by gas chromatography-mass spectrometry and by comparisons with authentic compounds. The following derivatives of 5 Beta-cholanoic acid not previously isolated from human feces were identified: 3,12-diketo, 3-keto-12alpha-hydroxy, 3alpha,12 Beta-dihydroxy, 3 Beta,12 Beta-dihydroxy, 3-keto-7alpha-hydroxy, 3alpha-hydroxy-7-keto, 3 Beta,7alpha-dihydroxy, 3alpha,7alpha-dihydroxy, and 3alpha,7 Beta-dihydroxy. The presence of 3-keto-, 3 Beta-hydroxy-, 3alpha-hydroxy-, 3 Beta-hydroxy-12-keto-, 3alpha-hydroxy-12-keto-, 3 Beta,12alpha-dihydroxy-, and 3alpha,12alpha-dihydroxy-5 Beta-cholanoic acids was confirmed. Evidence was obtained for the presence of two bile acids having at least one hydroxyl group at a carbon atom other than C(3), C(7), or C(12).  相似文献   

9.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

10.
A gram-positive, anaerobic, chain-forming, rod-shaped anaerobe (isolate G20-7) was isolated from normal human feces. This organism was identified by cellular morphology as well as fermentative and biochemical data as Eubacterium aerofaciens. When isolate G20-7 was grown in the presence of Bacteroides fragilis or Escherichia coli (or another 7 alpha-hydroxysteroid dehydrogenase producer) and chenodeoxycholic acid, ursodeoxycholic acid produced. Time course curves revealed that 3 alpha-hydroxy-7-keto-5 beta-cholanoic acid produced by B. fragilis or E. coli or introduced into the medium as a pure substance was reduced by G20-7 specifically to ursodeoxycholic acid. The addition of glycine- and taurine-conjugated primary bile acids (chenodeoxycholic and cholic acids) and other bile acids to binary cultures of B. fragilis and G20-7 revealed that (i) both conjugates were hydrolyzed to give free bile acids, (ii) ursocholic acid (3 alpha, 7 beta, 12 alpha-trihydroxy-5 beta-cholanoic acid) was produced when conjugated (or free) cholic acid was the substrate, and (iii) the epimerization reaction was at least partially reversible. Corroborating these observations, an NADP-dependent 7 beta-hydroxysteroid dehydrogenase (reacting specifically with 7 beta-OH-groups) was demonstrated in cell-free preparations of isolate G20-7; production of the enzyme was optimal at between 12 and 18 h of growth. This enzyme, when measured in the oxidative direction, was active with ursodeoxycholic acid, ursocholic acid, and the taurine conjugate of ursodeoxycholic acid (but not with chenodeoxycholic, deoxycholic, or cholic acids) and displayed an optimal pH range of 9.8 to 10.2  相似文献   

11.
The plasma concentrations of 3 beta-hydroxy-5-cholestenoic acid, 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and 7 alpha-hydroxy-3-oxo-4-cholestenoic acid have been compared with that of 7 alpha-hydroxy-4-cholesten-3-one in healthy subjects and in patients with an expected decrease or increase of the bile acid production. In controls and patients with liver disease, the level of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid was positively correlated to that of 3 beta,7 alpha-dihydroxy-5-cholestenoic acid and not to that of 7 alpha-hydroxy-4-cholesten-3-one. In patients with stimulated bile acid formation the levels of the acids were not correlated to each other but there was a significant positive correlation between the levels of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid and 7 alpha-hydroxy-4-cholesten-3-one. These findings indicate that the precursor of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid differs depending on the activity of cholesterol 7 alpha-hydroxylase. Since the activity of this enzyme is reflected by the level of 7 alpha-hydroxy-4-cholesten-3-one in plasma the findings are compatible with a formation of 7 alpha-hydroxy-3-oxo-4-cholestenoic acid from 3 beta,7 alpha-dihydroxy-5-cholestenoic acid when the rate of bile acid formation is normal or reduced and from 7 alpha-hydroxy-4-cholesten-3-one under conditions of increased bile acid synthesis. In support of this interpretation, 7 alpha,26-dihydroxy-4-cholesten-3-one was identified at elevated levels in plasma from patients with ileal resection or treated with cholestyramine. The levels of 7 alpha,12 alpha-dihydroxy-4-cholesten-3-one were also higher than normal in these patients. Based on these findings and previous knowledge, a model is proposed for the biosynthesis of bile acids in man. Under normal conditions, two major pathways, one "neutral" and one "acidic" or "26-oxygenated", lead to the formation of cholic acid and chenodeoxycholic acid, respectively. These pathways are separately regulated. When the activity of cholesterol 7 alpha-hydroxylase is high, the "neutral" pathway is most important whereas the reverse is true when cholesterol 7 alpha-hydroxylase activity is low. In cases with enhanced activity of cholesterol 7 alpha-hydroxylase, the "neutral" pathway is connected to the "acidic" pathway via 7 alpha,26-dihydroxy-4-cholesten-3-one, whereas a flow from the acidic pathway to cholic acid appears to be of minor importance.  相似文献   

