首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple sequence repeats (SSRs) are indel mutational hotspots in genomes. In prokaryotes, SSR loci can cause phase variation, a microbial survival strategy that relies on stochastic, reversible on-off switching of gene activity. By analyzing multiple strains of 42 fully sequenced prokaryotic species, we measure the relative variability and density distribution of SSRs in coding regions. We demonstrate that repeat type strongly influences indel mutation rates, and that the most mutable types are most strongly avoided across genomes. We thoroughly characterize SSR density and variability as a function of N→C position along protein sequences. Using codon-shuffling algorithms that preserve amino acid sequence, we assess evolutionary pressures on SSRs. We find that coding sequences suppress repeats in the middle of proteins, and enrich repeats near termini, yielding U-shaped SSR density curves. We show that for many species this characteristic shape can be attributed to purely biophysical constraints of protein structure. In multiple cases, however, particularly in certain pathogenic bacteria, we observe over enrichment of SSRs near protein N-termini significantly beyond expectation based on structural constraints. This increases the probability that frameshifts result in non-functional proteins, revealing that these species may evolutionarily tune SSR positions in coding regions to facilitate phase variation.  相似文献   

2.
Repeat units, widespread in eukaryotic genomes, are often partially or entirely built up of subrepeats. Homogenization between whole repeat units arranged in tandem usually can best be understood as a result of unequal crossing over. Such a mechanism is less plausible for maintaining similarities between subrepeats within a repeat unit when present in a regular array. In Chironomus telomeres, large blocks of tandemly repeated approximately 350 base-pair units contain two or three pairs of subrepeats with high mutual identities, embedded in linker DNA, non-repetitive within the repeat unit. Measurements of evolutionary base changes in two closely related species, Chironomus tentans and Chironomus pallidivittatus, permit us to conclude that the subrepeat arrangement is best explained as a consequence of regional sequence conservation after an earlier duplication of an ancestral half-unit.  相似文献   

3.
Tumour-associated genetic changes frequently involve DNA translocation or deletion. Many of these events will have arisen from initial genomic damage, induced by either the activity of endogenous metabolic processes or from exposure to environmental genotoxic agents. Although initial genomic damage will have been widely distributed, tumorigenic events are confined to certain DNA target sites. Furthermore, within these target sites there appear to be regions of preferential DNA rearrangement, and examination of these sites implies that the location and extent of such rearrangement may be influenced by DNA primary and secondary structure rather than simply by the point of damage. We selectively review evidence relating to DNA structures that may predispose certain regions of the genome to damage-induced rearrangement, and discuss the possible role of interstitial, inverted telomere-like sequence arrays in promoting chromosomal events of a type known to be associated with some human and animal tumours.  相似文献   

4.
5.

Background  

Sequencing of prokaryotic genomes has recently revealed the presence of CRISPR elements: short, highly conserved repeats separated by unique sequences of similar length. The distinctive sequence signature of CRISPR repeats can be found using general-purpose repeat- or pattern-finding software tools. However, the output of such tools is not always ideal for studying these repeats, and significant effort is sometimes needed to build additional tools and perform manual analysis of the output.  相似文献   

6.
Parsch J  Braverman JM  Stephan W 《Genetics》2000,154(2):909-921
A novel method of RNA secondary structure prediction based on a comparison of nucleotide sequences is described. This method correctly predicts nearly all evolutionarily conserved secondary structures of five different RNAs: tRNA, 5S rRNA, bacterial ribonuclease P (RNase P) RNA, eukaryotic small subunit rRNA, and the 3' untranslated region (UTR) of the Drosophila bicoid (bcd) mRNA. Furthermore, covariations occurring in the helices of these conserved RNA structures are analyzed. Two physical parameters are found to be important determinants of the evolution of compensatory mutations: the length of a helix and the distance between base-pairing nucleotides. For the helices of bcd 3' UTR mRNA and RNase P RNA, a positive correlation between the rate of compensatory evolution and helix length is found. The analysis of Drosophila bcd 3' UTR mRNA further revealed that the rate of compensatory evolution decreases with the physical distance between base-pairing residues. This result is in qualitative agreement with Kimura's model of compensatory fitness interactions, which assumes that mutations occurring in RNA helices are individually deleterious but become neutral in appropriate combinations.  相似文献   

7.
8.
The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided adaptive immunity against viruses and other mobile genetic elements (MGEs). These systems show remarkable evolutionary plasticity and functional versatility at multiple levels, including both the defense mechanisms that lead to direct, specific elimination of the target DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy. This flexibility is also evident in the recruitment of CRISPR systems for nondefense functions. Defective CRISPR systems or individual CRISPR components have been recruited by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived CRISPR variants of yet unknown functions have been discovered. A major route of innovation in CRISPR evolution is the repurposing of diverged repeat variants encoded outside CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity and functional versatility of CRISPR systems are striking manifestations of the ubiquitous interplay between defense and “normal” cellular functions.

