首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and efficient procedure to purify the low molecular weight extrachromosomal DNA from eukaryotic cells is described. Gentle lysis of cells with urea and sodium dodecyl sulfate in 0.24 M phosphate buffer (pH 6.8) is followed by the removal of high molecular weight bulk DNA by centrifugation. Protein and RNA are removed from the supernatant by hydroxyapatite chromatography in urea/phosphate buffer. Urea is then removed with 0.15 M phosphate buffer and the extrachromosomal DNA, virtually free from protein and RNA, is finally eluted in 0.5 M phosphate buffer. The procedure allows the recovery of about 99% simian virus 40 (SV40) DNA from infected monkey kidney cells in the extrachromosomal fraction. In normal mouse, monkey, andhuman cells, approximately 1% of total cell DNA appears to be extrachromosomal.  相似文献   

2.
We examined the effect of phosphate buffer on the iron- and copper-catalyzed peroxidation of low-density lipoprotein (LDL). The incubation of LDL with CuSO4 in 0.15 M NaCl led to the peroxidation of LDL as evidenced by the detection of thiobarbituric acid-reactive substances (TBARS) and lipid hydroperoxides (LPO). The peroxidation of LDL was also observed with FeSO4 and FeCl3 in 0.15 M NaCl, although there was a lag phase with FeCl3. In 10 mM phosphate buffer, the peroxidation of LDL was observed with CuSO4 to an extent similar to that in 0.15 M NaCl. However, the peroxidation induced by incubation with FeSO4 and FeCl3 was significantly inhibited in phosphate buffer. Iron and copper each formed a complex with lipoprotein during incubation with LDL in 0.15 M NaCl. Although no effect on the formation of copper-LDL complex was observed in phosphate buffer, the formation of iron-LDL complex was reduced in the buffer. These observations suggest there are marked differences in the peroxidation of LDL and in the formation of complexes with LDL between iron and copper in phosphate buffer.  相似文献   

3.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

4.
Parallel purification of glucocorticoid- and estrogen-receptor complexes from rat liver cytosol has been accomplished. Some properties of purified steroid-receptor complexes (SRC) were determined. The procedure developed earlier when the two-step treatment of cytosol with DNA-cellulose alternated with SRC ammonium sulphate precipitation, was shown to be universally applicable for purification of various SRC. Certain modifications have been devised allowing some increase in the degree of receptor purification. The amount of estrogen-receptor complexes (ERC) isolated from male liver cytosol was 20-40 times less than that of glucocorticoid-receptor complexes (GRC) isolated simultaneously from the equal volume of the same cytosol. Both SRC types bind intensively to homologous DNA but not to poly(A). The elution of GRC from DNA cellulose was mainly achieved at 0.4 M NaCl. With this, GRC and ERC showed small, but reliable differences in the salt resistance of their associates with DNA: the ERC-DNA link was stable toward NaCl up to 0.1 M, whereas an appreciable amount of GRC was eluted from DNA-cellulose at 0.1 M NaCl. The stability of purified ERC exceeded that of purified GRC, which apparently reflects the differences in the hormone-receptor binding constants. The receptor stability under various environmental conditions is discussed and some recommendations on the improvement of the SRC stability and its control are given.  相似文献   

5.
  1. 1.
    By column chromatography on DEAE-cellulose calcium phosphate mixed gel red cell catalase can be separated in two fractions, 0.15 M saline and 0.15 M secondary phosphate being used as eluants.  相似文献   

6.
7.
A mouse repair enzyme having priming activity on bleomycin-damaged DNA for DNA polymerase was purified to apparent homogeneity and characterized. The enzyme extracted from permeabilized mouse ascites sarcoma (SR-C3H/He) cells with 0.2 M potassium phosphate buffer (pH 7.5) was purified by successive chromatographies on phosphocellulose, DEAE-cellulose, phosphocellulose (a second time), Sephadex G-100, single-stranded DNA cellulose and hydroxyapatite. The purified enzyme has an Mr of 34,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Enzymatical studies indicated that it is a multifunctional enzyme having exonuclease, apurinic/apyrimidinic endonuclease and phosphatase activities, similar to Escherichia coli exonuclease III. This enzyme is tentatively designated as APEX nuclease for apurinic/apyrimidinic endonuclease and exonuclease activities. The amino acid composition, amino-terminal amino acid sequence and an internal amino acid sequence of APEX nuclease are determined.  相似文献   

