首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A range of chemotactic factors has been shown to affect the adhesion of rabbit peritoneal neutrophil granulocytes to cultured endothelial cells and to serum-coated glass. At chemotactically optimal concentrations, αs-casein, β-casein, alkali denatured human serum albumin (HSA) and several synthetic formyl-peptides reduced the number of adherent neutrophils after 30 min to around 50% of control values. These effects were still observed after neutrophils, but not endothelium or serum-coated glass had been exposed to chemotactic factors and washed before use in assays. Two non-chemotactic analogues, native HSA and a non-formyl-peptide were ineffective. The dose responses for adhesion after 30 min in the presence of αs-casein and formyl-methionyl-leucyl-phenylalanine (FMLP) were found to be inversely related to those for migration towards these substances. After incubation for 60 min in high (10?8–10?7 M) concentrations of FMLP, neutrophil adhesion was found to be enhanced. Neutrophil aggregation was also affected by the presence of chemotactic factors in a similar time- and dose-dependent manner to the adhesion to substratum assays. Using FMLP, it was also shown that the timing of the adhesive changes depended on the concentration of chemotactic factor present.  相似文献   

2.
Endogenous phospholipid metabolism was examined during the initial 0–120 seconds of neutrophil (PMN) stimulation. When PMN were exposed to the chemotactic peptide FMLP (10?7 M) or the tumor promotor, phorbol myristate acetate (PMA, 1 μg/ml) extensive changes in specific phospholipid (PL) classes were evident within 15 seconds. The profile and kinetics of stimulus-induced PL changes were stimulus-dependent. Five seconds after the addition of FMLP, PMN content of PC, PS and PA increased, while the level of PI decreased. Kinetic studies revealed that only PA levels remained elevated (0–120 s) while other PL decreased. In contrast, when cells were exposed to PMA (1 μg/ml), the levels of PC and PS rapidly increased (< 15 s). With PMA as stimulus, changes in PI and PA were not observed until > 60 s. Results indicate that exposure to PMN to stimuli leads to rapid changes in specific PL. In addition, they support the concept that neutrophils rapidly “remodel” endogenous PL upon stimulation.  相似文献   

3.
This investigation was undertaken to clarify the mechanism by which purified recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) potentiates neutrophil oxidative responses triggered by the chemotactic peptide, FMLP. Previous studies have shown that GM-CSF priming of neutrophil responses to FMLP is induced relatively slowly, requiring 90 to 120 min of incubation in vitro, is not associated with increased levels of cytoplasmic free Ca2+, but is associated with up-regulation of cell-surface FMLP receptors. We have confirmed these findings and further characterized the process of GM-CSF priming. We found that the effect of GM-CSF on neutrophil oxidative responsiveness was induced in a temperature-dependent manner and was not reversed when the cells were washed extensively to remove the growth factor before stimulation with FMLP. Extracellular Ca2+ was not required for functional enhancement by GM-CSF and GM-CSF alone effected no detectable alteration in the 32P-labeled phospholipid content of neutrophils during incubation in vitro. Our data indicate that GM-CSF exerts its influence on neutrophils by accelerating a process that occurs spontaneously and results in up-regulation of both cell-surface FMLP receptors and oxidative responsiveness to FMLP. Thus, the results demonstrate that, with respect to oxidative activation, circulating endstage polymorphonuclear leukocytes are nonresponsive or hyporesponsive to FMLP; functional responsiveness increases dramatically as surface FMLP receptors are gradually deployed after the cells leave the circulation. Thus, as neutrophils mature, their responsiveness to FMLP changes in a manner which may be crucial for efficient host defense. At 37 degrees C, this process is markedly potentiated by GM-CSF. We conclude that endogenous GM-CSF, released systemically or at sites of infection and inflammation, potentially plays an important role in host defense by accelerating functional maturation of responding polymorphonuclear leukocytes.  相似文献   

