首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang X  Li Y  Ji W  Bai X  Cai H  Zhu D  Sun XL  Chen LJ  Zhu YM 《Journal of plant physiology》2011,168(11):1241-1248
Tonoplast intrinsic protein (TIP) is a subfamily of the aquaporin (AQP), also known as major intrinsic protein (MIP) family, and regulates water movement across vacuolar membranes. Some reports have implied that TIP genes are associated with plant tolerance to some abiotic stresses that cause water loss, such as drought and high salinity. In our previous work, we found that an expressed sequence tag (EST) representing a TIP gene in our Glycine soja EST library was inducible by abiotic stresses. This TIP was subsequently isolated from G. soja with cDNA library screening, EST assembly and PCR, and named as GsTIP2;1. The expression patterns of GsTIP2;1 in G. soja under low temperature, salt and dehydration stress were different in leaves and roots. Though GsTIP2;1 is a stress-induced gene, overexpression of GsTIP2;1 in Arabidopsis thaliana depressed tolerance to salt and dehydration stress, but did not affect seedling growth under cold or favorable conditions. Higher dehydration speed was detected in Arabidopsis plants overexpressing GsTIP2;1, implying GsTIP2;1 might mediate stress sensitivity by enhancing water loss in the plant. Such a result is not identical to previous reports, providing some new information about the relationship between TIP and plant abiotic stress tolerance.  相似文献   

3.
Grafting rootstocks are widely used to enhance plants resistance to various biologic and abiotic stresses. We determined how the rootstock genotype might influence plant responses to drought, using 2-year-old ‘Gale Gala’ apple trees grafted onto Malus sieversii and M. hupehensis. Under water stress, trees with the former as their rootstock had smaller reductions in rates of relative growth and photosynthesis, total biomass, leaf area, levels of leaf chlorophyll, and relative water content compared with those grafted onto the latter. They also had greater maximum photochemical efficiency and water-use efficiency. On the other hand, trees growing on M. sieversii rootstock had less production of superoxide radicals and hydrogen peroxide in both leaves and roots than those growing on M. hupehensis in response to drought stress. Furthermore, under drought conditions, leaves and roots from trees grafted onto M. sieversii had greater synthesis of ascorbic acid and glutathione, as well as higher activities of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. These results suggest that the choice of grafting rootstock can enhance drought resistance by improving the antioxidant system in a plant. Here, ‘Gale Gala’ trees grafted onto M. sieversii were more drought-resistant than those on M. hupehensis rootstock.  相似文献   

4.
Plant hormones play important roles in regulating developmental processes and signaling networks involved in plant responses to biotic and abiotic stresses. We comparatively studied the growth and endogenous hormonal levels in leaves and roots in two Malus species (M. sieversii and M. hupehensis) differing in hypoxia tolerance under normoxic and hypoxia stress. The results showed that hypoxia stress inhibited growth of seedlings of both Malus species, but with significant differences in intensity. Exposure to hypoxia altered the levels of endogenous hormones in leaves and roots in both Malus seedlings. Leaf and root abscisic acid (ABA) contents increased in response to hypoxia stress in both genotypes despite different extents. Compared with M. hupehensis, M. sieversii was more responsive to hypoxia stress, resulting in larger increases in leaf and root ABA contents. The changes in leaf and root ABA contents correlating with the different tolerance levels of the genotypes confirm the involvement of this hormone in plant responses to hypoxia stress. Gibberellins (GAs; GA1 + GA4) continuously increased in leaves and roots during the whole period of stress, whereas indole-3-acetic acid (IAA) showed a sharp increase at the early stage in both Malus seedlings. In addition, zeatin riboside (ZR), dihydrozeatin riboside (DHZR), and isopentenyl adenine (IPA) differed in their pattern of changes in both Malus seedlings under hypoxia stress. Based on variations in endogenous hormonal levels in both Malus species that differ in their ability to tolerate hypoxia, we conclude that not a single hormone but multiple hormones and their interplay are responsible for hypoxia tolerance.  相似文献   

5.
Arbuscular mycorrhizal (AM) symbiosis, established between AM fungi (AMF) and roots of higher plants, occurs in most terrestrial ecosystems. It has been well demonstrated that AM symbiosis can improve plant performance under various environmental stresses, including drought stress. However, the molecular basis for the direct involvement of AMF in plant drought tolerance has not yet been established. Most recently, we cloned two functional aquaporin genes, GintAQPF1 and GintAQPF2, from AM fungus Glomus intraradices. By heterologous gene expression in yeast, aquaporin localization, activities and water permeability were examined. Gene expressions during symbiosis in expose to drought stress were also analyzed. Our data strongly supported potential water transport via AMF to host plants. As a complement, here we adopted the monoxenic culture system for AMF, in which carrot roots transformed by Ri-T DNA were cultured with Glomus intraradices in two-compartment Petri dishes, to verify the aquaporin gene functions in assisting AMF survival under polyethylene glycol (PEG) treatment. Our results showed that 25% PEG significantly upregulated the expression of two aquaporin genes, which was in line with the gene functions examined in yeast. We therefore concluded that the aquaporins function similarly in AMF as in yeast subjected to osmotic stress. The study provided further evidence to the direct involvement of AMF in improving plant water relations under drought stresses.  相似文献   

