首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Root architecture is of key importance for plant nutrition and performance. It is known that root architecture is determined by genetics and environmental conditions. The aim of the present study was to evaluate if root exudation within a given plant has a role in the development of root architecture. We conducted a series of experiments using Arabidopsis thaliana Ler and Col grown with and without activated charcoal (AC). The addition of AC lowered the concentration of secondary metabolites in the growth media by more than 90%. Our results consistently showed that the addition of AC significantly decreased the number of lateral roots (38% in Ler and 27% in Col), but this decrease was compensated by an increase in the root length per unit of lateral root (83% in Ler and 96% in Col). This compensation resulted in a non-significant effect of AC on the total length of lateral roots. The effects of AC on root architecture were partially or totally reverted by the differential supplementation of root exudates from other plants of the same ecotype. Our results indicate a direct role of secondary metabolites present in the root exudates in the development of root architecture.  相似文献   

2.
Developmental plasticity is one main adaptative response of plants to the availability of nutrients. In the present study, the naturally occurring variation existing in Arabidopsis for the growth responses to phosphate availability was investigated. Initially details of the effects of phosphate starvation for the four currently used accessions Cvi, Col, Ler and Ws were compared. A set of 10 growth parameters, concerning the aerial part and the root system, was measured in both single‐point and time‐course experiments. The length of the primary root and the number of laterals were found to be consistently reduced by phosphate starvation in all four accessions. These two robust parameters were selected to further screen a set of 73 accessions originating from a wide range of habitats. One‐half of the accessions showed also a reduced primary root and less lateral roots when phosphate‐starved, and 25% were not responsive to phosphate availability. For the last quarter of accessions, phosphate starvation was found to affect only one of the two growth parameters, indicating the occurrence of different adaptative strategies. These accessions appear to offer new tools to investigate the molecular basis of the corresponding growth responses to phosphate availability.  相似文献   

3.
The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress- related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions.  相似文献   

4.
Chromosaponin I (CSI), a triterpenoid saponin isolated from pea, stimulates the growth of roots in Arabidopsis thaliana seedlings on wetted filter paper in the light for 14 d. The growth rates of roots in Columbia (Col) and Landsberg erecta (Ler) wild-types were 0.92 and 0.26 mm d(-1), respectively, and they were accelerated to 3.46 (Col) and 2.20 (Ler) mm d(-1) by treating with 300 microM CSI. The length of mature epidermal cells was increased by 1.8-fold (Col) and 2.81-fold (Ler) compared with control and the number of epidermal cells was increased by a factor of 1.65 (Col) and 2.12 (Ler). Treatment with 2-aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis, also increased cell length but not cell number. The effects of CSI on root growth were not detected in the ethylene-insensitive mutant ein2-1. CSI did not inhibit ethylene production but stimulated the growth of roots in ctr1-1, the constitutive triple response mutant for ethylene, indicating that CSI inhibits ethylene signaling, especially downstream of CTR1. In the GA-insensitive mutant gai and the mutant spy-3, in which the basal level of GA signaling is activated, CSI did not increase cell number, although both CSI and AVG stimulated cell elongation in these mutants. These results suggest that the inhibition of ethylene signaling is the cause of CSI-induced cell elongation. A possible involvement of both GA and ethylene signalings is discussed for the CSI-induced cell division.  相似文献   

5.
Competition among plants often shifts from roots to shoots as productivity increases and species composition changes. We examined competition in an old field with low diversity to test whether this shift occurred along a productivity gradient without species turnover. Forty plots received one of four nitrogen treatments (0, 5, or 15 g added N m-2 yr-1 or 400 g m-2 yr-1 of sawdust added to immobilize N) annually for 5 yr. All N levels were dominated by the perennial grasses Agropyron cristatum and Bromus inermis. Transplants of Agropyron were grown with all neighbors, roots of neighbors, or no neighbors present to measure total, root, and shoot competition. Transplant growth was 22%-165% higher in subplots without neighbors present, which indicates that competition occurred. Competition from neighbor roots was primarily responsible for suppression of transplant growth over the entire productivity gradient. In contrast to previous field experiments that found either an increase in total competition intensity or a shift from root to shoot competition with increasing productivity, we found neither. Increases in total competition intensity or shifts from root to shoot competition found along other gradients may be caused by changes in species composition and not by increased resources or neighbor biomass. These results suggest that different competitive mechanisms may operate in low-diversity vegetation than in more diverse natural vegetation.  相似文献   

