首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infections with nodavirus affect a wild and farmed fish species throughout the world, mostly from the marine environment. The aim of this work was to determine the immune status of gilthead sea bream that comes as a result of a Nodavirus infection, induced by activation of the interferon response pathway by lipopolysaccharides from Vibrio alginolyticus and the expression of interferoninduced Mx protein in liver samples. The enhancement of Mx protein gene expression was detected in liver samples of experimentally nodavirus infected fish and, furthermore, the immunostimulant LPS of V. alginolyticus decreased almost three times the virus titration with respect to no-immunized or infected with nodavirus group of fish.  相似文献   

2.
Vibrio alginolyticus is a gram-negative bacterium and has been recognized as an opportunistic pathogen in marine animals as well as humans. Here, we further characterized a cell death mechanism caused by this bacterium in several mammalian cell lines. The T3SS of V. alginolyticus killed HeLa cells by a very similar cell cytolysis mechanism in fish cells, as evidenced by cell rounding and LDH release; however, DNA fragmentation was not observed. Further studies showed that caspase-1 and caspase-3 were not activated during the T3SS-mediated cell death, indicating that the death mechanism is completely independent of pyroptosis and apoptosis in HeLa cells. Conversely, autophagy was detected during the T3SS-mediated cell death by the appearance of MDC-labeled punctate fluorescence and accumulation of autophagic vesicles. Moreover, western blot analysis revealed increase in conversion of LC3-I to LC3-II in infected mammalian cell lines, confirming that autophagy occurs during the process. Together, these data demonstrate that the death process used by V. alginolyticus in mammalian cells is different from that in fish cells, including induction of autophagy, cell rounding and osmotic lysis. This study provides some evidences hinting that differences in death mechanism in responses to V. alginolyticus infection may be attributed to the species of infected cells from which it was derived.  相似文献   

3.
《Gene》1998,216(2):303-309
We report the cloning, sequencing and functional characterization of the secA gene of a marine bacterium, Vibrio alginolyticus, which has been suggested to utilize ATP and the sodium motive force for protein translocation. Oligodeoxynucleotides corresponding to highly conserved regions of Escherichia coli secA located in the high affinity ATP binding site were utilized as PCR primers to clone the secA gene of V. alginolyticus. It was shown to encode a 103.3-kDa protein. The deduced amino acid sequence of V. alginolyticus SecA (VaSecA) exhibits a high degree of identity (72.7%) to SecA of E. coli (EcSecA). The secA gene of E. coli forms an operon with upstream orfX, whereas no counterpart is present upstream of V. alginolyticus secA. Azide derepresses the EcSecA translation, whereas the level of VaSecA was unaffected by azide. Expression of VaSecA in E. coli carrying a temperature-sensitive secA mutation restored both growth and protein translocation at a non-permissive temperature. VaSecA was thus able to substitute for EcSecA despite the fact that the energy requirement for protein translocation differs between the two organisms. VaSecA was overproduced in V. alginolyticus and purified to homogeneity for N-terminal sequencing. The endogenous ATPase activity of the purified VaSecA was comparable with that of EcSecA.  相似文献   

4.
Vibrio alginolyticus threatens both humans and marine animals, but hosts respond to V. alginolyticus infection is not fully understood. Here, functional metabolomics was adopted to investigate the metabolic differences between the dying and surviving zebrafish upon V. alginolyticus infection. Tryptophan was identified as the most crucial metabolite, whose abundance was decreased in the dying group but increased in the survival group as compared to control group without infection. Concurrently, the dying zebrafish displayed excessive immune response and produced higher level of reactive oxygen species (ROS). Interestingly, exogenous tryptophan reverted dying rate through metabolome re-programming, thereby enhancing the survival from V. alginolyticus infection. It is preceded by the following mechanism: tryptophan fluxed into the glycolysis and tricarboxylic acid cycle (TCA cycle), promoted adenosine triphosphate (ATP) production and further increased the generation of NADPH. Meanwhile, tryptophan decreased NADPH oxidation. These together ameliorate ROS, key molecules in excessive immune response. This is further supported by the event that the inhibition of pyruvate metabolism and TCA cycle by inhibitors decreased D. reiro survival. Thus, our data indicate that tryptophan is a key metabolite for the host to fight against V. alginolyticus infection, representing an alternative strategy to treat bacterial infection in an antibiotic-independent way.  相似文献   