12.
Ketonic bile acids have been found to be quantitatively important in urine of healthy infants during the neonatal period. In order to determine their structures, the bile acids in urine from 11 healthy infants were analyzed by gas-liquid chromatography-mass spectrometry (GLC-MS) and three samples with particularly high levels of ketonic bile acids were selected for detailed studies by ion exchange chromatography, fast atom bombardment mass spectrometry, microchemical reactions, and GLC-MS. The major ketonic bile acid was identified as 7 alpha, 12 alpha-dihydroxy-3-oxo-5 beta-chol-1-enoic acid, not previously described as a naturally occurring bile acid. The positional isomer 7 alpha, 12 alpha-dihydroxy-3-oxo-4-cholenoic acid, recently described as a major urinary bile acid in infants with severe liver diseases, was also excreted by most infants. Three acids related to cholic acid were identified: 7 alpha, 12 alpha-dihydroxy-3-oxo-, 3 alpha, 12 alpha-dihydroxy-7-oxo-, and 3 alpha, 7 alpha-dihydroxy-12-oxo-5 beta-cholanoic acids. Five bile acids having one oxo and three hydroxy groups were also present. Based on mass spectra and biological considerations two of these were tentatively given the structures 1 beta, 7 alpha, 12 alpha-trihydroxy-3-oxo- and 1 beta, 3 alpha, 12 alpha-trihydroxy-7-oxo-5 beta-cholanoic acids. Some of the others had a hydroxy group at C-4 or C-2. The levels of ketonic bile acids were higher on the third than on the first day of life, and lower after 1 month. The formation and excretion especially of 3-oxo bile acids is proposed to result from changes of the redox state in the liver in connection with birth.  相似文献   

13.
The bile acid in gallbladder bile of rabbits fed a normal diet or one containing 2% (w/w) cholesterol have been determined by gas chromatography-mass spectrometry. The predominant bile acids in normally fed rabbits were 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholan-24-oic acid (cholic acid), 3 alpha, 12 alpha-dihydroxy-5 alpha-cholan-24-oic acid (allodeoxycholic acid) and 3 alpha, 12 alpha-dihydroxy-5 beta-cholan-24-oic acid (deoxycholic acid) with very much smaller amounts of 3 alpha-hydroxy-5 beta-cholan-24-oic acid (lithocholic acid) and 3 alpha, 12 beta-dihydroxy-5 beta-cholan-24-oic acid. In the cholesterol-fed animals the lithocholate became a predominant bile acid. Sulphated bile acids accounted for less than 1% of the total bile acids. It is proposed that lithocholic acid may be a primary bile acid in the cholesterol-fed rabbit, formed by an alternative pathway of biosynthesis involving hepatic mitochondria.  相似文献   

14.
Regioselectivity in the anodic electrochemical oxidation of cholic acid with different anodes is described. The oxidation with PbO(2) anode affords the dehydrocholic acid in quantitative yield after 22 h. 3alpha,12alpha-Dihydroxy-7-oxo-5beta-cholan-24-oic acid (59%) and 3alpha-hydroxy-7,12-dioxo-5beta-cholan-24-oic acid (51%) are obtained stopping the reaction at lower time. The rate of the OH-oxidation is C7 > C12 > C3. The electro-oxidation with platinum foil anode gives selectively the 7-ketocholic acid in 40% yield. On the other hand, the graphite plate anode, varying the reaction conditions, produces selectively the dehydrocholic acid in quantitative yield or the 3alpha,12alpha-dihydroxy-7-oxo-5beta-cholan-24-oic acid (96%) while the 3alpha,7alpha-dihydroxy-12-oxo-5beta-cholan-24-oic acid (34%) is obtained together with the other oxo acids.  相似文献   