6.
Root growth patterns respond to small-scale resource heterogeneity and the presence of roots of neighboring plants, but how a plant integrates its responses to these cues is not well understood. In the presence of neighbors, plants may shift allocation to roots as a consequence of plant size and root:shoot allometry, as a response to resource depletion by neighbors, or through a direct response to neighbor presence. The same response pathways also have the potential to alter proliferation in resource-rich patches in soil.Four species of grassland plants were grown in the greenhouse as single plants, monocultures, and mixtures. Root length allocation as a function of shoot mass was examined for background soil and fertilized patches. Plants grown with same-species neighbors followed the same allometric trajectory as single plants for root length in background soil, so any change in root allocation was due only to reduced plant size. Root proliferation in patches declined with neighbors, consistent with a response to resource depletion. Mixtures overproduced roots in both background soil and in patches, relative to plants of the same size in monocultures.  相似文献   

7.
The activity of soil pathogens, competition for assimilates, and the changing availability of below-ground resources make root systems subject to a continuous and dynamic process of formation and loss of both fine and coarse roots. As hypocotyl borne roots appear later than other root classes, they may serve to functionally replace basal and primary roots lost to biotic and abiotic stress. Using common bean (Phaseolus vulgaris L.), we conducted experiments in solution and solid media culture with treatments involving the removal of part of the root system (basal, hypocotyl borne or primary roots), phosphorus availability, and depth of seeding to test the hypothesis that there are compensation mechanisms among basal, hypocotyl borne and primary roots to cope with the loss of part of the root system. The root system was highly plastic in response to root excision, which resulted in the maintenance of below-ground biomass accumulation. In most cases, this compensation among root classes was enough to maintain plant performance in both phosphorus sufficient and phosphorus stressed plants. Removal of a specific root class induced an increase in the growth of the remaining root classes. All root classes, but especially the primary root, contributed to the compensation mechanism in some way. Primary roots represented around 10% of the root system in control plants and this proportion increased dramatically (up to 50%) when other root classes were removed. In contrast, negligible compensatory re-growth was observed following removal of the primary root. Greater planting depth increased the production of hypocotyl borne roots at the expense of basal roots. The proportion of hypocotyl borne roots increased from 25% of the whole root system when seeds were placed at a depth of 2 cm to 30% when they were placed at 5 cm and to 38% when placed at 8 cm, with corresponding decreases in the proportion represented by basal roots. The common feature of our observations is the innate ability of the root system for its own regeneration. Total root biomass maintained strict allometric relationships with total shoot biomass in all treatments. Re-stabilization of root to shoot balance after partial root loss is governed by overall plant size following allometric relationships similar to undisturbed plants. However, the pattern of this root regeneration was not uniform since the way the three root classes compensated each other after the removal of any one of them varied among the different growth media and phosphorus supply conditions. The resulting changes in root architecture could have functional significance for soil resource acquisition.  相似文献   

8.
The sku6-1 mutant of Arabidopsis thaliana exhibits altered patterns of root and organ growth. sku6 roots, etiolated hypocotyls, and leaf petioles exhibit right-handed axial twisting, and root growth on inclined agar media is strongly right skewed. The touch-dependent sku6 root skewing phenotype is suppressed by the antimicrotubule drugs propyzamide and oryzalin, and right skewing is exacerbated by cold treatment. Cloning revealed that sku6-1 is allelic to spiral1-1 (spr1-1). However, modifiers in the Columbia (Col) and Landsberg erecta (Ler) ecotype backgrounds mask noncomplementation in sku6-1 (Col)/spr1-1 (Ler) F1 plants. The SPR1 gene encodes a plant-specific 12-kD protein that is ubiquitously expressed and belongs to a six-member gene family in Arabidopsis. An SPR1:green fluorescent protein (GFP) fusion expressed in transgenic seedlings localized to microtubules within the cortical array, preprophase band, phragmoplast, and mitotic spindle. SPR1:GFP was concentrated at the growing ends of cortical microtubules and was dependent on polymer growth state; the microtubule-related fluorescence dissipated upon polymer shortening. The protein has a repeated motif at both ends, separated by a predicted rod-like domain, suggesting that it may act as an intermolecular linker. These observations suggest that SPR1 is involved in microtubule polymerization dynamics and/or guidance, which in turn influences touch-induced directional cell expansion and axial twisting.  相似文献   