6.
该研究以平邑甜茶[Malus hupehensis(Pamp.)Rehd.]2年生实生苗为材料,通过盆栽试验于干旱处理前3d分别连续喷施黄腐酸(FA)、甜菜碱(GB)和复配(FA+GB),并以清水为对照(CK)进行预处理,比较分析不同预处理对干旱胁迫下平邑甜茶的生理及光合特性变化,探讨FA和GB对平邑甜茶的抗旱生理机制。结果显示:(1)与对照相比,FA、GB和FA+GB预处理均能够显著提高平邑甜茶叶片相对含水量,且FA的保水性效果最佳。(2)3种预处理均可显著促进干旱胁迫下叶片可溶性蛋白、可溶性糖和脯氨酸含量增加,且FA+GB预处理后在干旱胁迫下叶片可溶性糖和脯氨酸累积量显著高于单施FA或GB。(3)3种预处理均可显著提高干旱胁迫下平邑甜茶幼苗的SOD、POD、CAT活性,并显著降低MDA的积累速度及其累积量,且以FA+GB预处理的MDA含量最低、抗氧化酶活性最高。(4)GB和FA+GB预处理下平邑甜茶的净光合速率、瞬时水分利用率显著高于CK和FA,且FA+GB处理下改善光合特性的效果最佳,GB次之。研究表明,单独喷施黄腐酸和甜菜碱及两者配施预处理均能够增加干旱胁迫下平邑甜茶的渗透调节物质和相对含水量,提高叶片的保水性,调节抗氧化物酶活性,降低丙二醛含量,增加细胞膜稳定性,改善光合性能,进而提高平邑甜茶的抗旱能力,且以复配喷施(FA+GB)预处理的效果最好。  相似文献   

7.

Background

Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.

Results

The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.

Conclusion

The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.  相似文献   

8.
The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs) and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.  相似文献   

9.
Zea mays L. is less tolerant to drought than Sorghum bicolor L. In the present study, we investigated the response of both plants to drought stress applied under field conditions by withholding water for 10 d. The plant growth in terms of shoot fresh and dry masses was more severely reduced in maize than in sorghum, consistently with reduction of leaf relative water content. Gas exchange was also more inhibited by drought in maize than in sorghum. The water use efficiency (WUE) of maize fluctuated during the day and in response to the drought stress. In contrast, sorghum was able to maintain a largely constant WUE during the day in the well-watered plants as well as in the stressed ones. Studying the expression of four aquaporin genes (PIP1;5, PIP1;6, PIP2;3, and TIP1;2) revealed that PIP1;5 in leaves and PIP2;3 in roots were highly responsive to drought in sorghum but not in maize, where they might have supported a greater water transport. The expression pattern of PIP1;6 suggests its possible role in CO2 transport in control but not droughty leaves of both the plants. TIP1;2 seemed to contribute to water transport in leaves of the control but not droughty plants. We conclude that PIP1;5 and PIP2;3 may have a prominent role in drought tolerance and maintenance of WUE in sorghum plants.  相似文献   

10.
We examined the potential differences in tolerance to hypoxia by two species of apple rootstocks. Stomatal behavior and photosynthesis were compared between Malus sieversii and Malus hupehensis. Plants were hydroponically grown for 15 days in normoxic or hypoxic nutrient solutions. Those of M. sieversii showed much greater sensitivity, with exposure to hypoxia resulting in higher leaf concentrations of abscisic acid (ABA) that prompted stomatal closure. Compared with the control plants of that species, stomatal density was greater in both new and mature leaves under stress conditions. In contrast, stomatal density was significantly decreased in leaves from M. hupehensis, while stomatal length was unaffected. Under stress, the net photosynthetic rate, stomatal conductance and chlorophyll contents were markedly reduced in M. sieversii. The relatively hypoxia‐tolerant genotype M. hupehensis, however, showed only minor changes in net photosynthesis or chlorophyll content, and only a slight decrease in stomatal conductance due to such treatment. Therefore, we conclude that the more tolerant M. hupehensis utilizes a better protective mechanism for retaining higher photosynthetic capacity than does the hypoxia‐sensitive M. sieversii. Moreover, this contrast in tolerance and adaptation to stress is linked to differences in their stomatal behavior, photosynthetic capacity and possibly their patterns of native distribution.  相似文献   