4.
Neutrophils are the predominant cells accumulated in the synovial fluid (SF) of rheumatoid arthritis (RA) patients. Accumulation of neutrophils may be regarded as a possible way by which neutrophils exert cytotoxic functions. The aim of the present study was to analyze the chemotactic response of neutrophils (PMNs) isolated from the peripheral blood or SF of patients with RA by performing the chemotaxis assay, in which N-formyl-methionyl-leucyl-phenylalanine (FMLP) was used as chemotactic agent. Our results showed that FMLP induced response of peripheral blood neutrophils from 12 patients with RA was similar with the response of 15 healthy controls. A decreased chemotactic response to FMLP was, however, observed in PMNs isolated from the SF of RA patients as comlipared with peripheral blood cells. Therefore, this defective chemotactic ability of neutrophil, was inversely correlated with the number of infiltrating cells in SF. These results indicate that chemotactic ability of neutrophils may be reduced after migration to the SF. Because PMNs chemotaxis in vivo has likely occurred in the presence of serum or SF, we tried to simulate the same conditions in vitro. Therefore, we analyzed the effect of serum or SF on the RA-PMNs chemotaxis. Heat-inactivated serum produced a marked reduction of chemotactic activity developed by PMNs isolated from patients with RA. Notably, a significant increase of chemotactic activity was observed when FMLP and serum stimuli were used together, as compared with the same stimuli used alone. The results suggested that complement activation might interfere with neutrophils chemotaxis. SF amplifies the chemotactic activity of PMNs isolated from peripheral blood of RA patients, but does not affect the chemotaxis developed by PMNs isolated from SF. The data might suggest that several components of SF (IL-8, leukotrien B4, thrombin, platelet-activating factor, etc.) could serve as a potent stimulus for recruitment of neutrophils from periphery into the RA joint. In conclusion, serum or SF components seem to contribute to chemotaxis of neutrophils and play a role in differential killing of PMNs and incidence of infection.  相似文献   

5.
The effects of glucose (5–25 mM) and insulin concentration (40–320 U/ml) on the cell shape of neutrophil granulocytes from healthy humans were studied. Both non-activated and N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe)-activated neutrophils in suspension were used as a model for initial chemotactic activation of neutrophil locomotion. D-glucose, but not the non-metabolizable analogue 3-O-methyl-D-glucose, dose-dependently reduced the fMet-Leu-Phe-induced (10–8M) neutrophil elongation. Insulin, either alone or in combination with 25 mM D-glucose, was without effect on the fMet-Leu-Phe-induced neutrophil elongation. Furthermore, the inhibitory effect of D-glucose was observed already after 1 min of exposure to D-glucose and fMet-Leu-Phe. D-glucose diminished the fraction of neutrophils with elongated locomotor shape by changing it into an irregular cell shape, suggesting that at least part of the D-glucose effect could be associated with mechanisms determining the typical locomotor shape. The present results suggest that D-glucose through its metabolism, but without the involvement of insulin, reduces chemotactically induced elongation to a locomotor neutrophil shape, and thus neutrophil motility, and that this effect of glucose appears prior to adhesion. This glucose-induced inhibition of the neutrophil chemotactic response may be involved in the neutrophil deficiency seen in diabetes mellitus.  相似文献   

6.
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The oral and intestinal host tissues both carry a heavy microbial burden. Although commensal bacteria contribute to healthy intestinal tissue structure and function, their contribution to oral health is poorly understood. A crucial component of periodontal health is the recruitment of neutrophils to periodontal tissue. To elucidate this process, gingival tissues of specific‐pathogen‐free and germ‐free wild‐type mice and CXCR2KO and MyD88KO mice were examined for quantitative analysis of neutrophils and CXCR2 chemoattractants (CXCL1, CXCL2). We show that the recruitment ofneutrophils to the gingival tissue does not require commensal bacterial colonization but is entirely dependent on CXCR2 expression. Strikingly, however, commensal bacteria selectively upregulate the expression of CXCL2, but not CXCL1, in a MyD88‐dependent way that correlates with increased neutrophil recruitment as compared with germ‐free conditions. This is the first evidence that the selective use of chemokine receptor ligands contributes to neutrophil homing to healthy periodontal tissue.  相似文献   

8.
Human neutrophils aggregate after exposure to the bivalent cation ionophore A23187, the synthetic chemotactic tripeptide formyl-methionyl-leucyl-phenylalanine, and the chemotactic fragment of human C5. Cells preincubated with cytochalasin B (CB) (0.5 μg/ml) showed an enhanced aggregation response to each of these three agents. By itself, CB did not aggregate the cells. The enhancing effect of CB on the aggregation response developed immediately after exposure to the drug and was readily reversible. Since A23187 and chemotactic factors stimulate the transmembrane flow of Ca2+, Na+, and K+ in the neutrophil, and since CB enhances this effect, CB may influence neutrophil aggregation through its influence on transmembrane cationic movements. It was also found that the enhancing effect of CB on neutrophil aggregation was abrogated by high (i.e., greater than 1.7 μg/ml) concentrations of the drug or by adding it to the neutrophils after the cells were exposed to a chemotactic factor.  相似文献   

