首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Sucrose translocation and storage in the sugar beet   总被引:14,自引:9,他引:5       下载免费PDF全文
Several physiological processes were studied during sugar beet root development to determine the cellular events that are temporally correlated with sucrose storage. The prestorage stage was characterized by a marked increase in root fresh weight and a low sucrose to glucose ratio. Carbon derived from 14C-sucrose accumulation was partitioned into protein and structural carbohydrate fractions and their amino acid, organic acid, and hexose precursors. The immature root contained high soluble acid invertase activity (Vmax 20 micromoles per hour per milligram protein; Km 2 to 3 millimolar) which disappeared prior to sucrose storage. Sucrose storage was characterized by carbon derived from 14C-sucrose uptake being partitioned into the sucrose fraction with little evidence of further metabolism. The onset of storage was accompanied by the appearance of sucrose synthetase activity (Vmax 12 micromoles per hour per milligram protein; Km 7 millimolar). Neither sucrose phosphate synthetase nor alkaline invertase activities were detected during beet development. Intact sugar beet plants (containing a 100-gram beet) exported 70% of the translocate to the beet, greater than 90% of which was retained as sucrose with little subsequent conversions.  相似文献   

2.
A phosphoenolpyruvate (PEP) phosphatase was purified to homogeneity from germinating mung beans (Vigna radiata). It was found to be a tetrameric protein (molecular mass 240,000 daltons) made up of apparently identical subunits (subunit molecular mass 60,000 daltons). It was free from bound nucleotides. It did not show pyruvate kinase activity. The enzyme showed high specificity for PEP. Pyrophosphate and some esters (nucleoside di- and triphosphates) were hydrolyzed slowly and phosphoric acid monoesters were not hydrolyzed. The enzyme showed maximum activity at pH 8.5. At this pH, the Km of PEP was 0.14 millimolar and the Vmax was equal to 1.05 micromoles pyruvate formed per minute per milligram enzyme protein. Dialysis of the enzyme against 10 millimolar triethanolamine buffer (pH 6.5), led to loss of the catalytic activity, which was restored on addition of Mg2+ ions (Km = 0.12 millimolar). Other divalent metal ions inhibited the Mg2+ -activated enzyme. PEP-phosphatase was inhibited by ATP and several other metabolites.  相似文献   

3.
The soluble invertase activity in etiolated Avena seedlings was highest at the apex of the coleoptile and much lower in the primary leaf, mesocotyl, and root. The activity in all parts of the seedling consisted of two invertases (I and II) which were separated by chromatography on diethylaminoethylcellulose. Both enzymes appeared to be acid invertases, but they differed in molecular size, pH optimum, and the kinetic parameters Km and Vmax of their action on sucrose, raffinose, and stachyose. Invertase II had low stability at pH 3.5 and below, and exhibited high sensitivity to Hg2+, with complete inhibition by 2 micromolar HgCl2. Segments of coleoptiles incubated in water lost about two-thirds of the total invertase activity after 16 hours. The loss of activity was due primarily to a decrease in the level of invertase II. The loss of invertase was decreased by indoleacetic acid, 2,4-dichlorophenoxyacetic acid, and α-naphthaleneacetic acid but not by β-naphthaleneacetic acid and p-chlorophenoxyisobutyric acid. Conditions that inhibited auxin-induced growth of the segments (20 millimolar CaCl2 and 200 millimolar mannitol) also blocked the auxin effect on invertase loss.  相似文献   

4.
Acid and neutral invertases were found in the mesocarp of developing muskmelon (Cucumis melo L. cv Prince) fruit and the activities of these enzymes declined with maturation of the fruit, concomitantly with the accumulation of sucrose. Neutral invertase was only present in the soluble fraction and acid invertase was present in both the soluble and cell-wall fractions. The cell-wall fraction contained three types of acid invertase: a NaCl-released invertase; an EDTA-released invertase, and a tightly bound invertase that still remained on the cell wall after treatment with NaCl and EDTA. The soluble acid and neutral invertases could be separated from one another by chromatography on DEAE-cellulose and they exhibited clear differences in their properties, namely, in their pH optima, substrate specificity, Km values for sucrose, and inhibition by metal ions. The EDTA-released invertase and the soluble acid invertase were similar with regard to their chromatographic behavior on DEAE-cellulose, but the NaCl-released invertase was different because it was adsorbed to a column of CM-cellulose. The soluble acid invertase and two cell-wall bound invertases had very similar characteristics with regard to optimal pH and temperature, Km value for sucrose, and substrate specificity.  相似文献   