11.
12.
Aquaporin proteins are part of the complex response of common bean (Phaseolus vulgaris L.) to drought which affects the quality and quantity of yield of this important crop. To better understand the role of aquaporins in common bean, drought-induced gene expression of several aquaporins was determined in two cultivars, the more drought tolerant Tiber and the less tolerant Starozagorski ?ern. The two bean cultivars were selected among 16 European genotypes based on the tolerance to drought determined by time needed for plants to wilt after withholding irrigation and yield at harvest. The expression patterns of two plasma membrane intrinsic proteins, PvPIP1;2 and PvPIP2;7, and two tonoplast intrinsic proteins, PvTIP1;1 and PvTIP4;1 in leaves of 21 day old plants were determined by RT-qPCR in both cultivars under three degrees of drought stress, and under rehydration and control conditions. Gene expression of all four examined aquaporins was down-regulated in drought stressed plants. After rehydration it returned to the level of control plants or was even higher. The responses of PvPIP2;7 and PvTIP1;1 during drought and rehydration were particularly pronounced. The gene expression of PvPIP2;7 and PvTIP4;1 during drought was cultivar specific, with greater down-regulation of these two aquaporins in drought tolerant Tiber. Under drought stress the relative water content and water potential of leaves were higher in Tiber than in Starozagorski plants. The differences in these physiological parameters indicate greater prevention of water loss in Tiber during drought, which may be associated with rapid and adequate down-regulation of aquaporins. These results suggest that the ability of plants to conserve water during drought stress involves timely and sufficient down-regulation of gene expression of specific aquaporins.  相似文献   

13.
14.
Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well‐watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well‐watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co‐locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.  相似文献   

15.
To determine the effects of rootstock choice on the scion response to drought stress, we compared the vegetative growth, biomass accumulation, gas exchange, and water-use efficiency (WUE) of ??Gale Gala?? apple (Malus domestica Borkh.) trees grafted onto nine wild Chinese Malus rootstocks. Compared with the well-watered control, drought treatment limited growth, as manifested by smaller increments in plant height (PH), trunk diameter (TD), total fresh biomass (TB), total dry biomass (TDB), total leaf area (LA), and relative growth rate (RGR). The extent of this effect differed among rootstocks. Stress conditions led to increases in the root/shoot ratio (RSR), leaf thickness (LT), water-holding capacity (WHC), carbon isotope composition (??13C), and WUE. Decreases were noted in stomatal density (SD), leaf relative water content (RWC), chlorophyll content (Chl), net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s), again varying by rootstock. Those that are generally considered more drought-tolerant, e.g., M. sieversii, M. prunifolia, and M. toringoides, had smaller declines in PH, TD, TB, TDB, LA, RGR, SD, RWC, Chl, P N, E, and g s and proportionally greater increases in RSR, LT, WHC, ??13C, and WUE compared with the droughtsensitive M. hupehensis and M. sieboldii. These results suggest that moisture stress has a significant dwarfing effect in the latter two species. Based on WUE calculations, trees on drought-tolerant rootstocks showed higher tolerance when stressed, whereas those on drought-sensitive rootstocks were less tolerant, as indicated by their lower WUE values.  相似文献   

16.
17.
18.
Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and plant responses to drought still remains elusive. Moreover, the contribution of aquaporin genes to the enhanced tolerance to drought in arbuscular mycorrhisal (AM) plants has never been investigated. Therefore, we studied, at a molecular level, whether the expression of aquaporin-encoding genes in roots is altered by the AM symbiosis as a mechanism to enhance host plant tolerance to water deficit. In this study, genes encoding plasma membrane aquaporins (PIPs) from soybean and lettuce were cloned and their expression pattern studied in AM and nonAM plants cultivated under well-watered or drought stressed conditions. Results showed that AM plants responded to drought stress by down-regulating the expression of the PIP genes studied and anticipating its down-regulation as compared to nonAM plants. The possible physiological implications of this down-regulation of PIP genes as a mechanism to decrease membrane water permeability and to allow cellular water conservation is further discussed.  相似文献   

19.
Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.  相似文献   

20.
Most of the symplastic water transport in plants occurs via aquaporins, but the extent to which aquaporins contribute to plant water status under favorable growth conditions and abiotic stress is not clear. To address this issue, we constitutively overexpressed the Arabidopsis plasma membrane aquaporin, PIP1b, in transgenic tobacco plants. Under favorable growth conditions, PIP1b overexpression significantly increased plant growth rate, transpiration rate, stomatal density, and photosynthetic efficiency. By contrast, PIP1b overexpression had no beneficial effect under salt stress, whereas during drought stress it had a negative effect, causing faster wilting. Our results suggest that symplastic water transport via plasma membrane aquaporins represents a limiting factor for plant growth and vigor under favorable conditions and that even fully irrigated plants face limited water transportation. By contrast, enhanced symplastic water transport via plasma membrane aquaporins may not have any beneficial effect under salt stress, and it has a deleterious effect during drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号