9.
Aggregatibacter actinomycetemcomitans is considered to be associated with periodontitis. Leukotoxin (LtxA), which destroys leukocytes in humans, is one of this bacterium's major virulence factors. Amounts of neutrophil elastase (NE), which is normally localized in the cytoplasm of neutrophils, are reportedly increased in the saliva of patients with periodontitis. However, the mechanism by which NE is released from human neutrophils and the role of NE in periodontitis is unclear. In the present study, it was hypothesized that LtxA induces NE release from human neutrophils, which subsequently causes the breakdown of periodontal tissues. LtxA‐treatment did not induce significant cytotoxicity against human gingival epithelial cells (HGECs) or human gingival fibroblasts (HGFs). However, it did induce significant cytotoxicity against human neutrophils, leading to NE release. Furthermore, NE and the supernatant from LtxA‐treated human neutrophils induced detachment and death of HGECs and HGFs, these effects being inhibited by administration of an NE inhibitor, sivelestat. The present results suggest that LtxA mediates human neutrophil lysis and induces the subsequent release of NE, which eventually results in detachment and death of HGECs and HGFs. Thus, LtxA‐induced release of NE could cause breakdown of periodontal tissue and thereby exacerbate periodontitis.  相似文献   

10.

Background

Periodontal disease in diabetic patients presents higher severity and prevalence; and increased severity of ligature-induced periodontal disease has been verified in diabetic rats. However, in absence of aggressive stimuli such as ligatures, the influence of diabetes on rat periodontal tissues is incompletely explored. The aim of this study was to evaluate the establishment and progression of periodontal diseases in rats only with diabetes induction.

Methodology/Principal Findings

Diabetes was induced in Wistar rats (n = 25) by intravenous administration of alloxan (42 mg/kg) and were analyzed at 1, 3, 6, 9 and 12 months after diabetes induction. The hemimandibles were removed and submitted to radiographical and histopathological procedures. A significant reduction was observed in height of bone crest in diabetic animals at 3, 6, 9 and 12 months, which was associated with increased numbers of osteoclasts and inflammatory cells. The histopathological analyses of diabetic rats also showed a reduction in density of collagen fibers, fibroblasts and blood vessels. Severe caries were also detected in the diabetic group.

Conclusions/Significance

The results demonstrate that diabetes induction triggers, or even co-induces the onset of alterations which are typical of periodontal diseases even in the absence of aggressive factors such as ligatures. Therefore, diabetes induction renders a previously resistant host into a susceptible phenotype, and hence diabetes can be considered a very important risk factor to the development of periodontal disease.  相似文献   

11.
Since conflicting results have been reported on non-specific immune response in type 1 diabetes, this study evaluates polymorphonuclear neutrophil (PMN) functions in the infection free Long Evan diabetic rats (type 1) by using tests that include: polarization assay, phagocytosis of baker\'s yeasts (Saccharomyces cerevisiae) and nitroblue tetrazolium (NBT) dye reduction. Polarization assay showed that neutrophils from diabetic rats were significantly activated at the basal level compared to those from the controls (p < 0.001). After PMN activation with N-formylmethionyl-leucyl-phenylalanine (FMLP), control neutrophils were found to be more polarized than those of the diabetic neutrophils and the highest proportions of polarization were found to be 67 % and 57 % at 10(-7) M FMLP, respectively. In the resting state, neutrophils from the diabetic rats reduced significantly more NBT dye than that of the controls (p < 0.001). The percentages of phagocytosis of opsonized yeast cells by the neutrophils from control and diabetic rats were 87 % and 61 %, respectively and the difference was statistically significant (p < 0.001). Evaluation of the phagocytic efficiency of PMNs revealed that control neutrophils could phagocytose 381 +/- 17 whereas those from the diabetic rats phagocytosed 282 +/- 16 yeast cells, and the efficiency of phagocytosis varied significantly (p < 0.001). Further, both the percentages of phagocytosis and the efficiency of phagocytosis by the diabetic neutrophils were inversely related with the levels of their corresponding plasma glucose (p = 0.02; r = -0.498 and p < 0.05; r = -0.43, respectively), which indicated that increased plasma glucose reduced the phagocytic ability of neutrophils. Such relationship was not observed with the control neutrophils. These data clearly indicate that PMN functions are altered in the streptozotocin (STZ)-induced diabetic rats, and hyperglycemia may be the cause for the impairment of their functions leading to many infectious episodes.  相似文献   