5.
Soll J 《Plant physiology》1988,87(4):898-903
An ATP-dependent protein kinase was partially purified from isolated outer envelope membranes of pea (Pisum sativum L., Progress No. 9) chloroplasts. The purified kinase had a molecular weight of 70 kilodaltons, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was of the cyclic nucleotide and Ca2+, calmodulin-independent type. The purification involved the detergent solubilization of purified outer envelopes by 0.5% cholate and 1% octylglycoside, followed by centrifugation on a linear 6 to 25% sucrose gradient. Active enzyme fractions were further purified by affinity chromatography on histone III-S Sepharose 4B and ion exchange chromatography on diethylaminoethyl cellulose. The protein kinase eluted at 100 millimolar and 50 millimolar NaCl, respectively. The protein kinase was essentially pure as judged by Western blot analysis. The enzyme has a KM of 450 micromolar for ATP and a Vmax of 25 picomoles of 32P incorporated into histone III-S per minute per microgram. Inhibition by ADP is competitive (Ki 150 micromolar).  相似文献   

6.
Phosphoribulokinase (EC 2.7.1.19) was investigated in wild-type Chlamydomonas reinhardtii and in mutant strains deficient in this enzyme activity. Immunoblot analysis revealed substantial amounts of phosphoribulokinase in mutant 12-2B but none in mutant F-60. The pH optimum of the wild-type enzyme was 8.0 and that of the 12-2B enzyme was 6.5. The mutant kinase possessed a Km value for ribulose 5-phosphate of about 45 millimolar, nearly three orders of magnitude greater than the wild-type value of 56 micromolar. Km values for ATP in the range of 36 to 72 micromolar were observed with both wild-type and mutant enzymes. The Vmax of the wild-type enzyme was about 450 micromoles per minute per milligram of protein, and values for the mutant enzyme were 140 micromoles per minute per milligram at pH 6.5 and 36 micromoles per minute per milligram at pH 7.8. Thermal stabilities of the wild-type and mutant kinases were similar. Sequence analysis of the 12-2B phosphoribulokinase gene revealed a C to T transition that caused an arginine to cysteine change at position 64 of the enzyme. This arginine residue is conserved in phosphoribulokinases from vascular plants, algae, and photosynthetic bacteria and appears to function in binding ribulose 5-phosphate.  相似文献   

7.
Pathway of Phloem unloading of sucrose in corn roots   总被引:12,自引:8,他引:12       下载免费PDF全文
The pathway of phloem unloading and the metabolism of translocated sucrose were determined in corn (Zea mays) seedling roots. Several lines of evidence show that exogenous sucrose, unlike translocated sucrose, is hydrolyzed in the apoplast prior to uptake into the root cortical cells. These include (a) presence of cell wall invertase activity which represents 20% of the total tissue activity; (b) similarity in uptake and metabolism of [14C]sucrose and [14C]hexoses; and (c) randomization of 14C within the hexose moieties of intracellular sucrose following accumulation of [14C] (fructosyl)sucrose. Conversely, translocated sucrose does not undergo apoplastic hydrolysis during unloading. Asymmetrically labeled sucrose ([14C](fructose)sucrose), translocated from the germinating kernels to the root, remained intact indicating a symplastic pathway for unloading. In addition, isolated root protoplasts and vacuoles were used to demonstrate that soluble invertase activity (Vmax = 29 micromoles per milligram protein per hour, Km = 4 millimolar) was located mainly in the vacuole, suggesting that translocated sucrose entered via the symplasm and was hydrolyzed at the vacuole prior to metabolism.  相似文献   

