首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The absence of a Watson-Crick base pair at the end of the amino acid acceptor stem is one of the features which distinguishes prokaryotic initiator tRNAs as a class from all other tRNAs. We show that this structural feature prevents Escherichia coli initiator tRNA from acting as an elongator in protein synthesis in vivo. We generated a mutant of E. coli initiator tRNA in which the anticodon sequence is changed from CAU to CUA (the T35A36 mutant). This mutant tRNA has the potential to read the amber termination codon UAG. We then coupled this mutation to others which change the C1.A72 mismatch at the end of the acceptor stem to either a U1:A72 base pair (T1 mutant) or a C1:G72 base pair (G72 mutant). Transformation of E. coli CA274 (HfrC Su- lacZ125am trpEam) with multicopy plasmids carrying the mutant initiator tRNA genes show that mutant tRNAs carrying changes in both the anticodon sequence and the acceptor stem suppress amber codons in vivo, whereas mutant tRNA with changes in the anticodon sequence alone does not. Mutant tRNAs with the above anticodon sequence change are aminoacylated with glutamine in vitro. Measurement of kinetic parameters for aminoacylation by E. coli glutaminyl-tRNA synthetase show that both the nature of the base pair at the end of the acceptor stem and the presence or absence of a base pair at this position can affect aminoacylation kinetics. We discuss the implications of this result on recognition of tRNAs by E. coli glutaminyl-tRNA synthetase.  相似文献   

2.
The incorporation of unnatural amino acids site-specifically is a valuable technique for structure-function studies, incorporation of biophysical probes, and determining protein-protein interactions. THG73 is an amber suppressor tRNA used extensively for the incorporation of >100 different residues in over 20 proteins, but under certain conditions THG73 is aminoacylated in vivo by endogenous aminoacyl-tRNA synthetase. Similar aminoacylation is seen with the Escherichia coli Asn amber suppressor tRNA, which has also been used to incorporate UAAs in many studies. We now find that the natural amino acid placed on THG73 is Gln. Since the E. coli GlnRS recognizes positions in the acceptor stem, we made several acceptor stem mutations in the second to fourth positions on THG73. All mutations reduce aminoacylation in vivo and allow for the selection of highly orthogonal tRNAs. To show the generality of these mutations, we created opal suppressor tRNAs that show less aminoacylation in Xenopus oocytes relative to THG73. We have created a library of Tetrahymena thermophila Gln amber suppressor tRNAs that will be useful for determining optimal suppressor tRNAs for use in other eukaryotic cells.  相似文献   

3.
We showed recently that a mutant of Escherichia coli initiator tRNA with a CAU-->CUA anticodon sequence change can initiate protein synthesis from UAG by using formylglutamine instead of formylmethionine. We further showed that coupling of the anticodon sequence change to mutations in the acceptor stem that reduced Vmax/Km(app) in formylation of the tRNAs in vitro significantly reduced their activity in initiation in vivo. In this work, we have screened an E. coli genomic DNA library in a multicopy vector carrying one of the mutant tRNA genes and have found that the gene for E. coli methionyl-tRNA synthetase (MetRS) rescues, partially, the initiation defect of the mutant tRNA. For other mutant tRNAs, we have examined the effect of overproduction of MetRS on their activities in initiation and their aminoacylation and formylation in vivo. Some but not all of the tRNA mutants can be rescued. Those that cannot be rescued are extremely poor substrates for MetRS or the formylating enzyme. Overproduction of MetRS also significantly increases the initiation activity of a tRNA mutant which can otherwise be aminoacylated with glutamine and fully formylated in vivo. We interpret these results as follows. (i) Mutant initiator tRNAs that are poor substrates for MetRS are aminoacylated in part with methionine when MetRS is overproduced. (ii) Mutant tRNAs aminoacylated with methionine are better substrates for the formylating enzyme in vivo than mutant tRNAs aminoacylated with glutamine. (iii) Mutant tRNAs carrying formylmethionine are significantly more active in initiation than those carrying formylglutamine. Consequently, a subset of mutant tRNAs which are defective in formylation and therefore inactive in initiation when they are aminoacylated with glutamine become partially active when MetRS is overproduced.  相似文献   