12.
Summary Effects of Ca2+ ionophores, A23187 and lasalocid, on superoxide anion generation by chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine methyl ester, in rabbit peritoneal exudate neutrophils were studied. The ionophores by themselves did not activate superoxide anion generation in these neutrophils. When preincubated with the cells for 2 min, both the ionophores inhibited superoxide generation induced by chemotactic peptide. The inhibition was present even in the absence of extracellular Ca2+ and the inhibition was better then. Lasalocid produces a dose-dependent chlortetracycline fluorescence decrease response in neutrophils loaded with chlortetracycline. This response is independent of extracellular Ca2+ concentration and is related to release of Ca2+ from intracellular storage sites. The dose-range at which lasalocid gives this response is same as the dose-range at which it causes inhibition of superoxide response. It may be concluded that the inhibition of superoxide generation by these ionophores is correlated to intracellular Ca2+ modulation.Abbreviations FMLP Formyl-Methionyl-Leucyl-Phenylalanine methyl ester  相似文献   

13.
After male rats of the Sprague Dawley strain, 5 weeks old, were fed a 20% casein diet with or without 0.5% nicotinamide for 13 days, 180 mg/kg body weight of alloxan was injected in- traperitoneally into the rats. The rats were kept for 18 days with the same diet. The level of blood glucose was increased 6-fold in the group on a 20% casein diet by the injection of alloxan, while there was only a 2-foid increase in the group on a nicotinamide-containing diet and the decreased body weight was also lower in the group on the nicotinamide diet than the group on the casein diet. The body weight was indirectly related to the concentration of blood glucose. A marked increase was observed in the activities of tryptophan oxygenase, aminocarboxymuconate-semialdehyde decarboxylase, and nicotinamide methyltransferase upon the injection of alloxan with both diets; on the other hand, the activities of kynureninase and NAD+ synthetase were decreased by the injection of alloxan. The activity of kynurenine aminotransferase increased in the group on the 20% casein diet by the injection of alloxan, while in the group on the nicotinamide-containing diet its activity was not increased by the injection. These changes in the above enzyme activities mean that the conversion ratio from tryptophan to niacin is lower in the alloxan diabetic rat than normal rat. It was found that the activities of tryptophan oxygenase, aminocarboxymuconate-semialdehyde decarboxylase, and nicotinamide methyltransferase were directly related to the concentration of blood glucose, and that the activities of kynureninase and NAD+ synthetase were inversely related. There was no difference in the activities of 3-hydroxyanthranilic acid oxygenase and nicotinamide mononucleotide adenylyltransferase upon the injection of alloxan with both diets.  相似文献   

14.
Shibata F  Konishi K  Nakagawa H 《Cytokine》2000,12(9):1368-1373
Rat cytokine-induced neutrophil chemoattractant-1 (CINC-1), CINC-2 and CINC-3/macrophage inflammatory protein-2 (MIP-2), members of the CXC chemokine family, are potent chemotactic factors for neutrophils. In order to identify the receptor for CINCs, rat CXC chemokine receptor 2 (CXCR2) was cloned and expressed in HEK293 cells. CINC-1, CINC-2 and CINC-3 induced calcium mobilizations dose-dependently in CXCR2-transfected cells, whereas formyl-methionyl-leucyl-phenylalanine (FMLP) did not. CINC-3 induced enhancement of cytoplasmic calcium concentration more potently than CINC-1 and CINC-2, and desensitized calcium transients induced by CINC-1 and CINC-2, which were essentially identical to those observed in rat neutrophils. In addition, anti-CXCR2 serum inhibited neutrophil chemotactic activities of three types of CINCs almost completely. The mutant CINC-3, whose amino-terminal amino acid sequence (SELR) was replaced to AAR, lost chemotactic activity of its own but inhibited that of CINC-1 and CINC-2 potently, and that of CINC-3 weakly. The results indicate that rat CXCR2 on neutrophils is the unique receptor for all three types of CINCs, and CINC-1/-2 and CINC-3 exert different biological activities through the common receptor.  相似文献   

