首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I R Tsaneva  B Müller  S C West 《Cell》1992,69(7):1171-1180
The RuvA and RuvB proteins of E. coli, which are induced as part of the cellular response to DNA damage, act together to promote the branch migration of Holliday junctions. Addition of purified RuvA and RuvB to a RecA-mediated recombination reaction stimulates the rate of strand exchange and the formation of hetero-duplex DNA. Stimulation does not occur via interaction with RecA; instead, RuvA and RuvB act directly upon recombination intermediates (Holliday junctions) made by RecA. We show that RuvAB-mediated branch migration requires ATP and can bypass UV-induced DNA lesions. At high RuvB concentrations, the requirement for RuvA is overcome, indicating that the RuvB ATPase provides the motor force for branch migration. RuvA protein provides specificity by binding to the Holliday junction, thereby reducing the requirement for RuvB by 50-fold. The newly discovered biochemical properties of RuvA, RuvB, and RuvC are incorporated into a model for the postreplicational repair of DNA following UV irradiation.  相似文献   

2.
Interaction of linear homologous DNA duplexes by formation of Holliday junctions was revealed by electrophoresis and confirmed by electron microscopy. The phenomenon was demonstrated using a model of five purified PCR products of different size and sequence. The double-stranded structure of interacting DNA fragments was confirmed using several consecutive purifications, S1-nuclease analysis, and electron microscopy. Formation of Holliday junctions depends on DNA concentration. A thermodynamic equilibrium between duplexes and Holliday junctions was shown. We propose that homologous duplex interaction is initiated by nucleation of several dissociated terminal base pairs of two fragments. This process is followed by branch migration creating a population of Holliday junctions with the branch point at different sites. Finally, Holliday junctions are resolved via branch migration to new or previously existing duplexes. The phenomenon is a new property of DNA. This type of DNA-DNA interaction may contribute to the process of Holliday junction formation in vivo controlled by DNA conformation and DNA-protein interactions. It is of practical significance for optimization of different PCR-based methods of gene analysis, especially those involving heteroduplex formation.  相似文献   

3.
In vitro cultured bovine liver cells were labelled with radioactive thymidine and dissolved in 0.5% sodium dodecyl sulphate. Centrifugation of the lysate through sucrose gradients in a zonal rotor revealed a slowly sedimenting fraction of preferentially pulse labelled DNA. The DNA of this zone was further analysed by chromatography on hydroxy-apatite, banding in CsCl density gradients, and sedimentation in neutral and alkaline sucrose gradients. It contained besides small amounts of fragmented bulk DNA, single-stranded nascent DNA and single-stranded pre-labelled DNA which could be separated from each other by using BrdU as a density label. The density labelling also revealed small amounts of nascent-nascent DNA duplexes. The slowly sedimenting fraction was practically absent from cell lysates which were prepared in 2 M NaCl - 50 microgram/ml pronase. The results suggest that nascent single-strands and nascent-nascent duplexes are released from the forks of replicating DNA by branch migration. Pre-labelled single strands may be released by the same branch migration. Pre-labelled single strands may be released by the same mechanism, but the in vivo structure from which they originate has yet to be elucidated.  相似文献   

4.
Summary A fast sedimenting complex was isolated from B. subtilis cells infected with bacteriophage SPP1 by renografin centrifugation. This complex was identified as membrane bound parental and replicating SPP1 DNA. Synthesis of SPP1 DNA takes place in close association with the membrane. This newly synthesized DNA is then released into the cytoplasm. During release, concatemeric SPP1 DNA is sized into monomeric DNA molecules.Experiments reported were part of the Doctoral Thesis submitted by K.J. Burger to the Freie Universität Berlin  相似文献   