The CRISPR systems show remarkable functional versatility beyond their principal function as an adaptive immune mechanism. This Essay discusses how derived CRISPR systems have been recruited by transposons on multiple occasions and mediate RNA-guided transposition; derived CRISPR RNAs are frequently recruited for regulatory functions.  相似文献   

9.
MOTIVATION: Multiple sequence alignment is an essential part of bioinformatics tools for a genome-scale study of genes and their evolution relations. However, making an accurate alignment between remote homologs is challenging. Here, we develop a method, called SPEM, that aligns multiple sequences using pre-processed sequence profiles and predicted secondary structures for pairwise alignment, consistency-based scoring for refinement of the pairwise alignment and a progressive algorithm for final multiple alignment. RESULTS: The alignment accuracy of SPEM is compared with those of established methods such as ClustalW, T-Coffee, MUSCLE, ProbCons and PRALINE(PSI) in easy (homologs) and hard (remote homologs) benchmarks. Results indicate that the average sum of pairwise alignment scores given by SPEM are 7-15% higher than those of the methods compared in aligning remote homologs (sequence identity <30%). Its accuracy for aligning homologs (sequence identity >30%) is statistically indistinguishable from those of the state-of-the-art techniques such as ProbCons or MUSCLE 6.0. AVAILABILITY: The SPEM server and its executables are available on http://theory.med.buffalo.edu.  相似文献   

10.
Evolutionary conservation of gene structures of the Pax1/9 gene family   总被引:1,自引:0,他引:1  
Based on amino acid sequence comparisons, Pax1 and Pax9 genes are considered to form a subgroup of vertebrate Pax genes. We show here that the gene structures of mouse Pax1, human PAX9 genes are similar to that of a single Pax1/9 related gene in Branchiostoma lanceolatum, AmphiPax1. This supports the hypothesis that Pax1 and Pax9 genes were derived from a single ancestral gene. A refined protein alignment of AmphiPax1, mouse Pax1 and human PAX9 proteins based on the determined exon boundaries indicates that sequence divergence at the C-termini may be related to the unique functions of the Pax1 and Pax9 genes in vertebrates. AmphiPax1 is expressed in adult amphioxus in the pharyngeal endoderm.  相似文献   

11.
The repeat-associated mysterious proteins (RAMPs) comprise the most abundant family of proteins involved in prokaryotic immunity against invading genetic elements conferred by the clustered regularly interspaced short palindromic repeat (CRISPR) system. Cas6 is one of the first characterized RAMP proteins and is a key enzyme required for CRISPR RNA maturation. Despite a strong structural homology with other RAMP proteins that bind hairpin RNA, Cas6 distinctly recognizes single-stranded RNA. Previous structural and biochemical studies show that Cas6 captures the 5' end while cleaving the 3' end of the CRISPR RNA. Here, we describe three structures and complementary biochemical analysis of a noncatalytic Cas6 homolog from Pyrococcus horikoshii bound to CRISPR repeat RNA of different sequences. Our study confirms the specificity of the Cas6 protein for single-stranded RNA and further reveals the importance of the bases at Positions 5-7 in Cas6-RNA interactions. Substitutions of these bases result in structural changes in the protein-RNA complex including its oligomerization state.  相似文献   

12.
13.
14.
Nucleotide sequences of nine 5' upstream gene regions for human, chimpanzee, gorilla, and orangutan were determined. We estimated nucleotide differences (d) for each region between human and great apes. The overall d was 0.027 (ranged from 0.004 to 0.052). Rates of nucleotide substitution were estimated by using d and divergence times of human, chimpanzee, gorilla, and orangutan. The overall rate of nucleotide substitution between human and other hominoids was estimated to be 0.52-0.85 x 10(-9). This rate in 5' upstream regions was lower than that of synonymous sites, suggesting that 5' upstream regions have evolved under some functional constraints. Because lower rates have been reported for coding sequences in primates compared to rodents, we also estimated the rate (1.17-1.76 x 10(-9)) of nucleotide substitutions for the corresponding 5' upstream regions in rodents (mouse/rat comparison). Thus the primate rate was lower than rodent rate also for the 5' upstream regions.  相似文献   

15.
16.
Evolutionary conservation of domain-domain interactions   总被引:2,自引:1,他引:2  

Background

Recently, there has been much interest in relating domain-domain interactions (DDIs) to protein-protein interactions (PPIs) and vice versa, in an attempt to understand the molecular basis of PPIs.

Results

Here we map structurally derived DDIs onto the cellular PPI networks of different organisms and demonstrate that there is a catalog of domain pairs that is used to mediate various interactions in the cell. We show that these DDIs occur frequently in protein complexes and that homotypic interactions (of a domain with itself) are abundant. A comparison of the repertoires of DDIs in the networks of Escherichia coli, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens shows that many DDIs are evolutionarily conserved.

Conclusion

Our results indicate that different organisms use the same 'building blocks' for PPIs, suggesting that the functionality of many domain pairs in mediating protein interactions is maintained in evolution.  相似文献   

17.
DNA sequence polymorphisms in Alu repeats   总被引:15,自引:0,他引:15  
M Orita  T Sekiya  K Hayashi 《Genomics》1990,8(2):271-278
We have developed an efficient method for detection of sequence differences in genomic DNA based on a new principle (M. Orita et al., 1989, Genomics 5: 874-879). Using this method, we show here that approximately half the Alu repeats interspersed in the human genome are significantly polymorphic. Analysis of Alu repeat polymorphism should be useful in construction of a high-resolution map and also in identifying genotypes of individuals for clinical and other purposes because the repeats are ubiquitous and the technique for their detection is simple.  相似文献   

18.
Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes. Supplementary Data pertaining to this article is available on the Journal of Biosciences Website at  相似文献   

19.
The dynamic nature of microtubules allows them to search the three-dimensional space of the cell. But what are they looking for? During cellular morphogenesis, microtubules are captured at sites just under the plasma membrane, and this polarizes the microtubule array and associated organelles. Recent data indicate that the signalling pathways that are involved in regulating the different microtubule cortical interactions are not only conserved between species, but also that they function in diverse processes.  相似文献   

20.

Background  

Recently, there has been much interest in relating domain-domain interactions (DDIs) to protein-protein interactions (PPIs) and vice versa, in an attempt to understand the molecular basis of PPIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号