4.
Mutants of initiator tRNA that function both as initiators and elongators   总被引:13,自引:0,他引:13  
We describe the effect of mutations in the acceptor stem of Escherichia coli initiator tRNA on its function in vivo. The acceptor stem mutations were coupled to mutations in the anticodon sequence from CAU----CUA to allow functional studies on the mutant tRNAs in initiation and in elongation in vivo. We show that, with one exception, there is a good correlation between the kinetic parameters for formylation of the mutant tRNAs in vitro (preceding paper, Lee, C.P., Seong, B. L., and RajBhandary, U.L. (1991) J. Biol. Chem. 266, 18012-18017) and their activity in initiation in vivo. These results suggest an important role for formylation of initiator tRNA in its function in initiation, at least when it is aminoacylated with glutamine as is the case with the mutant tRNAs used here. Mutant tRNAs that have a base pair between nucleotides 1 and 72 at the top of the acceptor stem function as elongators, as analyzed by their ability to suppress an amber mutation in the E. coli beta-galactosidase gene. One of these mutants is also quite active in initiation. Thus, activities of a tRNA in initiation and elongation steps of protein synthesis are not mutually exclusive. Using a mRNA with two in frame UAG codons, we show that this mutant tRNA can both initiate protein synthesis from the upstream UAG and suppress the down-stream UAG. We discuss the potential use of tRNAs with such "dual" functions in tightly regulated expression of genes for proteins in E. coli.  相似文献   

5.
The three consecutive G:C base pairs, G29:C41, G30:C40, and G31:C39, are conserved in the anticodon stem of virtually all initiator tRNAs from eubacteria, eukaryotes, and archaebacteria. We show that these G:C base pairs are important for function of the tRNA in initiation of protein synthesis in vivo. We changed these base pairs individually and in combinations and analyzed the activities of the mutant Escherichia coli initiator tRNAs in initiation in vivo. For assessment of activity of the mutant tRNAs in vivo, mutations in the G:C base pairs were coupled to mutation in the anticodon sequence from CAU to CUA. Mutations in each of the G:C base pairs reduced activity of the mutant tRNA in initiation, with mutation in the second G:C base pair having the most severe effect. The greatly reduced activity of this C30:G40 mutant tRNA is not due to defects in aminoacylation or formulation of the tRNA or defects in base modification of the A37, next to the anticodon, which we had previously shown to be important for activity of the mutant tRNAs in initiation. The anticodon stem mutants are most likely affected specifically at the step of binding to the ribosomal P site. The pattern of cleavages in the anticodon loop of mutant tRNAs by S1 nuclease indicate that the G:C base pairs may be involved directly in interactions of the tRNA with components of the P site on the ribosome rather than indirectly by inducing a particular conformation of the anticodon loop critical for function of the tRNA in initiation.  相似文献   