5.
Branch migration of Holliday junctions, which are central DNA intermediates in homologous recombination, is promoted by the RuvA-RuvB protein complex, and the junctions are resolved by the action of the RuvC protein in Escherichia coli. We report here the cloning of the ruvB gene from a thermophilic eubacterium, Thermus thermophilus HB8 (Tth), and the biochemical characterization of the gene product expressed in E. coli. The Tth ruvB gene could not complement the UV sensitivity of an E. coli ruvB deletion mutant and made the wild-type strain more sensitive to UV. In contrast to E. coli RuvB, whose ATPase activity is strongly enhanced by supercoiled DNA but only weakly enhanced by linear duplex DNA, the ATPase activity of Tth RuvB was efficiently and equally enhanced by supercoiled and linear duplex DNA. Tth RuvB hydrolyzed a broader range of nucleoside triphosphates than E. coli RuvB. In addition, Tth RuvB, in the absence of RuvA protein, promoted branch migration of a synthetic Holliday junction at 60° C in an ATP-dependent manner. The protein, as judged by its ATPase activity, required ATP for thermostability. Since a RuvA protein has not yet been identified in T. thermophilus, we used E. coli RuvA to examine the effects of RuvA on the activities of Tth RuvB. E. coli RuvA greatly enhanced the ability of Tth RuvB to hydrolyze ATP in the presence of DNA and to promote branch migration of a synthetic Holliday junction at 37° C. These results indicate the conservation of the RuvA-RuvB interaction in different bacterial species, and suggest the existence of a ruvA homolog in T. thermophilus. Although GTP and dGTP were efficiently hydrolyzed by Tth RuvB, these nucleoside triphosphates could not be utilized for branch migration in vitro, implying that the conformational change in RuvB brought about by ATP hydrolysis, which is necessary for driving the Holliday junction branch migration, cannot be accomplished by the hydrolysis of these nucleoside triphosphates. Received: 26 November 1998 / Accepted: 19 April 1999  相似文献   

6.
The RuvAB proteins catalyze branch migration of Holliday junctions during DNA recombination in Escherichia coli. RuvA binds tightly to the Holliday junction, and then recruits two RuvB pumps to power branch migration. Previous investigations have studied RuvA in conjunction with its cellular partner RuvB. The replication fork helicase DnaB catalyzes branch migration like RuvB but, unlike RuvB, is not dependent on RuvA for activity. In this study, we specifically analyze the function of RuvA by studying RuvA in conjunction with DnaB, a DNA pump that does not work with RuvA in the cell. Thus, we use DnaB as a tool to dissect RuvA function from RuvB. We find that RuvA does not inhibit DnaB-catalyzed branch migration of a homologous junction, even at high concentrations of RuvA. Hence, specific protein-protein interaction is not required for RuvA mobilization during branch migration, in contrast to previous proposals. However, low concentrations of RuvA block DnaB unwinding at a Holliday junction. RuvA even blocks DnaB-catalyzed unwinding when two DnaB rings are acting in concert on opposite sides of the junction. These findings indicate that RuvA is intrinsically mobile at a Holliday junction when the DNA is undergoing branch migration, but RuvA is immobile at the same junction during DNA unwinding. We present evidence that suggests that RuvA can slide along a Holliday junction structure during DnaB-catalyzed branch migration, but not during unwinding. Thus, RuvA may act as a sliding collar at Holliday junctions, promoting DNA branch migration activity while blocking other DNA remodeling activities. Finally, we show that RuvA is less mobile at a heterologous junction compared to a homologous junction, as two opposing DnaB pumps are required to mobilize RuvA over heterologous DNA.  相似文献   

7.
The Holliday junction, the key intermediate of recombination, is generated by strand exchange resulting in a covalent connection between two recombining DNA molecules. Translocation of a Holliday junction along DNA, or branch migration, progressively exchanges one DNA strand for another and determines the amount of information that is transferred between two recombining partners. In Escherichia coli, the RuvAB protein complex promotes rapid and unidirectional branch migration of Holliday junctions. We have studied translocation of Holliday junctions using a quantitative biochemical system together with a 'single-molecule' branch migration assay. We demonstrate that RuvAB translocates the junctions through identical DNA sequences in a processive manner with a broad distribution of individual branch migration rates. However, when the complex encounters short heterologous sequences, translocation of the Holliday junctions is impeded. We conclude that translocation of the junctions through a sequence heterology occurs with a probability of bypass being determined both by the length of the heterologous region and the lifetime of the stalled RuvAB complex.  相似文献   