5.
Several bacteriological surveys were performed from 1994 to 1996 at different Litopenaeus vannamei hatcheries (in Ecuador) and shrimp farms (in Mexico). Samples were taken from routine productions of healthy and diseased L. vannamei larvae, postlarvae, and their culture environment and from healthy and diseased juveniles and broodstock. In Ecuador, the dominant bacterial flora associated with shrimp larvae showing symptoms of zoea 2 syndrome, mysis mold syndrome, and bolitas syndrome has been determined. Strains were characterized by Biolog metabolic fingerprinting and identified by comparison to a database of 850 Vibrio type and reference strains. A selection of strains was further genotypically fine typed by AFLP. Vibrio alginolyticus is predominantly present in all larval stages and is associated with healthy nauplius and zoea stages. AFLP genetic fingerprinting shows high genetic heterogeneity among V. alginolyticus strains, and the results suggest that putative probiotic and pathogenic strains each have specific genotypes. V. alginolyticus was found to be associated with larvae with the zoea 2 syndrome and the mysis mold syndrome, while different Vibrio species (V. alginolyticus and V. harveyi) are associated with the bolitas syndrome. V. harveyi is associated with diseased postlarvae, juveniles, and broodstock. The identities of the strains identified as V. harveyi by the Biolog system could not be unambiguously confirmed by AFLP genomic fingerprinting. Vibrio strain STD3-988 and one unidentified strain (STD3-959) are suspected pathogens of only juvenile and adult stages. V. parahaemolyticus, Photobacterium damselae, and V. mimicus are associated with juvenile and adult stages.  相似文献   

6.
The marine bacteria Vibrio parahaemolyticus and V. alginolyticus were incubated in seawater for 8 months to evaluate their adaptative responses to starvation. The starved cells showed an altered biochemical and enzymatic profiles, respectively, on Api 20E and Api ZYM systems and an evolution to the filterable minicells state capable to pass membrane pore size 0.45 μm. Outer membrane proteins patterns of stressed bacteria were also altered. Indeed, these modifications were manifested by the appearance and/or disappearance of bands as well as in the level of expression of certain proteins. Plasmids profiles analysis showed that V. alginolyticus ATCC 33787 lost three plasmids, whereas other tested strains conserved their initial profiles.  相似文献   

7.
The type VI secretion system (T6SS) is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are “orphan” effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.  相似文献   

8.
The outer membrane protein-OmpK has been considered as a vaccine candidate for the prevention of infections due to Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus in fish. Interestingly, the polyclonal antibody raised against the recombinant OmpK from V. harveyi strain EcGs020802 recognized the OmpK homologues from other strains of Vibrio species by immunoblotting. The ompK genes from 19 Vibrio strains including V. harveyi (11), V. alginolyticus (6) and V. parahaemolyticus (2) were then cloned and sequenced. Alignment analysis based on the amino acid sequences indicated that the OmpK from V. harveyi strain EcGs020802 had 71.7–99.2% of identities with those from V. harveyi, V. alginolyticus and V. parahaemolyticus. Western blot analysis revealed that the corresponding native proteins ranged between 28 and 31 kDa, consistent with predicated molecular weight of OmpK in Vibrio strains. Furthermore, the cross-protective property of recombinant OmpK was evaluated through challenge with heterogeneous virulent Vibrio strains in Orange-spotted groupers (Epinephelus coioides). Orange-spotted groupers vaccinated with recombinant OmpK were more tolerant of the infection by virulent Vibrio strains and their relative percentage survival (RPS) was correlative with the degree of the identity of deduced amino acid sequences of their OmpK. Taken together, the OmpK is a conserved protective antigen among tested Vibrio species and might be a potentially versatile vaccine candidate for the prevention of infections due to V. harveyi, V. alginolyticus and V. parahaemolyticus.  相似文献   