6.
The anticodon-independent aminoacylation of RNA hairpin helices that reconstruct tRNA acceptor stems has been demonstrated for at least 10 aminoacyl-tRNA synthetases. For Escherichia coli cysteine tRNA synthetase, the specificity of aminoacylation of the acceptor stem is determined by the U73 nucleotide adjacent to the amino acid attachment site. Because U73 is present in all known cysteine tRNAs, we investigated the ability of the E. coli cystein enzyme to aminoacylate a heterologous acceptor stem. We show here that a minihelixCys based on the acceptor-T psi C stem of yeast tRNACys is a substrate for the E. coli enzyme, and that aminoacylation of this minihelix is dependent on U73. Additionally, we identify two base pairs in the acceptor stem that quantitatively convert the E. coli acceptor stem to the yeast acceptor stem. The influence of U73 and these two base pairs is completely retained in the full-length tRNA. This suggests a conserved relationship between the acceptor stem alone and the acceptor stem in the context of a tRNA for aminoacylation with cysteine. However, the primary determinant in the species-specific aminoacylation of the E. coli and yeast cysteine tRNAs is a tertiary base pair at position 15:48 outside of the acceptor stem. Although E. coli tRNACys has an unusual G15:G48 tertiary base pair, yeast tRNACys has a more common G15:C48 that prevents efficient aminoacylation of yeast tRNACys by the E. coli enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Aptamer redesigned tRNA is nonfunctional and degraded in cells   总被引:2,自引:0,他引:2       下载免费PDF全文
An RNA aptamer derived from tRNA(Gln) isolated in vitro and a rationally redesigned tRNA(Gln) were used to address the relationship between structure and function of tRNA(Gln) aminoacylation in Escherichia coli. Two mutant tRNA(Gln) sequences were studied: an aptamer that binds 26-fold tighter to glutaminyl-tRNA synthetase than wild-type tRNA(Gln) in vitro, redesigned in the variable loop, and a mutant with near-normal aminoacylation kinetics for glutamine, redesigned to contain a long variable arm. Both mutants were tested in a tRNA(Gln) knockout strain of E. coli, but neither supported knockout cell growth. It was later found that both mutant tRNAs were present in very low amounts in the cell. These results reveal the difference between in vitro and in vivo studies, demonstrating the complexities of in vivo systems that have not been replicated in vitro.  相似文献   

8.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determinant in eukaryotic initiator tRNAs is located in the TPsiC stem, whereas a secondary negative determinant is the A1:U72 base pair at the end of the acceptor stem. Here we show that E. coli initiator tRNA also has a secondary negative determinant for elongation and that it is the U50.G64 wobble base pair, located at the same position in the TPsiC stem as the primary negative determinant in eukaryotic initiator tRNAs. Mutation of the U50.G64 wobble base pair to C50:G64 or U50:A64 base pairs increases the in vivo amber suppressor activity of initiator tRNA mutants that have changes in the acceptor stem and in the anticodon sequence necessary for amber suppressor activity. Binding assays of the mutant aminoacyl-tRNAs carrying the C50 and A64 changes to the elongation factor EF-Tu.GTP show marginally higher affinity of the C50 and A64 mutant tRNAs and increased stability of the EF-Tu.GTP. aminoacyl-tRNA ternary complexes. Other results show a large effect of the amino acid attached to a tRNA, glutamine versus methionine, on the binding affinity toward EF-Tu.GTP and on the stability of the EF-Tu.GTP.aminoacyl-tRNA ternary complex.  相似文献   

9.
This paper focuses on several aspects of the specificity of mutants of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and tRNA(Gln). Temperature-sensitive mutants located in glnS, the gene for GlnRS, have been described previously. The mutations responsible for the temperature-sensitive phenotype were analyzed, and pseudorevertants of these mutants isolated and characterized. The nature of these mutations is discussed in terms of their location in the three-dimensional structure of the tRNA(Gln).GlnRS complex. In order to characterize the specificity of the aminoacylation reaction, mutant tRNA(Gln) species were synthesized with either a 2'-deoxy AMP or 3'-deoxy AMP as their 3'-terminal nucleotide. Subsequent assays for aminoacylation and ATP/PPi exchange activity established the esterification of glutamine to the 2'-hydroxyl of the terminal adenosine; there is no glutaminylation of the 3'-OH group. This correlates with the classification of GlnRS as a class I aminoacyl-tRNA synthetase. Mutations in tRNA(Gln) are discussed which affect the recognition of GlnRS and the current concept of glutamine identity in E coli is reviewed.  相似文献   