8.
Experiments are reported in which the uptake of 86Rb+, used as an analog of K+, into cultured cells of Arabidopsis thaliana is investigated. A single transport system is found with Km = 0.34 millimolar and Vmax = 14 nmoles per milligram of protein per hour. This system is blocked by the metabolic inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and by cold. At high concentrations of external K+ (above 1 millimolar), a significant fraction of total uptake is energy-independent. No evidence is found for more than one energy-dependent uptake system or for concentration-dependent modifications of a carrier as postulated in multiphasic transport models.  相似文献   

9.
(NH4)2SO4 fractionation followed by Sephadex G-200 chromatography of sugar cane juice gave an acid invertase with MW of 380 000 and 23.5% carbohydrate and a neutral invertase with MW of 66 000 and 22% carbohydrate. For acid invertase, Km is 2.8 mM and Vmax is 2.7 μmol sucrose hydrolysed/hr/mg protein. For neutral invertase, Km and Vmax are 0.32 mM and 2.8 μmol hydrolysed/hr/mg protein, respectively. Inhibition of both invertases by either lauryl sulfate or metasilicate is not competitive.  相似文献   

10.
A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30°C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg2+ or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl2 and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl2, and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent Km (NADH) was 74 micromolar and Km (NADPH) was 81 micromolar. Apparent Vmax was 1100 μmoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.  相似文献   

11.
A novel acyltransferase from cotyledons of tomato (Lycopersicon esculentum Mill.), which catalyzes the transfer of caffeic acid from chlorogenic acid (5-O-caffeoylquinic acid) to glucaric and galactaric acids, was purified with a 2400-fold enrichment and a 4% recovery. The enzyme showed specific activities (theoretical Vmax per milligram of protein) of 625 nanokatals (caffeoylglucaric acid formation) and 310 nanokatals (caffeoylgalactaric acid formation). On sodium dodecyl sulfate-polyacrylamide gel electrophoresis it gave an apparent Mr of 40,000, identical to the value obtained by gel filtration column chromatography. Highest activity was found at pH 5.7, which was constant over a range of 20 to 120 millimolar K-phosphate. The isoelectric point of the enzyme was at pH 5.75. The reaction temperature optimum was at 38°C and the apparent energy of activation was calculated to be 57 kilojoules per mole. The apparent Km values were 0.4 millimolar for glucaric acid, 1.7 millimolar for galactaric acid, and with both acceptors as second substrates 20 millimolar for chlorogenic acid. The relative ratio of the Vmax/Km values for glucaric acid and galactaric acid was found to be 100:12. Substrate-competition experiments support the conclusion that one single enzyme is responsible for both the glucaric and galactaric acid ester formation with marked preference for glucaric acid. It is proposed that the enzyme be called chlorogenic acid:glucaric acid O-caffeoyltransferase (EC 2.3.1.-). The three caffeic acid-dependent enzyme activities involved in the formation of the glucaric and galactaric acid esters, the chlorogenic acid:glucaric acid caffeoyltransferase as the key activity as well as the caffeic acid:CoA ligase and the caffeoyl-CoA:quinic acid caffeoyltransferase as the preceding activities, were determined. The time course of changes in these activities were followed during development of the seedling in the cotyledons and growth of the young plant in the first and second leaf. The results from tomato seedlings suggest a sequential appearance of these enzymes.  相似文献   

12.
Mitochondria from Pisum sativum seedlings purified free of peroxisomal and chlorophyll contamination were examined for acetyl-coenzyme A (CoA) hydrolase activity. Acetyl-CoA hydrolase activity was latent when assayed in isotonic media. The majority of the enzyme activity was found in the soluble matrix of the mitochondria. The products, acetate and CoA, were quantified by two independent methods and verified that the observed activity was an acetyl-CoA hydrolase. The pea mitochondrial acetyl-CoA hydrolase showed a Km for acetyl-CoA of 74 micromolar and a Vmax of 6.1 nanomoles per minute per milligram protein. CoA was a linear competitive inhibitor of the enzyme with a Kis of 16 micromolar. The sensitivity of the enzyme to changes in mole fraction of acetyl-CoA suggested that the changes in the intramitochondrial acetyl-CoA/CoA ratio may be an effective mechanism of control. The widespread distribution of mitochondrial acetyl-CoA hydrolase activity among different plant species indicated that this may be a general mechanism in plants for synthesizing acetate.  相似文献   