8.
Replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) molecules have been isolated under conditions in which the newly synthesized DNA is uniformly labeled with (3)H-thymidine. These newly synthesized strands are released from the replicative intermediate molecules by alkaline treatment, and it has been possible to isolate single-stranded SV40 DNA which varies in size from 157,000 daltons (from molecules that are 10% replicated) to 1,360,000 daltons (85% replicated). The rates of duplex formation of newly synthesized DNA have been used to relate their genetic complexity to the extent of DNA replication. As DNA replication proceeds, the time required to effect 50% renaturation of the newly synthesized DNA increases at a proportional rate. The data establish that DNA replication is not initiated at random, but rather that there is a single specific initiation site for DNA replication.  相似文献   

9.
RECQ1 possesses DNA branch migration activity   总被引:3,自引:0,他引:3  
RecQ helicases are essential for the maintenance of genome stability. Five members of the RecQ family have been found in humans, including RECQ1, RECQ5, BLM, WRN, and RECQ4; the last three are associated with human diseases. At this time, only BLM and WRN helicases have been extensively characterized, and the information on the other RecQ helicases has only started to emerge. Our current paper is focused on the biochemical properties of human RECQ1 helicase. Recent cellular studies have shown that RECQ1 may participate in DNA repair and homologous recombination, but the exact mechanisms of how RECQ1 performs its cellular functions remain largely unknown. Whereas RECQ1 possesses poor helicase activity, we found here that the enzyme efficiently promotes DNA branch migration. Further analysis revealed that RECQ1 catalyzes unidirectional three-stranded branch migration with a 3' --> 5' polarity. We show that this RECQ1 activity is instrumental in specific disruption of joint molecules (D-loops) formed by a 5' single-stranded DNA invading strand, which may represent dead end intermediates of homologous recombination in vivo. The newly found enzymatic properties of the RECQ1 helicase may have important implications for the function of RECQ1 in maintenance of genomic stability.  相似文献   

10.
The Escherichia coli RuvA and RuvB proteins promote the branch migration of Holliday junctions during the late stages of homologous recombination and DNA repair (reviewed in [1]). Biochemical and structural studies of the RuvAB-Holliday junction complex have shown that RuvA binds directly to the Holliday junction [2] [3] [4] [5] [6] and acts as a specificity factor that promotes the targeting of RuvB [7] [8], a hexameric ring protein that drives branch migration [9] [10] [11]. Electron microscopic visualisation of the RuvAB complex revealed that RuvA is flanked by two RuvB hexamers, which bind DNA arms that lie diametrically opposed across the junction [8]. ATP-dependent branch migration occurs as duplex DNA is pumped out through the centre of each ring. Because RuvB possesses well-conserved helicase motifs and RuvAB exhibits a 5'-3' DNA helicase activity in vitro [12], the mechanism of branch migration is thought to involve DNA opening within the RuvB ring, which provides a single strand for the unidirectional translocation of the protein along DNA. We have investigated whether the RuvB ring can translocate along duplex DNA containing a site-directed interstrand psoralen crosslink. Surprisingly, we found that the crosslink failed to inhibit branch migration. We interpret these data as evidence against a base-by-base tracking model and suggest that extensive DNA opening within the RuvB ring is not required for DNA translocation by RuvB.  相似文献   

11.
DNA junctions, known as Holliday junctions, are intermediates in genetic recombination between DNAs. In this structure, two double-stranded DNA helices with similar sequence are joined at a branch point. The branch point can move along these helices when strands with the same sequence are exchanged. Such branch migration is modeled as a random walk. First, we model this process discretely, such that the motion of the branch is represented as transfer between discrete compartments. This is useful in analysing the results of DNA branch migration on junction comprised of synthetic oligonucleotides. The limit in which larger numbers of smaller steps go to continuous motion of the branch is also considered. We show that the behavior of the continuous system is very similar to that of the discrete system when there are more than just a few compartments. Thus, even branch migration on oligonucleotides can be viewed as a continuous process. One consequence of this is that a step size must be assumed when determining rate constants of branch migration.We compare migration where forward and backward movements of the branch are equally probable to biased migration where one direction is favored over the other. In the latter case larger differences between the discrete and continuous cases are predicted, but the differences are still small relative to the experimental error associated with experiments to measure branch migration in oligonucleotides.  相似文献   