8.
In the presence of rat liver cytosol the glucocorticoid receptor complexes (GRC) bind very weakly to RNA as compared to DNA, whereas the binding of purified GRC to RNA is only 2-3 time less than to DNA. It is assumed that the RNA-binding proteins present in the cytoplasm selectively prevent the GRC binding to RNA and thus facilitate the GRC binding to nuclear DNA (chromatin). This blocking function may be performed by the RNA-binding proteins with respect to different regulatory DNA-dependent intracellular proteins in vivo. Possible mechanisms of regulation of the genome activity based on changes in RNA-RNA-binding proteins ratio in intact cells and in individual cell compartments are discussed.  相似文献   

9.
Jaseja M  Jeeves M  Hyde EI 《Biochemistry》2002,41(50):14866-14878
In Trp repressor-DNA complexes, most interactions either occur with phosphate groups or are water-mediated hydrogen bonds to bases. To examine the factors involved in DNA selectivity, we have studied Trp repressor binding to two operator sequences, trpR(S)() and trpO(M)(), with L-tryptophan or 5-methyltryptophan as corepressor. These operators contain all the consensus bases but differ at base pairs contacted by their phosphate groups. In electrophoretic mobility shift assays (EMSAs) the trpR(S)() sequence gives solely 1:1 protein-DNA complexes with either corepressor. The trpO(M )()sequence binds more weakly than trpR(S)(). It gives dissociating 2:1 complexes in EMSAs with L-tryptophan, but both 1:1 and 2:1 complexes are observed with 5-methyltryptophan or if glycerol is present in the gel. The backbone resonances of the TrpR-L-tryptophan-DNA complexes were assigned using triple-resonance experiments and selectively (15)N labeled protein. On changing the DNA sequence, the largest differences in the NMR spectra are at residues 78-81, at the turn of the helix-turn-helix motif and the tip of the recognition helix. I79 and A80 interact with the conserved bases of the operators, while G78 and T81 interact with phosphate groups at bases that differ between the two sequences. Changing the corepressor from L-tryptophan to 5-methyltryptophan causes effects at residues 52, 60, 61, and 85, which do not interact with the DNA. The spectra suggest that there is mutual induced fit between protein and DNA so that sequence changes at bases contacted only by the phosphate groups affect the environment of the protein at residues that bind to conserved bases elsewhere in the DNA.  相似文献   

10.
Summary Unlike the unactivated glucocorticoid-receptor complex, the thermally activated glucocorticoid-receptor complex was able to bind to Affigel blue (a matrix previously shown to bind proteins containing a dinucleotide fold region) under low ionic conditions (0.05 M KCl). Glucocorticoid-receptor complex binding capacity to Affigel blue was enhanced by increasing salt concentration. Optimal binding was obtained at 0.15 M KCl and remained at a plateau level up to 0.4 M KCl. In contrast to Affigel blue binding, glucocorticoid-receptor complex binding to nuclei was optimum at low ionic strength buffer, declined at 0.15 M KCl and became negligible at 0.4 M KCl. Interestingly, at physiological ionic strength (0.15 M KCl) both nuclei and Affigel blue bound to the glucocorticoid-receptor complex with almost identical capacity. Glucocorticoid-receptor complexes incubated 45 min at 25 °C (activation conditions) in the presence of 10 mM molybdate were unable to bind to Affigel blue (or isolated nuclei) as expected. The results obtained suggest that Affigel blue mimics isolated nuclei in the binding of activated glucocorticoid-receptor complexes under physiological (0.15 M KCl) conditions. In addition, Affigel blue may provide a rapid and easy method to study glucocorticoid-receptor complex activation and interaction with nuclear acceptor sites.  相似文献   