15.
Twenty strains of Bacteroides fragilis were screened for hydroxysteroid oxidoreductase activity in cell-free preparations. Eighteen strains were shown to contain NAD-dependent 7alpha-hydroxysteroid dehydrogenase. Sixteen of the strains containing the NAD-dependent enzyme also contained NADP-depedent 7alpha-hydroxysteroid dehydrogenase, but invariably in lesser amounts. A strain particulary rich in both 7alpha-hydroxysteroid dehydrogenase activities was selected for further study. Measurement of activity as a function of pH revealed a fairly sharp optimal activity range of 9.5--10.0 for the NAD-dependent enzyme and a broad flat optimal range of 7.0--9.0 for the NADP-dependent enzyme. Michaelis constants for trihydroxy-bile acids for the NAD-dependent enzyme were in the range of 0.32--0.34 mM, whereas dihydroxy-bile acids gave a Km of 0.1 mM. Thin-layer chromatography studies on the oxidation product of 3alpha, 7alpha-dihydroxy-5beta-cholanoic acid (chenodeoxycholic acid) by the dehydrogenase revealed a band corresponding to that of synthetic 3alpha-hydroxy, 7-keto-5beta-cholanoic acid. Similarly the oxidation product of chenodeoxycholic acid by both 7alpha-hydroxysteroid dehydrogenase and commercially available 3alpha-hy-droxysteroid dehydrogenase revealed a band corresponding to that of synthetic 3,7-diketo-5beta-cholanoic acid. Neither of these two oxidation products could be distinguished from those by the Escherichia coli dehydrogenase oxidation previously reported. Disc-gel electrophoresis of a cell-free lyophilized preparation indicated one active band for NAD-dependent activity of mobility similar to that for the NADP-dependent E. coli enzyme. The NADP-dependent dehydrogenase was unstable and rapidly lost activity after polyacylamide disc-gel electrophoresis, ultracentrifugation, freezing on refrigeration at 4 degrees C. No 3 alpha- or 12alpha-oriented oxidoreductase activity was demonstrated in any of the strains examined.  相似文献   

16.
The complete 1H nuclear magnetic resonance assignments have been made for the common mono-, di-, and trihydroxy 5 beta-cholanoic acids; lithocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid, cholic acid, and the unsubstituted parent compound, 5 beta-cholanoic acid, by heteronuclear-correlated two-dimensional NMR. The known 13C chemical shifts of these compounds were used to make the proton resonance assignments, and consistency of the carbon and proton assignments was verified by expected changes due to substituent effects. This has led to clarification of previously published 13C NMR resonance assignments. Addition of the 3 alpha, 7 alpha, and 12 alpha hydroxyl substituent effects derived from the mono- and dihydroxycholanoic acids yielded predicted values for proton chemical shifts of the trihydroxy-substituted 5 beta-cholanoic acid, cholic acid, that agreed well with experimental values. It is suggested that the individual substituent effects can be used to predict proton chemical shifts for hydroxycholanic acids containing other combinations of 3 alpha, 7 alpha, 7 beta, and 12 alpha hydroxyl groups.  相似文献   

17.
Preparation of some biologically important keto bile acids is described. Advantage is taken of the preferential ketalization of 3-oxo group in bile acids over 7- and 12-oxo groups for the selective reduction of these keto groups. The method was found to be specially useful for preparation of 7 beta-, 12 alpha, and 12 beta-[3H]-3-oxo bile acids. Improved methods are also described for the preparation of epimers of naturally occurring bile acids at C-3, C-7, and C-12. 3 beta-Hydroxy bile acids (iso-bile acids) were prepared with the use of diethylazodicarboxylate/triphenylphosphine/formic acid. Iso-bile acids were obtained in excellent yields (80-95%) except during synthesis of isoursodeoxycholic acid (yield, 50%). Isoursodeoxycholic acid was, however, prepared in very good yield via epimerization of 3 alpha-hydroxyl group in 7-oxolithocholic acid followed by stereoselective reduction of 7-oxo group. A highly efficient method for the reduction of 7-oxo and 12-oxo groups was developed. Thus, 7-oxolithocholic acid and 7-oxoisolithocholic acid on reduction with potassium/tertiary amyl alcohol yielded ursodeoxycholic acid and isoursodeoxycholic acid in yields of 96% and 94%, respectively, while reduction of 7-oxodeoxycholic acid resulted in ursocholic acid in 93% yield. In a similar manner, reduction of 12-oxolithocholic acid and 12-oxochenodeoxycholic acid yielded 3 alpha, 12 beta-dihydroxy-5 beta-cholanoic acid (lagodeoxycholic acid; 92% yield) and 3 alpha, 7 alpha, 12 beta-trihydroxy-5 beta-cholanoic acid (lagocholic acid, 86% yield).  相似文献   