9.
Vibrio coralliilyticus is a global marine pathogen that has been found to cause disease in several marine organisms, including corals. This study is the first report of the isolation of V. coralliilyticus from a diseased Caribbean octocoral, Pseudopterogorgia americana. Five sister phylotypes were positively identified using 16S rRNA gene sequencing, recA probes specific for V. coralliilyticus, and rep-PCR fingerprinting. The antimicrobial resistance was compared between pathogenic strains of V. coralliilyticus and the Caribbean strains. First, the antimicrobial resistance of V. coralliilyticus-type strain ATCC BAA-450 was determined using an agar-overlay antimicrobial bioassay at 24°C and 27°C, temperatures which are relevant to its known temperature-dependent virulence. From 108 distinct bacteria isolated from P. americana, 12 inhibited the V. coralliilyticus-type strain at 24°C and five at 27°C. Next, the phenotypic comparison of two Caribbean phylotypes and three V. coralliilyticus reference strains against a subset of 30 bacteria demonstrated a similar resistance trend. At both temperatures, the reference strains were inhibited by three bacteria isolates, while the Caribbean strains were inhibited by four to nine bacteria. Additionally, V. coralliilyticus-type strain ATCC BAA-450 and one of the Caribbean strains were inhibited by a higher number of bacteria at 24°C compared with 27°C. Together, these results highlight that V. coralliilyticus strains have antimicrobial resistance to the majority of coral-associated bacteria tested, which may be temperature-dependent in some strains. Furthermore, all V. coralliilyticus strains tested showed multi-drug resistance to a range of 11–16 (out of 26) commercial antibiotics. This study establishes V. coralliilyticus in association with a Caribbean octocoral and demonstrates its resistance to the antimicrobial activity of coral-associated bacteria and to commercial antibiotics.  相似文献   

10.
We isolated a marine bacterium strain S2V2 which inhibited the growth of pathogenic marine Vibrio spp. The aims of this research were to identify a new antibiotic-producing marine bacterium strain S2V2, and evaluate its spectrum activity and pathogenic property. Analysis of 16S rDNA sequence placed strain S2V2 in the genus Pseudoalteromonas, but the sequence similarity was low (95.46%) implying the strain might be a new species in this genus. Strain S2V2 inhibited the growth of 67.9% of 28 Vibrio strains tested. This strain inhibited V. alginolyticus, V. anguillarum, V. fluvialis, V. harveyi, V. metschnikovii, V. splendidus, V. ordalii, V. parahaemolyticus, and V. vulnificus, but inactive against V. campbellii, Aeromonas hydrophyla and Staphylococcus aureus. Strain S2V2 produced extracellular non proteinaceous antibacterial substances. The highest antibacterial activity was found when strain S2V2 was cultured for 96 h in ZoBell broth medium. An artificial infection to post larvae of Lithopenaeus vanname indicated that strain S2V2 was a non pathogenic bacterium. Non pathogenic property and specific antibacterial activity against a broad range of fish pathogenic marine Vibrio of strain S2V2 suggest that this strain is a prospective source of unique antibiotic and a potential biocontrol agent in marine aquaculture.  相似文献   

11.
One hundred strains of halophilic vibrios were isolated from 16 species of marine invertebrates of Peter the Great Bay. Based on their morphological and biochemical characteristics, the bacteria were identified as Vibrio parahaemolyticus and Vibrio alginolyticus. Bacterial isolates possessed virulence enzymes (DNAase, lecithinase, catalase) and were characterized by a high enterotoxigenicity. It was determined that 76% of the V. parahaemolyticus strains and 43% of the V. alginolyticus strains were Kanagawa-positive. The isolates showed a high adhesive capability, the average adhesion index was 18.06 cells per erythrocyte for V. parahaemolyticus and 12.55 for V. alginolyticus. The results of this study suggest a high pathogenic potential of the isolated halophilic vibrios, which are an epidemic hazard to marine invertebrates and to humans.  相似文献   

12.
IntroductionThe purpose of this study was to investigate the adhesion and invasion of periodontopathogenic bacteria in varied mixed infections and the release of interleukins from an epithelial cell line (KB cells).MethodsKB cells were co-cultured with Porphyromonas gingivalis ATCC 33277 and M5-1-2, Tannerella forsythia ATCC 43037, Treponema denticola ATCC 35405 and Fusobacterium nucleatum ATCC 25586 in single and mixed infections. The numbers of adherent and internalized bacteria were determined up to 18 h after bacterial exposure. Additionally, the mRNA expression and concentrations of released interleukin (IL)-6 and IL-8 were measured.ResultsAll periodontopathogenic bacteria adhered and internalized in different numbers to KB cells, but individually without any evidence of co-aggregation also to F. nucleatum. High levels of epithelial mRNA of IL-6 and IL-8 were detectable after all bacterial challenges. After the mixed infection of P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586 the highest levels of released interleukins were found. No IL-6 and IL-8 were detectable after the mixed infection of P. gingivalis M5-1-2 and F. nucleatum ATCC 25586 and the fourfold infection of P. gingivalis ATCC 33277, T. denticola ATCC 35405, T. forsythia ATCC 43037 and F. nucleatum ATCC 25586.ConclusionAnaerobic periodontopathogenic bacteria promote the release of IL-6 and IL-8 by epithelial cells. Despite a continuous epithelial expression of IL-8 mRNA by all bacterial infections these effects are temporary because of the time-dependent degradation of cytokines by bacterial proteases. Mixed infections have a stronger virulence potential than single bacteria. Further research is necessary to evaluate the role of mixed infections and biofilms in the pathogenesis of periodontitis.  相似文献   