10.
Through functional studies of mutant tRNAs, we have identified sequence and/or structural features important for specifying the many distinctive properties of E coli initiator tRNA. Many of the mutant tRNAs contain an anticodon sequence change from CAU→CUA and are now substrates for E coli glutaminyl-tRNA synthetase (GlnRS). We describe here the effect of further mutating the discriminator base 73 and nucleotide 72 at the end of the acceptor stem on: i) recognition of the mutant tRNAs by E coli GlnRS; ii) recognition by E coli methionyl-tRNA transformylase; and iii) activity of the mutant tRNAs in initiation in E coli. For GlnRS recognition, our results are, in general, consistent with interactions found in the crystal structure of the E coli GlnRS-glutamine tRNA complex. The results also support our previous conclusion that formylation of initiator tRNA is important for its function in initiation.  相似文献   

11.
12.
We show that the structure and/or sequence of the first three base pairs at the end of the amino acid acceptor stem of Escherichia coli initiator tRNA and the discriminator base 73 are important for its formylation by E. coli methionyl-tRNA transformylase. This conclusion is based on mutagenesis of the E. coli initiator tRNA gene followed by measurement of kinetic parameters for formylation of the mutant tRNAs in vitro and function in protein synthesis in vivo. The first base pair found at the end of the amino acid acceptor stem in all other tRNAs is replaced by a C.A. "mismatch" in E. coli initiator tRNA. Mutation of this C.A. to U:A, a weak base pair, or U.G., a mismatch, has little effect on formylation, whereas mutation to C:G, a strong base pair, has a dramatic effect lowering Vmax/Kappm by 495-fold. Mutation of the second basepair G2:C71 to U2:A71 lowers Vmax/Kappm by 236-fold. Replacement of the third base-pair C3:G70 by U3:A70, A3:U70, or G3:C70 lowers Vmax/Kappm by about 67-, 27-, and 30-fold, respectively. Changes in the rest of the acceptor stem, dihydrouridine stem, anticodon stem, anticodon sequence, and T psi C stem have little or no effect on formylation.  相似文献   

13.
Identity determinants of E. coli tryptophan tRNA.   总被引:4,自引:4,他引:0       下载免费PDF全文
  相似文献   

14.
15.
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNA(Tyr) with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNA(Glu). Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.  相似文献   

16.
Y M Hou  P Schimmel 《Biochemistry》1989,28(17):6800-6804
We observed recently that a single G3.U70 base pair in the amino acid acceptor stem of an Escherichia coli alanine tRNA is a major determinant for its identity. Inspection of tRNA sequences shows that G3.U70 is unique to alanine in E. coli and is present in eucaryotic cytoplasmic alanine tRNAs. We show here that single nucleotide changes of G3.U70 to A3.U70 or to G3.C70 eliminate in vitro aminoacylation of an insect and of a human alanine tRNA by the respective homologous synthetase. Compared to the influence of G3.U70, other sequence variations in tRNAAla have a relatively small effect on aminoacylation by the insect and human enzymes. In addition, while these eucaryotic tRNAs have nucleotide differences from E. coli alanine tRNA, they are heterologously charged only with alanine when expressed in E. coli. The results indicate a functional role for G3.U70 that is conserved in evolution. They also suggest that the sequence differences between E. coli and the eucaryotic alanine tRNAs at sites other than the conserved G3.U70 do not create major determinants for recognition by any other bacterial enzyme.  相似文献   