13.
Diffusion of inorganic carbon into isolated bundle sheath cells from a variety of C4 species was characterized by coupling inward diffusion of CO2 to photosynthetic carbon assimilation. The average permeability coefficient for CO2 (PCO2) for five representatives from the three decarboxylation types was approximately 20 micromoles per minute per milligram chlorophyll per millimolar, on a leaf chlorophyll basis. The average value for the NAD-ME species Panicum miliaceum (10 determinations) was 26 with a standard deviation of 6 micromoles per minute per milligram chlorophyll per millimolar, on a leaf chlorophyll basis. A PCO2 of at least 500 micromoles per minute per milligram chlorophyll per millimolar was determined for cells isolated from the C3 plant Xanthium strumarium. It is concluded that bundle sheath cells are one to two orders of magnitude less permeable to CO2 than C3 photosynthetic cells. These data also suggest that CO2 diffusion in bundle sheath cells may be made up of two components, one involving an apoplastic path and the other a symplastic (plasmodesmatal) path, each contributing approximately equally.  相似文献   

14.
We purified and partially sequenced a purple (λmax = 556 nanometers) acid phosphatase (APase; EC 3.1.3.2) secreted by soybean (Glycine max) suspension-culture cells. The enzyme is a metalloprotein with a Mn2+ cofactor. This APase appears to be a glycoprotein with a monomer subunit molecular weight of 58,000 and an active dimer molecular weight of approximately 130,000. The protein has an isoelectric point of about 5.0 and a broad pH optimum centered near 5.5. The purified enzyme, assayed with p-nitrophenyl phosphate as the substrate, has a specific activity of 512 units per milligram protein and a Km of approximately 0.3 millimolar; phosphate is a competitive inhibitor with a Ki of 0.7 millimolar. This APase is similar to one found in soybean seed meal but dissimilar to that found in soybean seedlings.  相似文献   

15.
Brauer D  Teel MR 《Plant physiology》1982,70(3):723-727
Kinetics of two molecular forms of K-dependent citrate dehydrase in maize (Zea mays L.) are reported. The isozymes, designated CD I and CD II, were found to be compartmented in mitochondria and cytosol, respectively.

CD I exhibited hyperbolic kinetics with respect to both citrate and potassium with Km 2.3 and 12 millimolar, respectively. Maximum velocity was 0.38 micromole of trans-aconitic acid per minute per milligram protein. The pH optimum was 7.2. trans-aconitic synthesis by CD I is regulated by both citrate concentration and pH.

CD II exhibited hyperbolic kinetics with respect to citrate (Km 0.6 millimolar) but sigmoidal kinetics with respect to potassium. trans-aconitic acid synthesis by CD II is regulated by potassium. This may account for the positive correlation between leaf potassium and trans-aconitic acid in certain grasses (Clark 1968 Crop Sci 8: 165).