13.
The extracellular alginate lyases were purified from Vibrio harveyi AL-128 and V. alginolyticus ATCC 17749. The former enzyme appears to be specific for alpha-1,4 bonds involving L-guluronate units in alginate, whereas the latter exhibits specificity for beta-1,4 bonds involving D-mannuronate units. The molecular weights of the enzymes were estimated to be 57,000 and 47,000, and they had isoelectric points of 4.3 and 4.6, respectively. The enzyme from strain AL-128 was most active at NaCl concentrations of 0.3 to 1.0 M. Optimum activity of the enzyme from strain ATCC 17749 was found in the presence of 5 to 10 mM CaCl2.  相似文献   

14.
Two types of bacterial alginate lyases.   总被引:2,自引:0,他引:2       下载免费PDF全文
The extracellular alginate lyases were purified from Vibrio harveyi AL-128 and V. alginolyticus ATCC 17749. The former enzyme appears to be specific for alpha-1,4 bonds involving L-guluronate units in alginate, whereas the latter exhibits specificity for beta-1,4 bonds involving D-mannuronate units. The molecular weights of the enzymes were estimated to be 57,000 and 47,000, and they had isoelectric points of 4.3 and 4.6, respectively. The enzyme from strain AL-128 was most active at NaCl concentrations of 0.3 to 1.0 M. Optimum activity of the enzyme from strain ATCC 17749 was found in the presence of 5 to 10 mM CaCl2.  相似文献   

15.
The in vivo and in vitro pathogenic activities of whole cells and extracellular products of Vibrio alginolyticus for cultured gilt-head sea bream were evaluated. The 50% lethal doses ranged from 5.4 × 104 to 1.0 × 106 CFU/g of body weight. The strains examined had the ability to adhere to skin, gill, and intestinal mucus of sea bream and to cultured cells of a chinook salmon embryo cell line. In addition, the in vitro ability of V. alginolyticus to adhere to mucus and skin cells of sea bream was demonstrated by scanning electron microscopy. The biological activities of extracellular products of V. alginolyticus were hydrolytic activities; the products were able to degrade sea bream mucus. V. alginolyticus was cytotoxic for fish cell lines and lethal for sea bream. Moreover, the extracellular products could degrade sea bream tissues. However, experiments performed with the bath immersion inoculation technique demonstrated that V. alginolyticus should be considered a pathogen for sea bream only when the mucus layer is removed and the skin is damaged.  相似文献   

16.
Tian Y  Wang Q  Liu Q  Ma Y  Cao X  Zhang Y 《Archives of microbiology》2008,190(5):585-594
Vibrio alginolyticus, a marine bacterium, is an opportunistic pathogen capable of causing vibriosis with high mortality to fishes in the South China Sea. Stress resistance is very important for its survival in the natural environment and upon infection of the host. RpoS, an alternative sigma factor, is considered as an important regulator involved in stress response and virulence in many pathogens. In this study, the rpoS gene was cloned and characterized to evaluate the role of RpoS in V. alginolyticus. The predicted protein showed high identity with other reported rpoS gene products. The in-frame deleted mutation of rpoS in V. alginolyticus led to sensitivity of the strain to ethanol, hyperosmolarity, heat, and hydrogen peroxide challenges. Further studies showed that extracellular autoinducer 2 level, four of seven detected protease activities, and cytotoxicity of extracellular products were markedly decreased in the rpoS mutant compared with that in the wild-type strain. The results indicated that the global regulator RpoS was part of the regulatory networks of virulence and LuxS quorum sensing system.  相似文献   

