首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of beta-amyloid (Abeta) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Abeta. As a model, we have examined the interaction of Abeta(1-42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Abeta to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Abeta and Abeta-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Abeta addition and is maintained for over 24 h. By contrast, Abeta is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Abeta on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Abeta activity in vivo.  相似文献   

2.
The influence of monovalent cations and anions on the structural parameters of dipalmitoylphosphatidylcholine (DPPC) bilayers was examined at 25 degrees C using X-ray diffraction. It was shown that monovalent salts, in general, have little effect on lipid packing within the bilayer. However, fully hydrated DPPC bilayers in 1 M KSCN pack in an interdigitated acyl chain phase. This is the first observation of an ion-induced interdigitated bilayer phase in a zwitterionic lipid. In addition, gel state DPPC bilayers in 1 M KBr imbibe approx. 10 A more solvent than bilayers in water. The influence of these same salts on the phase transitions of DPPC bilayers was also examined using high-resolution differential scanning calorimetry. These results are discussed in terms of ion-induced changes in solvent and solvent/bilayer structure.  相似文献   

3.
Ouellet M  Doucet JD  Voyer N  Auger M 《Biochemistry》2007,46(22):6597-6606
We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness.  相似文献   

4.
Peptide-membrane interactions have been implicated in both the toxicity and aggregation of β-amyloid (Aβ) peptides. Recent studies have provided evidence for the involvement of liquid-ordered membrane domains known as lipid rafts in the formation and aggregation of Aβ. As a model, we have examined the interaction of Aβ(1−42) with phase separated DOPC/DPPC lipid bilayers using a combination of atomic force microscopy (AFM) and total internal reflection fluorescence microscopy (TIRF). AFM images show that addition of Aβ to preformed supported bilayers leads to accumulation of small peptide aggregates exclusively on the gel phase DPPC domains. Initial aggregates are observed approximately 90 min after peptide addition and increase in diameter to 45-150 nm within 24 h. TIRF studies with a mixture of Aβ and Aβ-Fl demonstrate that accumulation of the peptide on the gel phase domains occurs as early as 15 min after Aβ addition and is maintained for over 24 h. By contrast, Aβ is randomly distributed throughout both fluid and gel phases when the peptide is reconstituted into DOPC/DPPC vesicles prior to formation of a supported bilayer. The preferential accumulation of Aβ on DPPC domains suggests that rigid domains may act as platforms to concentrate peptide and enhance its aggregation and may be relevant to the postulated involvement of lipid rafts in modulating Aβ activity in vivo.  相似文献   

5.
Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization.  相似文献   

6.
KL4, which has demonstrated success in the treatment of respiratory distress, is a synthetic helical, amphipathic peptide mimetic of lung surfactant protein B. The unusual periodicity of charged residues within KL4 and its relatively high hydrophobicity distinguish it from canonical amphipathic helical peptides. Here we utilized site specific spin labeling of both lipids and the peptide coupled with EPR spectroscopy to discern the effects of KL4 on lipid dynamics, the residue specific dynamics of hydrophobic regions within KL4, and the partitioning depths of specific KL4 residues into the DPPC/POPG and POPC/POPG lipid bilayers under physiologically relevant conditions. KL4 induces alterations in acyl chain dynamics in a lipid-dependent manner, with the peptide partitioning more deeply into DPPC-rich bilayers. Combined with an earlier NMR study of changes in lipid dynamics on addition of KL4 (V.C. Antharam et al., 2009), we are able to distinguish how KL4 affects both collective bilayer motions and intramolecular acyl chain dynamics in a lipid-dependent manner. EPR power saturation results for spin labeled lipids demonstrate that KL4 also alters the accessibility profiles of paramagnetic colliders in a lipid-dependent manner. Measurements of dynamics and depth parameters for individual spin-labeled residues within KL4 are consistent with a model where the peptide partitions deeply into the lipid bilayers but lies parallel to the bilayer interface in both lipid environments; the depth of partitioning is dependent on the degree of lipid acyl chain saturation within the bilayer.  相似文献   