  相似文献   

16.
Transport of dicarboxylic acids in castor bean mitochondria   总被引:1,自引:1,他引:0       下载免费PDF全文
Mitochondria from castor bean (Ricinus communis cv Hale) endosperm, purified on sucrose gradients, were used to investigate transport of dicarboxylic acids. The isolated mitochondria oxidized malate and succinate with respiratory control ratios greater than 2 and ADP/O ratios of 2.6 and 1.7, respectively. Net accumulation of 14C from [14C]malate or [14C]succinate into the mitochondrial matrix during substrate oxidation was examined by the silicone oil centrifugation technique. In the presence of ATP, there was an appreciable increase in the accumulation of 14C from [14C]malate or [14C]succinate accompanied by an increased oxidation rate of the respective dicarboxylate. The net accumulation of dicarboxylate in the presence of ATP was saturable with apparent Km values of 2 to 2.5 millimolar. The ATP-stimulated accumulation of dicarboxylate was unaffected by oligomycin but inhibited by uncouplers (2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone) and inhibitors of the electron transport chain (antimycin A, KCN). Dicarboxylate accumulation was also inhibited by butylmalonate, benzylmalonate, phenylsuccinate, mersalyl and N-ethylmaleimide. The optimal ATP concentration for stimulation of dicarboxylate accumulation was 1 millimolar. CTP was as effective as ATP in stimulating dicarboxylate accumulation, and other nucleotide triphosphates showed intermediate or no effect on dicarboxylate accumulation. Dicarboxylate accumulation was phosphate dependent but, inasmuch as ATP did not increase phosphate uptake, the ATP stimulation of dicarboxylate accumulation was apparently not due to increased availability of exchangeable phosphate.

The maximum rate of succinate accumulation (14.5 nanomoles per minute per milligram protein) was only a fraction of the measured rate of oxidation (100-200 nanomoles per minute per milligram protein). Efflux of malate from the mitochondria was shown to occur at high rates (150 nanomoles per minute per milligram protein) when succinate was provided, suggesting dicarboxylate exchange. The uptake of [14C]succinate into malate or malonate preloaded mitochondria was therefore determined. In the absence of phosphate, uptake of [14C]succinate into mitochondria preloaded with malate was rapid (27 nanomoles per 15 seconds per milligram protein at 4°C) and inhibited by butylmalonate, benzylmalonate, and phenylsuccinate. Uptake of [14C]succinate into mitochondria preloaded with malonate showed saturation kinetics with an apparent Km of 2.5 millimolar and Vmax of 250 nanomoles per minute per milligram protein at 4°C. The measured rates of dicarboxylate-dicarboxylate exchange in castor bean mitochondria are sufficient to account for the observed rates of substrate oxidation.

  相似文献   

17.
Effects of glyoxylate on photosynthesis by intact chloroplasts   总被引:6,自引:4,他引:2       下载免费PDF全文
Because glyoxylate inhibits CO2 fixation by intact chloroplasts and purified ribulose bisphosphate carboxylase/oxygenase, glyoxylate might be expected to exert some regulatory effect on photosynthesis. However, ribulose bisphosphate carboxylase activity and activation in intact chloroplasts from Spinacia oleracea L. leaves were not substantially inhibited by 10 millimolar glyoxylate. In the light, the ribulose bisphosphate pool decreased to half when 10 millimolar glyoxylate was present, whereas this pool doubled in the control. When 10 millimolar glyoxylate or formate was present during photosynthesis, the fructose bisphosphate pool in the chloroplasts doubled. Thus, glyoxylate appeared to inhibit the regeneration of ribulose bisphosphate, but not its utilization.

The fixation of CO2 by intact chloroplasts was inhibited by salts of several weak acids, and the inhibition was more severe at pH 6.0 than at pH 8.0. At pH 6.0, glyoxylate inhibited CO2 fixation by 50% at 50 micromolar, and glycolate caused 50% inhibition at 150 micromolar. This inhibition of CO2 fixation seems to be a general effect of salts of weak acids.

Radioactive glyoxylate was reduced to glycolate by chloroplasts more rapidly in the light than in the dark. Glyoxylate reductase (NADP+) from intact chloroplast preparations had an apparent Km (glyoxylate) of 140 micromolar and a Vmax of 3 micromoles per minute per milligram chlorophyll.