12.
13.
The repair of DNA double-strand breaks must be accurate to avoid genomic rearrangements that can lead to cell death and disease. This can be accomplished by promoting homologous recombination between correctly aligned sister chromosomes. Here, using a unique system for generating a site-specific DNA double-strand break in one copy of two replicating Escherichia coli sister chromosomes, we analyse the intermediates of sister-sister double-strand break repair. Using two-dimensional agarose gel electrophoresis, we show that when double-strand breaks are formed in the absence of RuvAB, 4-way DNA (Holliday) junctions are accumulated in a RecG-dependent manner, arguing against the long-standing view that the redundancy of RuvAB and RecG is in the resolution of Holliday junctions. Using pulsed-field gel electrophoresis, we explain the redundancy by showing that branch migration catalysed by RuvAB and RecG is required for stabilising the intermediates of repair as, when branch migration cannot take place, repair is aborted and DNA is lost at the break locus. We demonstrate that in the repair of correctly aligned sister chromosomes, an unstable early intermediate is stabilised by branch migration. This reliance on branch migration may have evolved to help promote recombination between correctly aligned sister chromosomes to prevent genomic rearrangements.  相似文献   

14.
The Holliday junction is the central intermediate in homologous recombination. Branch migration of this four-stranded DNA structure is a key step in genetic recombination that affects the extent of genetic information exchanged between two parental DNA molecules. Here, we have constructed synthetic Holliday junctions to test the effects of p53 on both spontaneous and RuvAB promoted branch migration as well as the effect on resolution of the junction by RuvC. We demonstrate that p53 blocks branch migration, and that cleavage of the Holliday junction by RuvC is modulated by p53. These findings suggest that p53 can block branch migration promoted by proteins such as RuvAB and modulate the cleavage by Holliday junction resolution proteins such as RuvC. These results suggest that p53 could have similar effects on eukaryotic homologues of RuvABC and thus have a direct role in recombinational DNA repair.  相似文献   

15.
Ulf Lönn 《Chromosoma》1982,84(5):663-673
DNA replication in human melanoma cells is investigated by lysing the cells in dilute alkali. This lysis condition results in the release from parental DNA of the single-stranded DNA fragments located in active replicating units. The size of the released DNA should theoretically range from that of Okazaki-fragments up to that of the entire replication unit. However, the results showed that the released DNA replication intermediates which are detected range in the size between Okazaki-fragments up to 10 kb DNA fragments. The 10 kb DNA fragments show a discrete appearance in agarose gel electrophoresis. Moreover the kinetic results indicate that the ligation of the 10 kb DNA fragments to form high molecular weight DNA is a late step. A prerequisite for the release of this DNA fragment as a discrete population is that there are gaps in the continuity of the newly synthesized DNA spaced roughly 10 kb away from each other.  相似文献   

16.
I G Panyutin  I Biswas    P Hsieh 《The EMBO journal》1995,14(8):1819-1826
Branch migration of a DNA Holliday junction is a key step in genetic recombination that affects the extent of transfer of genetic information between homologous DNA sequences. We previously observed that the rate of spontaneous branch migration is exceedingly sensitive to metal ions and postulated that the structure of the cross-over point might be one critical determinant of the rate of branch migration. Other investigators have shown that in the presence of divalent metal ions like magnesium, the Holliday junction assumes a folded conformation in which base stacking is retained through the cross-over point. This base stacking is disrupted in the absence of magnesium. Here we measure the rate of branch migration as a function of Mg2+ concentration. The rate of branch migration increases dramatically at MgCl2 concentrations below 500 microM, with the steepest acceleration occurring between 300 and 100 microM MgCl2. This increase in the rate of branch migration coincides with the loss of base stacking in the four-way junction over this same interval of magnesium concentration, as measured by the susceptibility of junction residues to modification by osmium tetroxide and diethyl pyrocarbonate. We conclude that at physiological concentrations of intracellular Mg2+, base stacking in the Holliday junction constitutes one kinetic barrier to branch migration and that disruption of base stacking at the cross-over relieves this constraint.  相似文献   