7.
Sphingomyelin, one of the main lipid components of biological membranes, is actively involved in various cellular processes such as protein trafficking and signal transduction. In particular, specific lateral domains enriched in sphingomyelin and cholesterol have been proposed to play an important functional role in biomembranes, although their precise characteristics have remained unclear. A thorough understanding of the functional role of membranes requires detailed knowledge of their individual lipid components. Here, we employ molecular dynamics simulations to conduct a systematic comparison of a palmitoylsphingomyelin (PSM, 16:0-SM) bilayer with a membrane that comprises dipalmitoylphosphatidylcholine (DPPC) above the main phase transition temperature. We clarify atomic-scale properties that are specific to sphingomyelin due to its sphingosine moiety, and further discuss their implications for SM-rich membranes. We find that PSM bilayers, and in particular the dynamics of PSM systems, are distinctly different from those of a DPPC bilayer. When compared with DPPC, the strong hydrogen bonding properties characteristic to PSM are observed to lead to considerable structural changes in the polar headgroup and interface regions. The strong ordering of PSM acyl chains and specific ordering effects in the vicinity of a PSM-water interface reflect this issue clearly. The sphingosine moiety and related hydrogen bonding further play a crucial role in the dynamics of PSM bilayers, as most dynamic properties, such as lateral and rotational diffusion, are strongly suppressed. This is most evident in the rotational motion characterized by spin-lattice relaxation times and the decay of hydrogen bond autocorrelation functions that are expected to be important in complexation of SM with other lipids in many-component bilayers. A thorough understanding of SM bilayers would greatly benefit from nuclear magnetic resonance experiments for acyl chain ordering and dynamics, allowing full comparison of these simulations to experiments.  相似文献   

8.
Temperature-controlled Atomic Force Microscopy (TC-AFM) in Contact Mode is used here to directly image the mechanisms by which melting and crystallization of supported, hydrated DPPC bilayers proceed in the presence and absence of the model peptide WALP23. Melting from the gel Lβ′ to the liquid-crystalline Lα phase starts at pre-existing line-type packing defects (grain boundaries) in absence of the peptide. The exact transition temperature is shown to be influenced by the magnitude of the force exerted by the AFM probe on the bilayer, but is higher than the main transition temperature of non-supported DPPC vesicles in all cases due to bilayer–substrate interactions. Cooling of the fluid Lα bilayer shows the formation of the line-type defects at the borders between different gel-phase regions that originate from different nuclei. The number of these defects depends directly on the rate of cooling through the transition, as predicted by classical nucleation theory.The presence of the transmembrane, synthetic model peptide WALP23 is known to give rise to heterogeneity in the bilayer as microdomains with a striped appearance are formed in the DPPC bilayer. This striated phase consists of alternating lines of lipids and peptide. It is shown here that melting starts with the peptide-associated lipids in the domains, whose melting temperature is lowered by 0.8–2.0 °C compared to the remaining, peptide-free parts of the bilayer. The stabilization of the fluid phase is ascribed to adaptations of the lipids to the shorter peptide. The lipids not associated with the peptide melt at the same temperature as those in the pure DPPC supported bilayer.  相似文献   

9.
Porcine pulmonary surfactant-associated protein SP-C was incorporated into bilayers of chain-perdeuterated dipalmitoylphosphatidylglycerol (DPPG-d62) and chain-perdeuterated dipalmitoyl-phosphatidylcholine (DPPC-d62) and into bilayers containing 70 mol% dipalmitoyl-phosphatidylcholine (DPPC) and 30 mol% DPPG-d62 or 70 mol% DPPC-d62 and 30 mol% dipalmitoylphosphatidylglycerol (DPPG). The effect of SP-C on the phase behavior, lipid chain order, and dynamics in these bilayers was examined by using deuterium nuclear magnetic resonance. SP-C was found to have a similar effect on the chain order and phase behavior of DPPC-d62 and DPPG-d62 in bilayers with a single lipid component. In gel phase DPPC/DPPG (7:3) bilayers with one or the other lipid component chain-perdeuterated, SP-C was found to affect first spectral moment more strongly for DPPG-d62 than for DPPC-d62. This may indicate that SP-C induced a nonrandom lateral distribution in the mixed lipid bilayer. SP-C was also found to influence motions responsible for deuteron transverse relaxation in both the gel and liquid crystalline phases. The presence of 5 mM Ca2+ in the aqueous phase substantially altered the effect of SP-C on transverse relaxation in the bilayer.  相似文献   