18.
Biliary bile acids of Alligator mississippiensis were analyzed by gas-liquid chromatography-mass spectrometry after fractionation by silica gel column chromatography. It was shown that the alligator bile contained 12 C27 bile acids and 8 C24 bile acids. In addition to the C27 bile acids, such as 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholestanoic acid, 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoic acid, 3 alpha,12 alpha-dihydroxy-5 beta-cholestanoic acid, 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholestanoic acid, and 3 alpha,12 alpha-dihydroxy-7-oxo-5 beta-cholestanoic acid, identified previously in the bile of A. mississippiensis, 3 alpha,7 beta-dihydroxy-5 beta-cholestanoic acid, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholestanoic acid, 7 beta,12 alpha-dihydroxy-3-oxo-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestanoic acid, 3 alpha,7 alpha,12 alpha,26-tetrahydroxy-5 beta-cholestanoic acid, and 1 beta,3 alpha,7 alpha,12 alpha-tetrahydroxy-5 beta-cholestanoic acid were newly identified. And in addition to the C24 bile acids, such as chenodeoxycholic acid, ursodeoxycholic acid, cholic acid, and allocholic acid, identified previously, deoxycholic acid, 3 alpha,7 alpha-dihydroxy-5 beta-chol-22-enoic acid, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-chol-22-enoic acid, and 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-chol-22-enoic acid were newly identified.  相似文献   

19.
J C Fr?lich 《Prostaglandins》1984,27(3):349-368
This statement from laboratories highly qualified in icosanoid analysis identifies the urgent need for the availability of the following compounds in labeled (deuterium and tritium) and unlabeled form: PGE2 PGF2 alpha PGD2 6-keto-PGF1 alpha Thromboxane B2 9 alpha,20-dihydroxy-11,15-dioxo-2,3- dinorprost -5-enoic acid 9 alpha-hydroxy-11,15-dioxo-2,3,18,19- tetranorprost -5-ene-1,20-dioic acid 15-keto-13,14-dihydro-PGE2 15-keto-13,14-dihydro-PGF2 alpha 5 alpha-7 alpha-dihydroxy-11- ketotetranorprosta -1,16-dioic acid 7 alpha-hydroxy-5,11-diketo- tetranorprosta -1,16-dioic acid 2,3 dinor-thromboxane B2 2,3 dinor-6-keto-PGF1 alpha 2,3 dinor-6,15-diketo 13,14 dihydro-20-carboxyl-PGF1 alpha 2,3 dinor-13,14-dihydro-6,15-diketo-PGF1 alpha LTB4 LTC4 LTD4 LTE4 LTF4 20-OH-LTB4 20-COOH-LTB4 5-HETE 12-HETE 15-HETE omega-OH-12-HETE 5S, 12S-di HETE 5S, 15S-di HETE HHT other hydroxylated polyunsaturated fatty acids and their epoxides.  相似文献   

20.
Unusual bile acids in umbilical cord blood and amniotic fluid of term newborns and in sera and urine from adult patients with cholestatic liver diseases were analyzed by use of gas-liquid chromatography-mass spectrometry. These bile acids were compared in order to elucidate possible similarities of bile acid metabolism between fetal and cholestatic liver. In both umbilical cord blood and amniotic fluid, 14 unusual bile acids were found in addition to normal bile acids (cholic, chenodeoxycholic, deoxycholic, and lithocholic acids), and 15, excluding ursodeoxycholic acid, were found in sera and urine from patients with cholestatic liver diseases. Of the unusual bile acids detected, 12 were common to both samples. Six unusual bile acids, 3 beta-hydroxy- and 3 beta,12 alpha-dihydroxy-5-cholenoic acids, 3 alpha,6 alpha,7 alpha-trihydroxy-5 beta-cholanoic acid, 1 beta,3 alpha,12 alpha-trihydroxy-1 beta,3 alpha,7 alpha-trihydroxy-, and 1 beta,3 alpha,7 alpha,12 alpha-tetrahydroxy-5 beta-cholanoic acids were more abundant than others. They could be classified into three groups, i.e., unsaturated, 6-hydroxylated, and 1 beta-hydroxylated bile acids. 1 beta-Hydroxylated bile acids, which were not found in serum specimens, were detected in sera from umbilical cord blood and from patients with cholestatic liver diseases. The presence of these unusual bile acids suggested similarities between the altered metabolic states of the two groups examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号