15.
When polymorphonuclear leukocytes (neutrophils) and soluble or particulate matter interact, the cells produce superoxide anions (O2-) and hydrogen peroxide (H2O2). The chemotactic peptide formylmethionyl-leucyl-phenylalanine (FMLP) induced a very weak response in normal neutrophils. The cellular response was changed, however, as a result of in vitro aging of the cells, i.e. the magnitude of the response was increased following storage of the cells at 22 degrees C for up to 120 min, in the absence of any stimulus, and before the addition of the peptide. When phorbol myristate acetate was used as a stimulus, there was a pronounced production of O2- and H2O2, but no change in magnitude as a result of in vitro aging. When neutrophil cytoplasts (granule-free vesicles of cytoplasm enclosed by plasmalemma) were exposed to the peptide FMLP of PMA, the vesicles produced both O2- and H2O2. There was, however, no increase in oxidative metabolite production in cytoplasts as a result of in vitro aging when either FMLP or PMA was used as a stimulus. The results thus indicate that mere incubation at room temperature primed the cells to increase their production of oxidative metabolites as a result of spontaneous exposure of hidden receptors. The fact that no such effects were observed with cytoplasts indicates that spontaneous receptor recruitment is a granule-dependent process.  相似文献   

16.
The role of the neutrophil in inflammatory diseases of the lung   总被引:7,自引:0,他引:7  
L A Boxer  R Axtell  S Suchard 《Blood cells》1990,16(1):25-40; discussion 41-2
Under certain circumstances, the neutrophil has been implicated in causing disease by damaging normal host tissue. This may occur in the adult respiratory distress syndrome (ARDS). The neutrophil has been implicated since a) substances that activate neutrophils are produced in association with the predisposing risks that lead to ARDS; b) activated neutrophils migrate into the alveolar spaces and their toxic products can be found in lung lavage fluid and in the breath of patients with ARDS; and c) the magnitude of the physiologic alterations correlate with the number of neutrophils in the alveolar space. Additionally, the neutrophils may be primed by substances which are released by activated platelets within the confines of the lung. Both platelet adenine nucleotides and the platelet-derived extracellular matrix protein (ECM), thrombospondin, can prime the neutrophil for subsequent O2- generation following activation of the cells with the chemotactic peptide, F-met-leu-phe (FMLP). Furthermore, neutrophils can be primed or O2- generation by the basement membrane ECM protein, laminin. Since neutrophils express receptors for both laminin and thrombospondin, these constituents may serve to modulate neutrophil behavior for subsequent oxidative metabolism and contribute to exacerbating pulmonary disease.  相似文献   

17.
LPS priming of the neutrophil results in enhanced release of superoxide upon subsequent stimulation, but the mechanism of this effect remains obscure. The recent recognition that neutrophils synthesize and retain platelet-activating factor within the cell led us to hypothesize that enhanced synthesis of platelet-activating factor in the LPS-primed cell might account for the observed effects of lipopolysaccharide. Using human neutrophils isolated on plasma-Percoll gradients, we found that incubation with 100 ng/ml LPS for 60 min resulted in a small but significant increase in intracellular platelet-activating factor assessed after lipid extraction, TLC, and bioassay. The further stimulation of primed neutrophils with FMLP resulted in a marked increase in neutrophil platelet-activating factor compared with non-LPS-treated controls. The priming effect of LPS was time dependent (30 to 60 min), dose dependent, and inhibited at 0 degree C and did not require protein synthesis. Platelet-activating factor so generated was not released but rather retained within the neutrophil, and the molecular species of platelet-activating factor produced was predominantly 1-O-hexadecyl-2-acetyl-sn-3-phosphorylcholine. Platelet-activating factor production in LPS-treated neutrophils was also enhanced by PMA, suggesting that receptor-mediated events could not account exclusively for the enhancement. Considering the ability of nanomolar concentrations of exogenously added platelet-activating factor to prime the neutrophil for enhanced release of superoxide, the rapid intracellular accumulation of platelet-activating factor that accompanies stimulation of an LPS-primed cell by FMLP may modulate the secretory events that accompany such stimulation.  相似文献   