17.
We investigated the structural basis of the kinetic effect on coding specificity by the D-arm mutant (G24 to A) of Escherichia coli tRNATrp. A set of tRNA genes with structural alterations in the D-arm was constructed by site-directed mutagenesis in vitro, and we determined the in vivo translational activities of these tRNAs. Our results suggest that a hydrogen-bond donor in the major groove of the D-helix at position 24 is required for the expansion of tRNA wobble coding specificity. From inspection of tRNA crystal structure, we identified a potential new tertiary pairing of base 24 with the base at position 9 (this base links the acceptor and D-stems). We constructed tRNAs with mutations at position 9 and showed that the phenotypes of position 11-24 D-arm mutants are indeed dependent on the identity of base 9. Our analysis of the effects of these mutations on the interactions of tRNA with the ribosome and with aminoacyl-tRNA synthetase suggests that the conformation or conformational dynamics of the middle of the tRNA molecule alters the kinetics of the interaction with the ribosomal coding site. The 9-23 and putative 9-24 tertiaries, and perhaps other normal tertiary interactions in this region, modulate these kinetics to increase or decrease coding specificity.  相似文献   

18.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for the elongation step. We show, in vivo and in vitro, that the primary sequence feature that prevents the human initiator tRNA from acting in the elongation step is the nature of base pairs 50:64 and 51:63 in the TΨC stem of the initiator tRNA. Various considerations suggest that this is due to sequence-dependent perturbation of the sugar phosphate backbone in the TΨC stem of initiator tRNA, which most likely blocks binding of the elongation factor to the tRNA. Because the sequences of all vertebrate initiator tRNAs are identical, our findings with the human initiator tRNA are likely to be valid for all vertebrate systems. We have developed reporter systems that can be used to monitor, in mammalian cells, the activity in elongation of mutant human initiator tRNAs carrying anticodon sequence mutations from CAU to CCU (the C35 mutant) or to CUA (the U35A36 mutant). Combination of the anticodon sequence mutation with mutations in base pairs 50:64 and 51:63 yielded tRNAs that act as elongators in mammalian cells. Further mutation of the A1:U72 base pair, which is conserved in virtually all eukaryotic initiator tRNAs, to G1:C72 in the C35 mutant background yielded tRNAs that were even more active in elongation. In addition, in a rabbit reticulocyte in vitro protein-synthesizing system, a tRNA carrying the TΨC stem and the A1:U72-to-G1:C72 mutations was almost as active in elongation as the elongator methionine tRNA. The combination of mutant initiator tRNA with the CCU anticodon and the reporter system developed here provides the first example of missense suppression in mammalian cells.  相似文献   

19.
20.
The mode of recognition of tRNAs by aminoacyl-tRNA synthetases and translation factors is largely unknown in archaebacteria. To study this process, we have cloned the wild type initiator tRNA gene from the moderate halophilic archaebacterium Haloferax volcanii and mutants derived from it into a plasmid capable of expressing the tRNA in these cells. Analysis of tRNAs in vivo show that the initiator tRNA is aminoacylated but is not formylated in H. volcanii. This result provides direct support for the notion that protein synthesis in archaebacteria is initiated with methionine and not with formylmethionine. We have analyzed the effect of two different mutations (CAU-->CUA and CAU-->GAC) in the anticodon sequence of the initiator tRNA on its recognition by the aminoacyl-tRNA synthetases in vivo. The CAU-->CUA mutant was not aminoacylated to any significant extent in vivo, suggesting the importance of the anticodon in aminoacylation of tRNA by methionyl-tRNA synthetase. This mutant initiator tRNA can, however, be aminoacylated in vitro by the Escherichia coli glutaminyl-tRNA synthetase, suggesting that the lack of aminoacylation is due to the absence in H. volcanii of a synthetase, which recognizes the mutant tRNA. Archaebacteria lack glutaminyl-tRNA synthetase and utilize a two-step pathway involving glutamyl-tRNA synthetase and glutamine amidotransferase to generate glutaminyl-tRNA. The lack of aminoacylation of the mutant tRNA indicates that this mutant tRNA is not a substrate for the H. volcanii glutamyl-tRNA synthetase. The CAU-->GAC anticodon mutant is most likely aminoacylated with valine in vivo. Thus, the anticodon plays an important role in the recognition of tRNA by at least two of the halobacterial aminoacyl-tRNA synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号