11.
A comparison of the physicochemical properties between pyridoxal 5'-phosphate- and 0.4 M KCl-extracted nuclear glucocorticoid receptors has been made utilizing HeLa S3 cells as a source of receptor. Both pyridoxal 5'-phosphate/NaBH4-reduced and 0.4 M KCl-extracted receptors sedimented as approximately 3.5-4.5 S species in 5-20% sucrose gradients containing 0, 0.15, and 0.4 M KCl. Under low-ionic-strength buffer conditions, pyridoxal 5'-phosphate-extracted receptor elutes close to the void volume of a Sephacryl S-300 gel-exclusion column. Increasing the [KCl] of the column to 0.4 M resulted in the elution of receptor with a Stokes radius of 58 A and calculated Mr = 96,000. Nuclear receptors extracted with 0.4 M KCl also formed a large-molecular-weight complex which eluted close to the void volume of the gel-exclusion column. Increasing the [KCl] to 0.4 M had the effect of shifting this receptor form to a species which had a Stokes radius of 62 A and calculated Mr = 89,700. Ion-exchange analysis of nuclear-extracted receptors revealed that 0.4 M KCl-extracted receptors exhibited considerable charge heterogeneity, whereas pyridoxal 5'-phosphate-extracted receptors did not. Pyridoxal 5'-phosphate-extracted receptors (approximately 86%) eluted from DEAE-cellulose at a [KCl] greater than 0.15 M; approximately 14% of the receptors had little affinity for DEAE-cellulose. Pyridoxal phosphate-treated receptors had little affinity for hydroxylapatite, phosphocellulose, and DNA-cellulose. The predominant form of 0.4 M KCl-extracted nuclear receptors (approximately 78%) eluted from DEAE-cellulose between 0.05 and 0.15 M KCl, a position coincident with "activated" glucocorticoid receptors. The remaining receptor fraction (approximately 22%) eluted from DEAE-cellulose at a [KCl] greater than 0.15 M, a position coincident with "unactivated" glucocorticoid receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Apurinic acid endonuclease activity from mouse epidermal cells.   总被引:1,自引:1,他引:0       下载免费PDF全文
An endonuclease activity making single-strand breaks into depurinated and alkylated DNA has been purified 500-fold from carcinogen-transformed mouse epidermal cells. The enzyme was active only at apurinic/apyrimidinic sites, regardless of whether they were produced by heating at an acidic pH or by alkylation with the ultimate carcinogen MeSO2OMe. The enzyme did not act on native DNA nor on ultraviolet-induced pyrimidine-dimers nor on steric distortions caused by modification of DNA with the carcinogen (Ac)2ONFln. The enzyme was active in the presence of 1 mM EDTA; however, at pH 7.4 optimal conditions were: 6mM MgCl2 and 40--120 mM KCl or 10--40 mM potassium phosphate. The enzyme eluted from hydroxyapatite, phosphocellulose and heparin-cellulose between 100--250 mM potassium phosphate but did not bind to DEAE-cellulose. Using four chromatographic steps the endonuclease was obtained free of exonuclease, demethylase and DNA glycosylase activity specific for DNA bases methylated with MeSO2OMe or MeNOUr. The molecular weight was 31 000 +/- 3000 as calculated from the diffusion coefficient (8.2 x 10-7 cm2/s) and the sedimentation value (2.7 S).  相似文献   

13.
In crude extracts of adipose tissue the protein kinase dissociates slowly at 30 degrees into regulatory and catalytic subunits in the presence of 700 mug per ml of histone or 0.5 M NaCl. If the kinase is first dissociated by adding 10 muM adenosine 3':5'-monophosphate (cAMP), reassociation occurs instantaneously after removal of the cAMP by Sephadex G-25 chromatography. In contrast, in crude xtracts of heart, the protein kinase dissociates rapidly in the presence of 700 mug per ml of histone or 0.5 M NaCl and reassociates slowly after removal of cAMP. These differences are accounted for by the existence of two types of protein kinases in these tissues, referred to as types I and II. DEAE-cellulose chromatography of extracts of adipose tissue produces only one peak of cAMP-dependent protein kinase activity (type II) which elutes between 0.15 and 0.25 M NaCl. Similar chromatography of heart extracts resolves enzyme activity into two peaks; a type I enzyme which elutes between 0.05 and 0.1 M and predominates (greater than 75% of total activity), and a type II enzyme which elutes between 0.15 and 0.25 M NaCl. The dissociation properties of the types I and II enzymes from heart and adipose tissue are retained after partial purification by DEAE-cellulose and Sepharose 6B chromatography. Rechromatography of the separated peaks of the cardiac enzymes does not change the elution pattern. Sucrose density gradient centrifugation and gel filtration studies indicate that the molecular weights of these enzymes are very similar. The type II enzyme isolated by DEAE-cellulose chromatography of heart extracts resembles the adipose tissue enzyme, i.e. it undergoes slow dissociation at 30 degrees in the presence of histone or 0.5 M NaCl. The adipose tissue kinase and the heart type II kinase are not identical, however, since they do not elute at exactly the same point on DEAE-cellulose columns. A survey of several tissues indicates the presence of type I and II protein kinases similar to the enzymes in adipose tissue and heart as determined by DEAE-cellulose chromatography of crude extracts and by dissociation of the enzymes with histone. The presence of MgATP prevents dissociation of type I enzyme from heart by 0.5 M NaCl or histone. The profile of the enzyme on DEAE-cellulose, however, is not changed...  相似文献   