17.
The toxigenic anaerobe Clostridium sordellii is an uncommon but highly lethal cause of human infection and toxic shock syndrome, yet few studies have addressed its pathogenetic mechanisms. To better characterize the microbial determinants of rapid death from infection both in vitro and in vivo studies were performed to compare a clinical strain of C. sordellii (DA-108), isolated from a patient who survived a disseminated infection unaccompanied by toxic shock syndrome, to a virulent reference strain (ATCC9714). Rodent models of endometrial and peritoneal infection with C. sordellii ATCC9714 were rapidly lethal, while infections with DA-108 were not. Extensive genetic and functional comparisons of virulence factor and toxin expression between these two bacterial strains yielded many similarities, with the noted exception that strain DA-108 lacked the tcsL gene, which encodes the large clostridial glucosyltransferase enzyme lethal toxin (TcsL). The targeted removal by immunoprecipitation of TcsL protected animals from death following injection of crude culture supernatants from strain ATCC9714. Injections of a monoclonal anti-TcsL IgG protected animals from death during C. sordellii ATCC9714 infection, suggesting that such an approach might improve the treatment of patients with C. sordellii-induced toxic shock syndrome.  相似文献   

18.
Oysters feed by removing particles from the water. This food is composed of complex mixtures of living microorganisms, detritus, and inorganic particles that widely range in size. It has been speculated that some marine heterotrophic microorganisms, such as Vibrio parahaemolyticus, could enter in this digestive process and persist in the oyster tissue. Since some strains of V. parahaemolyticus are pathogenic for humans, these bacteria are considered to be a constant menace for health and aquaculture. In order to improve the safety of marine products it is imperative to obtain more knowledge about Tiostrea chilensis and its interactions with V. parahaemolyticus. In this study V. parahaemolyticus ATCC 17802 was tagged using plasmid pKV111, which carries the gfp gene that codifies a Green Fluorescent Protein (GFP), thereby allowing these strains (VpGFP) to be detected under epifluorescence microscopy. Results obtained showed that T. chilensis can filter VpGFP directly from sea water and suggested that most of them were digested by oysters. However, in the postharvest stage, a small fraction can remain in oyster tissues after depuration and VpGFP can rapidly grow if the bivalves are stored at room temperature.  相似文献   

19.
The accessory colonization factor A (ACFA) of Vibrio alginolyticus plays an important role in the efficient colonization of the bacterium and is potential candidates for vaccine development. In present study, the acfA gene was cloned, expressed and purified. Western blot analysis revealed protein recognition with the native ACFA in different V. alginolyticus strains. To analyze the immunogenicity of the recombinant ACFA, Lutjanus erythropterus Bloch were immunized by intraperitoneal injection, and the results demonstrated that the recombinant ACFA produced an observable antibody response in all sera of the vaccinated fish. The differential expressions of RAG1 gene in various tissues of L. erythropterus were analyzed by fluorescent quantitative real-time PCR, and the results showed the RAG1 mRNA expression was significantly up-regulated in thymus, head kidney and spleen tissue. Furthermore, the protective property of recombinant ACFA was evaluated through challenge with six heterogeneous virulent V. alginolyticus strains, and the immunohistochemical analysis in different tissues after challenge with V. alginolyticus. The results showed L. erythropterus vaccinated with recombinant ACFA were more tolerant of the infection by virulent V. alginolyticus strains. The data indicate that the recombinant ACFA could provide heterologous protection for the different virulent V. alginolyticus strains.  相似文献   

20.
The knowledge concerning the humoral immunity is scarce in amphioxus Branchiostoma belcheri. This study measured the humoral parameters including lysozyme, antimicrobial activity, microbial agglutinin and haemagglutinin in amphioxus humoral fluids before and after Vibrio alginolyticus challenge. After challenged with V. alginolyticus, the lysozyme activity, growth inhibiting activities against Escherichia coli and V. alginolyticus and microbial agglutinating activities against Micrococcus lysodeikticus, Bacillus subtilis and Staphylococcus aureus were all increased significantly and haemagglutinating activities against rabbit and human A and O erythrocytes in the humoral fluids were all increased earlier. In contrast, the agglutinating activities against Vibrio harvey and E. coli in the humoral fluids were reduced in response to V. alginolyticus challenge and the haemagglutinating activity against human B erythrocytes increased later.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号