10.
The N-terminal domain of the capsid protein cleavage product of the flock house virus (FHV) consists of 21 residues and forms an amphipathic alpha-helix, which is thought to play a crucial role in permeabilizing biological membranes for RNA translocation in the host cell. We have found that the Met --> Nle variant of this domain (denoted here as gamma1) efficiently induces the formation of the interdigitated gel phase (LbetaI) of 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers. In situ scanning force microscopy of solid supported bilayers and fluorescence spectroscopy of peptide-treated DPPC vesicles provide evidence for the formation of acyl chain interdigitated lipid domains. It could be shown by fluorescence spectroscopy that the peptide inserts in the DPPC matrix above the main transition temperature of the lipid, while the formation of domains with decreased thickness occurs after the sample is cooled to 25 degrees C. The orientation and secondary structure of the peptide in lipid bilayers were investigated using attenuated total reflectance infrared (ATR-IR) and circular dichroism (CD) spectroscopy. These results enabled us to formulate a mechanistic model for the peptide-mediated induction of interdigitation in DPPC bilayers. Moreover, the membrane activity of gamma1 with gel phase lipids established in this study may have further implications for the infection strategy adopted by simple RNA viruses.  相似文献   

11.
Li L  Wang H  Cheng JX 《Biophysical journal》2005,89(5):3480-3490
We demonstrate quantitative vibrational imaging of specific lipid molecules in single bilayers using laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with a lateral resolution of 0.25 mum. A lipid is spectrally separated from other molecules by using deuterated acyl chains that provide a large CARS signal from the symmetric CD(2) stretch vibration around 2100 cm(-1). Our temperature control experiments show that d62-DPPC has similar bilayer phase segregation property as DPPC when mixing with DOPC. By using epi-detection and optimizing excitation and detection conditions, we are able to generate a clear vibrational contrast from d62-DPPC of 10% molar fraction in a single bilayer of DPPC/d62-DPPC mixture. We have developed and experimentally verified an image analysis model that can derive the relative molecular concentration from the difference of the two CARS intensities measured at the peak and dip frequencies of a CARS band. With the above strategies, we have measured the molar density of d62-DPPC in the coexisting domains inside the DOPC/d62-DPPC (1:1) supported bilayers incorporated with 0-40% cholesterol. The observed interesting changes of phospholipid organization upon addition of cholesterol to the bilayer are discussed.  相似文献   

12.
We present a combined theoretical (molecular dynamics, MD) and experimental (differential scanning calorimetry, DSC) study of the effect of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl chain-labeled fluorescent phospholipid analogs (C6-NBD-PC and C12-NBD-PC) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. DSC measurements reveal that < 1 mol% of NBD-PC causes elimination of the pre-transition and a large loss of cooperativity of the main transition of DPPC. Labeling with C6-NBD-PC or C12-NBD-PC shifts the main transition temperature to lower or higher values, respectively. Following our recent report on the location and dynamics of these probes (BBA 1768 (2007) 467-478) in fluid phase DPPC, we present a detailed analysis of 100-ns MD simulations of systems containing either C6-NBD-PC or C12-NBD-PC, focused on their influence on several properties of the host bilayer. Whereas most monitored parameters are not severely affected for 1.6 mol% of probe, for the higher concentration studied (6.2 mol%) important differences are evident. In agreement with published reports, we observed that the average area per phospholipid molecule increases, whereas DPPC acyl chain order parameters decrease. Moreover, we predict that incorporation of NBD-PC should increase the electrostatic potential across the bilayer and, especially for C12-NBD-PC, slow lateral diffusion of DPPC molecules and rotational mobility of DPPC acyl chains.  相似文献   