9.
Little is known about how small-scale variation in neighbor biomass can influence the strength of root competition experienced by an individual plant. In this study, modified root exclusion tubes were used to vary the accessibility of the soil space surrounding Amaranthus retroflexus target plants to the neighboring plants. A gradient of root accessibility was created by drilling varying numbers of holes into standard root exclusion tubes, made of 15 cm diameter PVC pipe. Belowground competitive intensity, defined as biomass reduction due to root interactions alone, relative to growth in the absence of neighbors, was then measured along the resulting gradient of neighbor root densities. At low neighbor root abundances the strength of belowground competition was proportional to neighbor root biomass, consistent with prior evidence that belowground competition is symmetric. If belowground competition were asymmetric, neighbor roots should have had little effect on target plants when they are rare relative to those of the target plant. At higher neighbor root abundances, belowground competitive intensity should increase rapidly. The strong relationship found between neighbor root biomass and belowground competitive intensity suggests relatively small variations in root biomass could lead to large variations in belowground competition. Reduced belowground competition in areas with low root biomass could have important implications for the establishment and growth of poor belowground competitors, suggesting a mechanism by which species coexistence may occur despite extremely intense root competition.  相似文献   

10.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

11.
疏叶骆驼刺根系对土壤异质性和种间竞争的响应   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来, 植物根系对土壤异质性的响应和植物根系之间的相互作用一直是研究的热点。过去的研究主要是针对一年生短命植物进行的, 而且多是在人工控制的温室条件下进行的。而对于多年生植物根系对养分异质性和竞争的综合作用研究很少。该文对塔里木盆地南缘多年生植物疏叶骆驼刺(Alhagi sparsifolia)根系生长对养分异质性和竞争条件的响应途径与适应策略进行了研究, 结果表明: (1)在无竞争的条件下, 疏叶骆驼刺根系优先向空间大的地方生长, 即使另一侧有养分斑块存在, 其根系也向着空间大的一侧生长; (2)在有竞争的条件下, 疏叶骆驼刺根系生长依然是优先占领空间大的一侧, 但是竞争者的存在抑制了疏叶骆驼刺的生长, 导致其枝叶生物量和根系生物量都明显减少(p < 0.01), 而养分斑块的存在促进了疏叶骆驼刺根系的生长; (3)疏叶骆驼刺根系的生长不仅需要养分, 也需要足够的空间, 空间比养分更重要; (4)有竞争者存在的时候, 两株植物的根系都先长向靠近竞争者一侧的空间, 即先占据“共有空间”。研究结果对理解植物根系觅食行为和植物对环境的适应策略有重要意义。  相似文献   

12.
Root hairs confer a competitive advantage under low phosphorus availability   总被引:23,自引:3,他引:20  
Bates  Terence R.  Lynch  Jonathan P. 《Plant and Soil》2001,236(2):243-250
Root hairs are presumably important in the acquisition of immobile soil resources such as phosphorus. The density and length of root hairs vary substantially within and between species, and are highly regulated by soil phosphorus availability, which suggests that at high nutrient availability, root hairs may have a neutral or negative impact on fitness. We used a root-hairless mutant of the small herbaceous dicot Arabidopsis thaliana to assess the effect of root hairs on plant competition under contrasting phosphorus regimes. Wildtype plants were grown with hairless plants in a replacement series design at high (60 m phosphate in soil solution) and low (1 m phosphate in soil solution) phosphorus availability. At high phosphorus availability, wildtype and mutant plants were equal in growth, phosphorus acquisition, fecundity and relative crowding coefficient (RCC). At low phosphorus availability, hairless plants accumulated less biomass and phosphorus, and produced less seed when planted with wildtype plants. Wildtype plants were unaffected by the presence of hairless plants in mixed genotype plantings. Wildtype plants had RCC values greater than one while hairless plants had RCC values less than one. We conclude that root hairs increase the competitiveness of plants under low phosphorus availability but do not reduce growth or competitiveness under high phosphorus availability.  相似文献   

13.
Recent studies have demonstrated that plants alter root growth and decrease competition with roots of the same individual (self); however, the physiological traits accompanying this response are still widely unknown. In this study, we investigated the effect of root identity on gas exchange in the model species pea (Pisum sativum L.). Split-root plants were planted so that each pot contained either two roots of the same plant (self) or of two different plants (non-self), and the responses of biomass, photosynthesis, and respiration were measured. The photosynthetic rate was not affected by the identity of the root neighbor. We found a reduction of leaf dark respiration by half, accompanied by an increase in nocturnal root respiration by 29 % in plants neighboring with non-self. The activity of the alternative oxidase (AOX) pathway increased when plants responded to non-self neighbors. The increased activity of AOX in plants responding to non-self indicates carbon imbalances in roots, possibly as a consequence of increased root exudation and communication between individuals. If such an effect occurs more widely, it may change the assumptions made for the quantity of respiration as used in carbon budget models.  相似文献   