17.
The formation of recombinants in Hfr crosses was studied in Escherichia coli strains carrying combinations of genes known to affect recombination and DNA repair. Mutations in ruv and recG eliminate activities that have been shown to process Holliday junction intermediates by nuclease cleavage and/or branch migration. Strains carrying null mutations in both ruv and recG produce few recombinants in Hfr crosses and are extremely sensitive to UV light. The introduction of additional mutations in recF, recJ, recO, recQ, or recR is shown to increase the yield of recombinants by 6- to 20-fold via a mechanism that depends on recBC. The products of these genes have been linked with the initiation of recombination. We propose that mutation of recF, recJ, recO, recQ, or recR redirects recombination to events initiated by the RecBCD enzyme. The strains constructed were also tested for sensitivity to UV light. Addition of recF, recJ, recN, recO, recQ, or recR mutations had no effect on the survival of ruv recG strains. The implications of these findings are discussed in relation to molecular models for recombination and DNA repair that invoke different roles for the branch migration activities of the RuvAB and RecG proteins.  相似文献   

18.
M C Whitby  S D Vincent    R G Lloyd 《The EMBO journal》1994,13(21):5220-5228
The product of the recG gene of Escherichia coli is needed for normal recombination and DNA repair in E. coli and has been shown to help process Holliday junction intermediates to mature products by catalysing branch migration. The 76 kDa RecG protein contains sequence motifs conserved in the DExH family of helicases, suggesting that it promotes branch migration by unwinding DNA. We show that RecG does not unwind blunt ended duplex DNA or forked duplexes with short unpaired single-strand ends. It also fails to unwind a partial duplex (52 bp) classical helicase substrate containing a short oligonucleotide annealed to circular single-stranded DNA. However, unwinding activity is detected when the duplex region is reduced to 26 bp or less, although this requires high levels of protein. The unwinding proceeds with a clear 3' to 5' polarity with respect to the single strand bound by RecG. Substantially higher levels of unwinding are observed with substrates containing a three-way duplex branch. This is attributed to RecG's particular affinity for junction DNA which we demonstrate would be heightened by single-stranded DNA binding protein in vivo. Reaction requirements for unwinding are the same as for branch migration of Holliday junctions, with a strict dependence on hydrolysis of ATP. These results define RecG as a new class of helicase that has evolved to catalyse the branch migration of Holliday junctions.  相似文献   

19.
DNA junctions are by-products of recombinational repair, during which a damaged DNA sequence, assisted by RecA filament, invades an intact homologous DNA to form a joint molecule. The junctions are three-strand or four-strand depending on how many single DNA strands participate in joint molecules. In E. coli, at least two independent pathways to remove the junctions are proposed to operate. One is via RuvAB-promoted migration of four-strand junctions with their subsequent resolution by RuvC. In vivo, RuvAB and RuvC enzymes might work in a single complex, a resolvasome, to clean DNA from used RecA filaments and to resolve four-strand junctions. An alternative pathway for junction removal could be via RecG-promoted branch migration of three-strand junctions, provided that an as yet uncharacterized endonuclease activity incises one of the strands in the joint molecules.  相似文献   

20.
Incubation of human lymphoid cells with bromodeoxyuridine (BrdUrd) for short periods produces three classes of DNA containing analog: DNAHL (hybrid DNA, density approximately equal to 1.75 g/cm3), DNAint (intermediate density DNA, density approximately equal to 1.71 g/cm3), and DNAHH (DNA with both strands containing analog, density approximately equal to 1.80 g/cm3). Preparations of DNAint yield DNAHH after extensive shearing and/or treatment with single strand specific endonuclease. Cross-linking of pulse-labeled (BrdUrd + 3HdT) DNA in cells by treatment with trioxsalen and near UV light before lysis prevents the appearance of DNAHH.Cross-linking after lysis has little effect. A large fraction of DNAHH is obtained after incubation of cells with caffeine. Extraction of DNA at high salt concentration or cross-linking with trioxsalen and near UV light drastically reduced the amount of DNAHH obtained from caffeine-treated cells. We conclude that most DNAHH arises from in vitro branch migration in isolated DNA growing points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号