14.
We previously described a heat-stable factor from WEHI-7 mouse thymoma, rat liver, spleen, and human chronic lymphocytic leukemia cells that prevents degradation of glucocorticoid-receptor complexes (GRC) in cytosols from rat thymus and acute non-lymphocytic leukemia cells. We now show that the factor has many properties in common with calpastatin, a naturally occurring inhibitor of a family of neutral calcium-activated proteases called calpains. Liver GRC-stabilizing activity and calpastatin activity, in addition to surviving boiling, co-chromatography on columns of DEAE-cellulose ion exchange or agarose A-0.5M gel filtration matrices, and have identical isoelectric points of 5.1. This factor should be especially useful for studying GRC function in the presence of calcium.  相似文献   

15.
The types and subunit composition of cAMP-dependent protein kinases in soluble rat ovarian extracts were investigated. Results demonstrated that three peaks of cAMP-dependent kinase activity could be resolved using DEAE-cellulose chromatography. Based on the sedimentation of cAMP-dependent protein kinase and regulatory subunits using sucrose density gradient centrifugation, identification of 8-N3[32P]cAMP labeled RI and RII in DEAE-cellulose column and sucrose gradient fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Scatchard analysis of the cAMP-stimulated activation of the eluted peaks of kinase activity, the following conclusions were drawn regarding the composition of the three peaks of cAMP-dependent protein kinase activity: peak 1, eluting with less than or equal to 0.05 M potassium phosphate, consisted of the type I form of cAMP-dependent protein kinase; peak 2, eluting with 0.065-0.11 M potassium phosphate, consisted of free RI and a type II tetrameric holoenzyme; peak 3, eluting with 0.125 M potassium phosphate, consisted of an apparent RIIC trimer, followed by the elution with 0.15 M potassium phosphate of free RII. The regulatory subunits were confirmed as authentic RI and RII based upon their molecular weights and autophosphorylation characteristics. The more basic elution of the type II holoenzyme with free RI was not attributable to the ionic properties of the regulatory subunits, based upon the isoelectric points of photolabeled RI and RII and upon the elution location from DEAE-cellulose of RI and RII on dissociation from their respective holoenzymes by cAMP. This is the first report of a type II holoenzyme eluting in low salt fractions with free RI, and of the presence of an apparent RIIC trimer in a soluble tissue extract.  相似文献   

16.
A peptidomimetic template, consisting of a hydrophobic scaffold, a dansyl fluorophore, and an Arg-His recognition strand, was tested as a simple mimic of zinc finger 2 of the Zif268 protein. Association constants (K(A)'s) were on the order of 10(5) M(-1) for complexes formed between the mimetic and duplexes d(CGGGAATTCCCG)(2) and d(AAAAAAAAATTTTTTTTT)(2). Modest selectivity was observed for the GC-rich DNA in a 0.5M NaCl/buffer (0.1M phosphate, pH 7.0) solution. Differences in K(A)'s along with observed CD profiles suggest that the mimetic associated with the duplexes using different binding modes. The DNA duplexes had weaker interactions with the free Arg-His recognition strand, the dansyl functional group, and a scaffold that contained only glycines as the recognition strand. The scaffold most likely provides for greater van der Waal's interactions, a larger hydrophobic effect upon association, and reduces the freedom of motion of the side chains. This last effect was confirmed by molecular mechanics calculations and by the fact that the mimetic suffered a smaller loss of entropic energy upon association than the free recognition strand. These studies show that the synthetic scaffold is a promising platform in which peptides can be attached to increase their affinity and possibly selectivity for DNA targets.  相似文献   

17.
Mn(III) and Fe(III) complexes of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (M-TMePyP) and related hybrid molecules ("metalloporphyrin-ellipticine") were activated by potassium monopersulfate in the presence of variable calf thymus (CT) DNA and NaCl concentrations. Monitored by visible spectroscopy (Soret band), fast degradation of the free metalloprophyrin was observed while the DNA-bound form appeared protected. This direct quantitation of free versus bound metalloporphyrin ratios allowed determination of binding constants: Mn- and Fe-TMePyP respectively bind to CT DNA (5 mM phosphate buffer, 0.1 M NaCl, pH 7) with K = 3 X 10(4) and 1.2 X 10(4) M-1. Mn-TMePyP showed a greater affinity for poly[d(A-T)] (K = 1.2 X 10(5) M-1) than for poly[d(G-C)] (K = 0.2 X 10(4) M-1). This method allowed us access to the intrinsic DNA affinity of the metalloporphyrin moiety of the hybrid molecules "metalloporphyrin-ellipticine".  相似文献   