14.
The root system produced of in vitro organ plantlets is of poor quality and not efficient for the transfer to out-door conditions. To overcome such problems, experimentation was undertaken where the effects of growth regulators, nitrogen, sugar, activated charcoal and coconut fiber were tested on root induction and elongation. Modified Murashige and Skoog with half strength salt was used as a basal medium. Root induction (85%) with a mean of 16 roots per explant was obtained when shoots were grown, under dark conditions for 14 days, with a combination of two auxins (IBA and NNA), added at equal concentrations (5 mg.L-1). Secondary roots, 10 cm long, were initiated in 12% of the cultures in presence of 5 g.L-1 activated charcoal. Further improvements in the growth of the primary and secondary roots were obtained when semi-solid medium was substituted with a substrate composed of coconut fibers (80 g) mixed with semi-solid medium (35 mL) and agar (2.5 g.L-1).  相似文献   

15.
Effect of phosphorus availability on basal root shallowness in common bean   总被引:27,自引:2,他引:25  
Liao  Hong  Rubio  Gerardo  Yan  Xiaolong  Cao  Aiqin  Brown  Kathleen M.  Lynch  Jonathan P. 《Plant and Soil》2001,232(1-2):69-79
Root gravitropism may be an important element of plant response to phosphorus availability because it determines root foraging in fertile topsoil horizons, and thereby phosphorus acquisition. In this study we seek to test this hypothesis in both two dimensional paper growth pouch and three-dimensional solid media of sand and soil cultures. Five common bean (Phaseolus vulgaris L.) genotypes with contrasting adaptation to low phosphorus availability were evaluated in growth pouches over 6 days of growth, and in sand culture and soil culture over 4 weeks of growth. In all three media, phosphorus availability regulated the gravitropic response of basal roots in a genotype-dependent manner. In pouches, sand, and soil, the phosphorus-inefficient genotype DOR 364 had deeper roots with phosphorus stress, whereas the phosphorus-efficient genotype G19833 responded to phosphorus stress by producing shallower roots. Genotypes were most responsive to phosphorus stress in sand culture, where relative root allocation to the 0–3- and 3–6-cm horizons increased 50% with phosphorus stress, and varied 300% (3–6 cm) to 500% (0–3 cm) among genotypes. Our results indicate that (1) phosphorus availability regulates root gravitropic growth in both paper and solid media, (2) responses observed in young seedlings continue throughout vegetative growth, (3) the response of root gravitropism to phosphorus availability varies among genotypes, and (4) genotypic adaptation to low phosphorus availability is correlated with the ability to allocate roots to shallow soil horizons under phosphorus stress.  相似文献   

16.
Here, we tested the predictions of a 'tragedy of the commons' model of below-ground plant competition in annual plants that experience spatial heterogeneity in their competitive environment. Under interplant competition, the model predicts that a plant should over-proliferate roots relative to what would maximize the collective yield of the plants. We predict that a plant will tailor its root proliferation to local patch conditions, restraining root production when alone and over-proliferating in the presence of other plants. A series of experiments were conducted using pairs of pea (Pisum sativum) plants occupying two or three pots in which the presence or absence of interplant root competition was varied while nutrient availability per plant was held constant. In two-pot experiments, competing plants produced more root mass and less pod mass per individual than plants grown in isolation. In three-pot experiments, peas modulated this response to conditions at the scale of individual pots. Root proliferation in the shared pot was higher compared with the exclusively occupied pot. Plants appear to display sophisticated nutrient foraging with outcomes that permit insights into interplant competition.  相似文献   