18.
A23187, a calcium ionophore, stimulated a time-dependent generation of 5(S), 12(R)-dihydroxy-6,8,10,14-eicosatetraenoic acid (leukotriene B4), production of superoxide anion (O2?) and release of granule-associated β-glucuronidase and lysozyme by human neutrophils. Leukotriene B4 also elicited the selective release of granule enzymes from cytochalasin B-treated neutrophils. U-60,257, a recently identified inhibitor of leukotriene (LT) C4 and D4 synthesis, caused a dose-related (1–10 μM) suppression of LTB4 production by A23187-activated neutrophils. Degranulation and O2? generation by neutrophils exposed to A23187 and the chemotactic oligopeptide, N-formyl-methionyl-leucyl-phenylalanine (FMLP), were also inhibited with U-60,257.  相似文献   

19.
LTB4 (5s, 12R dihdroxy-6, 14-CIS-8, 10-trans-eicosatetraenoic acid) formed in activated neutrophils by lipoxygenation of arachidonic acid is an extremely potent chemotaxin. We examined structural requirements for chemotactic and aggregatory activity of the ligand using synthetic LTB4 and several of its isomers. Additionally we examined the potency of two analogs, nor- and homo- LTB4. Dose response curves for neutrophil chemotaxis to these compounds were obtained using a modified Boyden chamber. The mean distance cells moved into the filter was determined after 30 minutes. Peak chemotactic activity of LTB4 was at 10−7M. At higher concentrations, chemotactic activity was decreased. The shape of the dose response curve was similar to that of FMLP except that maximum chemotaxis to LTB4 was consistently greater than chemotaxis to FMLP. A mixture of the two epimers at C-5 and c-12 shifted the response curve to the right but did not lower maximum activity. Increasing or decreasing the chain by one carbon between the first hydroxyl group and the carboxyl group also shifted the response curve to the right without lowering maximal activity. Changing the 6 double bond from cis to trans has a greater effect. Activity was only detectable at high concentrations and maximum activity achieved was less than 50% that of LTB4. Thus the chain length between the carboxyl and C-5 hydroxyl groups, the c-5 and c-12 absolute stereochemistry and the stereochemistry of the delta6 double bond are all important structural features for chemotactic activity with delta6 stereochemistry apparently having the greatest contribution. The relative potencies of these compounds in inducing aggregation were comparable to their chemotactic potencies. The data suggested that they acted at the same receptor since even the less active isomers were able to desensitive the neutrophils to LTB4.  相似文献   

20.
Leukocyte recruitment to inflammatory foci is generally associated with cellular activation. Recent evidence suggests that chemotactic agents can be divided into two classes, “classical chemoattractants” such as FMLP, C5a, and IL-8, which stimulate directed migration and activation events and “pure chemoattractants” such as TGF-β1 which influence actin polymerisation and movement but not oxidative burst and associated granular enzyme release. The studies reported here demonstrate that the murine S100 chemoattractant protein, CP-10, belongs to the “non-classical” group. Despite its potent chemotactic activity for neutrophils and monocytes/macrophages, CP-10 failed to increase [Ca2+]i in human or mouse PMN, although chemotaxis was inhibited by pertussis toxin, confirming the suggestion of a novel Ca2+-independent G-protein-coupled pathway for post-receptor signal transduction triggered by “pure chemoattractants.” The co-ordinated up-regulation of Mac-1 and down-regulation of L-selectin induced by FMLP on human PMN in vitro was not observed with CP-10. Quantitative changes in immediate (30 s) actin polymerisation occurred with FMLP and CP-10-treated human PMN. The relative F-actin increases induced in WEHI 265 monocytoid cells by FMLP and CP-10 was optimal at 60 s and declined over 120 s. F-actin changes reflected the concentration and potencies of the agonists required to provoke chemotaxis. After 90 min, CP-10 profoundly altered cell shape and increased both cell size and F-actin within pseudopodia. These changes are typical of those mediating leukocyte deformability, and CP-10 may mediate leukocyte retention within microcapillaries and thereby contribute to the initiation of inflammation in vascular beds. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号