18.
The 0.048502 megabase (Mb), primarily double-stranded DNA of bacteriophage lambda has single-stranded, complementary termini (cohesive ends) that undergo either spontaneous intramolecular joining to form open circular DNA or spontaneous intermolecular joining to form linear, end-to-end oligomeric DNAs (concatemers); concatemers also cyclize. In the present study, the effects of polyethylene glycol (PEG) on the cyclization and concatemerization of lambda DNA are determined at temperatures that, in the absence of PEG, favor dissociation of cohesive ends. Circular and linear lambda DNA, monomeric and concatemeric, are observed by use of pulsed field agarose gel (PFG) electrophoresis. During preparation of lambda DNA for these studies, hydrodynamic shear-induced, partial dissociation of joined cohesive ends is fortuitously observed. Although joined lambda cohesive ends progressively dissociate as their temperature is raised in the buffer used here (0.1 M NaCl, 0.01 M sodium phosphate, pH 7.4, 0.001 M EDTA), when PEG is added to this buffer, raising the temperature sometimes promotes joining of cohesive ends. Conditions for promotion of primarily either cyclization or concatemerization are described. Open circular DNAs as long as a 7-mer are produced and resolved. The concentration of PEG required to promote joining of cohesive ends decreases as the molecular weight of the PEG increases. The rate of cyclization is brought, the first time, to values that are high enough to be comparable to the rate observed in vivo. For double-stranded DNA bacteriophages that have a linear replicative form of DNA (bacteriophage T7, for example), a suppression, sometimes observed here, of cyclization mimics a suppression of cyclization previously observed in vivo. The PEG, temperature effects on DNA joining are explained by both the excluded volume of PEG random coils and an increase in this excluded volume that occurs when temperature increases.  相似文献   

19.
The activation of the estrogen receptor (ER) from N-nitrosomethylurea (NMU)-induced rat mammary tumors was studied in vitro. The activation of the receptor induced by heating of the cytosol containing occupied ER was measured by a 3-4-fold increase of receptor binding to nuclei in comparison with the nuclear binding of the nonactivated ER. The activation of the ER was further shown by alteration of the elution profile from DEAE-cellulose. A shift of the receptor peak from 234 mM (Peak II, nonactivated ER) to 70 mM (Peak I, activated ER) phosphate buffer could be obtained. The overall recoveries of activated ER following chromatography on DEAE-cellulose were significantly lower than the recoveries of the nonactivated ER, 71 and 85%, respectively. Binding of the activated ER to nuclei and chromatography of the supernatant which is not able to bind to nuclei on DEAE-cellulose resulted in a decrease of Peak I and in an increase of the overall recovery. These findings suggest that the nuclear bound ER consists of two parts. One is represented partially by Peak I of the elution profile and the other one by that part of the receptor which can not be eluted from the column under the conditions used. Furthermore, the dissociation of tritiated estradiol (E3H) from the nonactivated ER followed a two component exponential function whereas after activation a monophasic dissociation curve could be observed. The mean half times for the dissociation of E3H from the activated and nonactivated ER were 101 and 7.2 min, respectively. Finally, the nonactivated molybdate stabilized ER sedimented in 5-20% sucrose density gradients as two peaks, one at 9.5 S and the other at 4 S. After activation of the ER only the smaller 4 S peak was evident. Molybdate inhibited the activation of the ER measured by nuclear binding assays, sucrose density gradient analysis, dissociation kinetics or ion exchange chromatography but not completely in every case.  相似文献   

20.
The influence of ATP and KCl on the quaternary structure and the enzymatic activity of D-glyceraldehyde-3-phosphate dehydrogenase from yeast(Y-GAPDH) has been studied by ultracentrifugation, gel chromatography and standard optical tests. In 0.1 M imidazole buffer pH 7.0, at low temperature (0°C) both complete deactivation and dissociation to dimers occur in the presence of 2 mM ATP and 0.1 M 2-mercaptoethanol. In 0.067 M phosphate buffer pH 7.0, containing 2 mM ATP and 1 mM dithiothreitol, only slight deactivation paralleled by minor changes of the native quaternary structure is observed. In this same buffer, increasing temperature leads to stabilization of both the tetrameric state and the catalytic activity of the enzyme. Deactivation and dissociation in the presence of 0.15 M KCl (in 0.2 M glycine buffer 9.1 ≥ pH ≥ 8.0) is a function of pH rather than electrolyte concentration; at neutral pH the enzyme is stabilized in its native state. Contrary to earlier assumptions in the literature, ATP and KCl under the above experimental conditions do not appear to play an important role in the in vivo regulation of Y-GAPDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号