17.
A common response to low phosphorus availability is increased relative biomass allocation to roots. The resulting increase in root:shoot ratio presumably enhances phosphorus acquisition, but may also reduce growth rates by diverting carbon to the production of heterotrophic rather than photosynthetic tissues. To assess the importance of increased carbon allocation to roots for the adaptation of plants to low P availability, carbon budgets were constructed for four common bean genotypes with contrasting adaptation to low phosphorus availability in the field ("phosphorus efficiency"). Solid-phase-buffered silica sand provided low (1 microM), medium (10 microM), and high (30 microM) phosphorus availability. Compared to the high phosphorus treatment, plant growth was reduced by 20% by medium phosphorus availability and by more than 90% by low phosphorus availability. Low phosphorus plants utilized a significantly larger fraction of their daytime net carbon assimilation on root respiration (c. 40%) compared to medium and high phosphorus plants (c. 20%). No significant difference was found among genotypes in this respect. Genotypes also had similar rates of P absorption per unit root weight and plant growth per unit of P absorbed. However, P-efficient genotypes allocated a larger fraction of their biomass to root growth, especially under low P conditions. Efficient genotypes had lower rates of root respiration than inefficient genotypes, which enabled them to maintain greater root biomass allocation than inefficient genotypes without increasing overall root carbon costs.  相似文献   

18.
The ability to recognize kin is an important element in social behavior and can lead to the evolution of altruism. Recently, it has been shown that plants are capable of kin recognition through root interactions. Here we tested for kin recognition in a North American species of Impatiens that has a high opportunity of growing with kin and responds strongly to aboveground competition. We measured how the plants responded to the aboveground light quality cues of competition and to the presence of root neighbors and determined whether the responses depended on whether the neighbors were siblings or strangers. The study families were identified by DNA sequencing as members of the same species, provisionally identified as Impatiens pallida (hereafter I. cf. pallida). We found that I. cf. pallida plants were capable of kin recognition, but only in the presence of another plant's roots. Several traits responded to relatedness in shared pots, including increased leaf to root allocation with strangers and increased stem elongation and branchiness in response to kin, potentially indicating both increased competition toward strangers and reduced interference (cooperation) toward kin. Impatiens cf. pallida responded to both competition cues simultaneously, with the responses to the aboveground competition cue dependent on the presence of the belowground competition cue.  相似文献   

19.
Documenting if plants exhibit kin competition avoidance in intraspecific plant interactions is relevant both to improve crop growth, and to understand diversity and composition in natural plant communities. However, a number of confounding mechanisms complicates detecting kin competition avoidance from experiments comparing plants growing with kin and non-kin neighbors. We conducted complementary greenhouse experiments using genotypes from four populations of the annual Medicago minima, which in a previous study showed higher survival when interacting with kin relative to non-kin. We show that genotypes vary in kin competition avoidance, and in competitive ability, but find no indication of complementary resource use. Importantly, from our first experiment of root growth behavior, we know that some genotypes exhibit kin competition avoidance. Yet, the variation in competitive ability we find in our second experiment, where plants grow in mini communities together with either kin or unrelated genotypes, can alone explain the variation we observe in growth and biomass among communities. In our case, the genotypes with highest competitive ability were also those that showed kin competition avoidance. This confounding effect obscured the disentangling of mechanisms underlying difference in growth between kin and non-kin interactions. When silencing root exudates by adding activated carbon to a subset of our genotype combinations, we found increased size asymmetry of plants grown together, and mostly in kin communities. This suggests that plants recognize the identity of neighbors via root exudates, and compete less with neighbors recognized as kin. To detect kin competition avoidance we suggest designing experiments that pair unrelated genotypes with similar competitive abilities. Such design, combined with silencing root exudates would be powerful to detect whether plants show kin competition avoidance or not.  相似文献   

20.
The role of ethylene in growth and developmental responses to low phosphorus stress was evaluated using ethylene-insensitive 'Never-ripe' (Nr) tomato and etr1 petunia plants. Low phosphorus increased adventitious root formation in 'Pearson' (wild-type) tomato plants, but not in Nr, supporting a role for ethylene in adventitious root development and showing that ethylene is important for this aspect of phosphorus response. Low phosphorus reduced ethylene production by adventitious roots of both genotypes, suggesting that ethylene perception--not production--regulates carbon allocation to adventitious roots at the expense of other roots under low phosphorus stress. With the exception of its effect on adventitious rooting, Nr had positive effects on growth and biomass accumulation in tomato whereas etr1 tended to have negative effects on petunia. This was particularly evident during the recovery from transplanting, when the effective quantum yield of photosystem II of etr1 petunia grown with low phosphorus was significantly lower than 'Mitchell Diploid', suggesting that etr1 petunia plants may undergo more severe post-transplant stress at low phosphorus availability. Our results demonstrate that ethylene mediates adventitious root formation in response to phosphorus stress and plays an important role for quick recovery of plants exposed to multiple environmental stresses, i.e. transplanting and low phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号