13.
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.  相似文献   

14.
Molecular dynamics simulations of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers using the CHARMM27 force field in the tensionless isothermal-isobaric (NPT) ensemble give highly ordered, gel-like bilayers with an area per lipid of approximately 48 A(2). To obtain fluid (L(alpha)) phase properties of DPPC bilayers represented by the CHARMM energy function in this ensemble, we reparameterized the atomic partial charges in the lipid headgroup and upper parts of the acyl chains. The new charges were determined from the electron structure using both the Mulliken method and the restricted electrostatic potential fitting method. We tested the derived charges in molecular dynamics simulations of a fully hydrated DPPC bilayer. Only the simulation with the new restricted electrostatic potential charges shows significant improvements compared with simulations using the original CHARMM27 force field resulting in an area per lipid of 60.4 +/- 0.1 A(2). Compared to the 48 A(2), the new value of 60.4 A(2) is in fair agreement with the experimental value of 64 A(2). In addition, the simulated order parameter profile and electron density profile are in satisfactory agreement with experimental data. Thus, the biologically more interesting fluid phase of DPPC bilayers can now be simulated in all-atom simulations in the NPT ensemble by employing our modified CHARMM27 force field.  相似文献   

15.
H De Boeck  R Zidovetzki 《Biochemistry》1989,28(18):7439-7446
The interaction of four diacylglycerols (DAGs) with multilamellar phospholipid bilayers consisting either of dipalmitoylphosphatidylcholine (DPPC) or of a mixture of DPPC and bovine liver phosphatidylcholine (BL-PC) extracts was investigated by a combination of 31P and 2H NMR spectrometry. We found that saturated and unsaturated long-chain DAGs induce different types of perturbations into the bilayer structure. The saturated DAGs dipalmitin and distearin induce lateral phase separation of the lipids into (i) DAG-enriched gellike domains and (ii) relatively DAG-free regions in the liquid-crystalline phase. In the latter regions, the order parameters along the fatty acyl chains of DPPC are practically identical with the control. This phase separation effect was observed in both model systems studied, and its extent is dependent upon DAG concentration and temperature. Only bilayer phases were present upon addition of dipalmitin or distearin at all concentrations and temperatures studied. The unsaturated DAGs diolein and DAG derived from egg PC (egg-DAG) affect PC bilayers in the following two ways: (i) by increasing the order parameters of the side chains, as observed for both DPPC and BL-PC model systems; (ii) by inducing nonbilayer lipid phases, as observed for BL-PC, but not DPPC. At a concentration of 25 mol % of an unsaturated DAG in mixed PC bilayers, a peak corresponding to isotropic lipid conformation appeared and increased in intensity with increase in temperature, while at 32 mol % hexagonal and bilayer phases coexisted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Perturbations induced by ethylazinphos on the physical organization of dipalmitoylphosphatidylcholine (DPPC) and DPPC/cholesterol membranes were studied by differential scanning calorimetry (DSC) and fluorescence polarization of 2-, 6-, 12-(9-anthroyloxy) stearic acids and 16-(9-anthroyloxy) palmitic acid. Ethylazinphos (50 and 100 microM) increases the fluorescence polarization of the probes, either in the gel or in the fluid phase of DPPC bilayers, and this concentration dependent effect decreases from the surface to the bilayer core. Additionally, the insecticide displaces the phase transition to a lower temperature range and broadens the transition profile of DPPC. A shifting and broadening of the phase transition is also observed by DSC. Furthermore at insecticide/lipid molar ratios higher than 1/7, DSC thermograms, in addition to the normal transition centered at 41 degrees C, also display a new phase transition centered at 45.5 degrees C. The enthalpy of this new transition increases with insecticide concentration, with a corresponding decrease of the main transition enthalpy. Ethylazinphos in DPPC bilayers with low cholesterol (< or = 20 mol%) perturbs the membrane organization as described above for pure DPPC. However, cholesterol concentrations higher than 20 mol% prevent insecticide interaction, as revealed by fluorescence polarization and DSC data. Apparently, cholesterol significantly modulates insecticide interaction by competition for similar distribution domains in the membrane. The present results strongly support our previous hypothesis that ethylazinphos locates in the cooperativity region, i.e. the region of C1-C9 atoms of the acyl chains, and extends to the lipid-water interface, where it increases lipid packing order sensed across all the thickness of the bilayer. Additionally, and, on the basis of DSC data, a lateral regionalization of ethylazinphos is here tentatively suggested.  相似文献   