  相似文献   

18.
Singh MB  Knox RB 《Plant physiology》1984,74(3):510-515
Two different forms of invertase are found in pollen of lily (Lilium auratum). One form is cytoplasmic (Invertase 1) and the other is bound to the pollen wall (Invertase 2). Invertase 1 has been partially purified and is a glycoprotein (apparent molecular weight, 450 kilodaltons) with a Km of 0.65 millimolar for sucrose. The two invertases differ in pH optimum and thermal stability. Invertases of lily pollen are β-fructofuranosidases which can hydrolyze sucrose but not melizitose. The mature pollen grains have enzyme activity in both cytoplasmic and wall fractions, and no increase in the activity of either occurs during germination. The wall-bound enzyme could not be released by treatments with detergents or high salt concentrations.  相似文献   

19.
Alkaline invertase was induced during the initiation of suspension cultures of single cells from leaf explants of sugar beets in Murashige-Skoog liquid medium which contained benzyladenine. This activity was barely detectable in the leaves themselves. In suspension cultures, the presence of both acid and alkaline invertases was detected; alkaline invertase was only present in the cytoplasm of the cultured cells, whereas acid invertase was present in the cytoplasm and cell walls, and was also detected in the culture medium. The cell wall contained at least three types of acid invertase; two of these activities were solubilized by saline (saline-released) and EDTA (EDTA-released), respectively, and the third remained tightly associated with the cell wall. Saline-released and EDTA-released invertases from the cell wall showed the significant differences in their properties: the saline-released enzyme had the highest affinity for sucrose among the invertases tested, and was easily bound to cell walls, to DNA, and to a cation exchanger, unlike the EDTA-released enzyme. Sucrose is the source of carbon for plant cells in suspension culture and is probably degraded in the cell wall by the saline-released invertase, which had the highest activity and the highest affinity for sucrose. Hexose products of this degradation would be transported to cytoplasm. Soluble invertase, EDTA-released invertase from the cell wall, and one of two extracellular invertases behaved similarly upon chromatography on DEAE-cellulose. They had similar activity profiles with changing pH, and similar Km values for sucrose. Thus it appears that they are identical. Two extracellular invertases found in the growth medium of the suspension cultures were probably identical with those in the soluble fraction of callus and seedlings of sugar beets, because they showed similar behaviors during chromatography on DEAE-cellulose, and had similar activity profiles with changing pH and Km values for sucrose.  相似文献   

20.
Lin TP  Liu CC  Chen SW  Wang WY 《Plant physiology》1989,91(4):1445-1453
Pectinmethylesterase from the pericarp of jelly fig (Ficus awkeotsang) achenes was extracted and purified to a specific activity of 289 micromole proton produced per minute per milligram protein. Pectinmethylesterase, a major protein with high specific activity in the crude extract, was monomeric with a molecular weight of 38,000. The enzyme preparation was stable in distilled water at 4°C for at least 6 months, and at 60°C for at least 10 minutes. This enzyme functioned optimally at pH 6.5 to 7.5 when the assay mixture contained no NaCl or at low NaCl concentration. The pH optimum shifted to lower pH as the NaCl concentration was increased. The Km value for pectin was 0.75 milligram per milliliter pectin, corresponding to a Vmax value of 310 micromoles per minute per milligram protein. Inhibition studies with antibodies indicated that jelly fig achene pectinmethylesterase and the two other pectinmethylesterases from orange and tomato were similar in their active site conformation; however, the surface determinants may be very different because no precipitation between anti-jelly fig pectinmethylesterase immune serum and the pectin methylesterase from orange and tomato could be observed in the double immunodiffusion analysis. Specific antisera raised against jelly fig achene pectinmethylesterase in a Western blot experiment also showed low similarity between jelly fig pectinmethylesterase with that from orange and tomato. This observation was also supported by the very low isoelectric point (pH 3.5) of jelly fig pectinmethylesterase, compared with high isoelectric points reported for most of the pectinmethylesterases. Amino acid composition and N-terminal sequence have been obtained. High homology of the N-terminal amino acid residues between jelly fig and tomato pectinmethylesterase (O Markovic, H Jornvall [1986] Eur J Biochem 158: 455-462) was observed. Pectinmethylesterase activity causes the release of protons from the deesterification of pectin such that a low pH environment is created, and this may be related to the cell growth. Pectinmethylesterase is not needed for jelly fig seed germination, however the gel formed from pectin and pectinmethylesterase may insure a water source for the germinating jelly fig seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号