17.
The localization of the effects of DDT (5–50 mol%) addition on the acyl chain dynamics in unilamellar vesicles of two phosphatidylcholines (DPPC and egg PC) has been investigated by steady-state fluorescence polarization of a series of n-(9-anthroyloxy) fatty acids (n = 2, 6, 9, 12 and 16) whose fluorophore is located at a graded series of depths from the surface to the centre of the bilayer. The results show that DDT is a fluidizer of DPPC and egg PC bilayers. The increase in microviscosity of DPPC bilayers at 23°C begins at the centre of the bilayer (5 mol% DDT) and proceeds outward to the surface with increasing concentration of DDT (17 mol%). This pattern of effects is not evident in fluid bilayers of DPPC at 54°C or egg PC at 23°C. DDT (33 mol%) also lowers the phase transition temperature of DPPC bilayers by approximately 2 Cdeg. DDT (17 mol%) had no effect on the mean excited fluorescence life-time of 2-AP and 12-AS in DPPC, DOPC and egg PC bilayers. No quenching of 2-AP fluorescence was evident.  相似文献   

18.
Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphatidylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers. The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating direction and the disappearance and formation of ripples was visualized. It was found that both the disappearance and formation of ripples take place virtually one ripple at a time, thereby demonstrating the highly anisotropic nature of the ripple phase. Furthermore, when a two-component DMPC-DSPC mixture was heated from the ripple phase and into the ripple-phase/fluid-phase coexistence temperature region, the AFM images revealed that several dynamic properties of the ripple phase are important for the melting behavior of the lipid mixture. Onset of melting is observed at grain boundaries between different ripple types and different ripple orientations, and the longer-wavelength metastable ripple phase melts before the shorter-wavelength stable ripple phase. Moreover, it was observed that the ripple phase favors domain growth along the ripple direction and is responsible for creating straight-edged domains with 60 degrees and 120 degrees angles, as reported previously.  相似文献   

19.
We used real-time atomic force microscopy (AFM) to visualize the interactions between supported lipid membranes and well-defined surfactin analogs, with the aim to understand the influence of geometry, charge and hydrophobicity. AFM images of mixed dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers recorded after injection of cyclic surfactin at 1 mM, i.e. well-above the critical micelle concentration, revealed a complete solubilization of the bilayers within 30 min. A linear analog having the same charge and acyl chains was able to solubilize DOPC, but not DPPC, and to promote redeposition leading eventually to a new bilayer. Increasing the charge of the polar head or the length of the acyl chains of the analogs lead to the complete solubilization of both DOPC and DPPC, thus to a stronger membrane activity. Lastly, we found that at low surfactin concentrations (40 µM), DPPC domains were always resistant to solubilization. These data demonstrate the crucial role played by geometry, charge and hydrophobicity in modulating the membrane activity (solubilization, redeposition) of surfactin. Also, this study suggests that synthetic analogs are excellent candidates for developing new surfactants with tunable, well-defined properties for medical and biotechnological applications.  相似文献   

20.
Using x-ray diffraction, solid-state 2H-NMR, differential scanning calorimetry, and dilatometry, we have observed a perturbation of saturated acyl chain phosphatidylglycerol bilayers by the antimicrobial peptide peptidyl-glycylleucine-carboxyamide (PGLa) that is dependent on the length of the hydrocarbon chain. In the gel phase, PGLa induces a quasi-interdigitated phase, previously reported also for other peptides, which is most pronounced for C18 phosphatidylglycerol. In the fluid phase, we found an increase of the membrane thickness and NMR order parameter for C14 and C16 phosphatidylglycerol bilayers, though not for C18. The data is best understood in terms of a close hydrophobic match between the C18 bilayer core and the peptide length when PGLa is inserted with its helical axis normal to the bilayer surface. The C16 acyl chains appear to stretch to accommodate PGLa, whereas tilting within the bilayer seems to be energetically favorable for the peptide when inserted into bilayers of C14 phosphatidylglycerol. In contrast to the commonly accepted membrane thinning effect of antimicrobial peptides, the data demonstrate that pore formation does not necessarily relate to changes in the overall bilayer structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号