首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterovirus 2B viroporin has been involved in membrane permeabilization processes occurring late during cell infection. Even though 2B lacks an obvious signal sequence for translocation, the presence of a Lys-based amphipathic domain suggests that this product bears the intrinsic capacity for partitioning into negatively charged cytofacial membrane surfaces. Pore formation by poliovirus 2B attached to a maltose-binding protein (MBP) has been indeed demonstrated in pure lipid vesicles, a fact supporting spontaneous insertion into and direct permeabilization of membranes. Here, biochemical evidence is presented indicating that both processes are modulated by phosphatidylinositol and phosphatidylserine, the main anionic phospholipids existing in membranes of target organelles. Insertion into lipid monolayers and partitioning into phospholipid bilayers were sustained by both phospholipids. However, MBP-2B inserted into phosphatidylserine bilayers did not promote membrane permeabilization and addition of this lipid inhibited the leakage observed in phosphatidylinositol vesicles. Mathematical modelling of pore formation in membranes containing increasing phosphatidylserine percentages was consistent with its inhibitory effect arising from a higher reversibility of MBP-2B surface aggregation. These results support that 2B insertion and pore-opening are mechanistically distinguishable events modulated by the target membrane anionic phospholipids.  相似文献   

2.
Poliovirus infection results in the disintegration of intracellular membrane structures and formation of specific vesicles that serve as sites for replication of viral RNA. The mechanism of membrane rearrangement has not been clearly defined. Replication of poliovirus is sensitive to brefeldin A (BFA), a fungal metabolite known to prevent normal function of the ADP-ribosylation factor (ARF) family of small GTPases. During normal membrane trafficking in uninfected cells, ARFs are involved in vesicle formation from different intracellular sites through interaction with numerous regulatory and coat proteins as well as in regulation of phospholipase D activity and cytoskeleton modifications. We demonstrate here that ARFs 3 and 5, but not ARF6, are translocated to membranes in HeLa cell extracts that are engaged in translation of poliovirus RNA. The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA. ARF translocation can be induced independently by synthesis of poliovirus 3A or 3CD proteins, and we describe mutations that abolished this activity. In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs. Taken together, the data suggest an involvement of ARF in poliovirus RNA replication.  相似文献   

3.
Fusion between synaptic vesicles and plasma membranes isolated from rat brain synaptosomes is regarded as a model of neurosecretion. The main aim of current study is to investigate whether the synaptosomal soluble proteins are essential members of Ca(2+)-triggered fusion examined in this system. Fusion experiments were performed using fluorescent dye octadecylrhodamine B, which was incorporated into synaptic vesicle membranes at self-quenching concentration. The fusion of synaptic vesicles, containing marker octadecylrhodamine B, with plasma membranes was detected by dequenching of the probe fluorescence. Membrane fusion was not found in Ca(2+)-supplemented buffer solution, but was initiated by the addition of the synaptosomal soluble proteins. When soluble proteins were treated with trypsin, they lost completely the fusion activity. These experiments confirmed that soluble proteins of synaptosomes are sensitive to Ca(2+) signal and essential for membrane fusion. The experiments, in which members of fusion process were treated with monoclonal antibodies raised against synaptotagmin and synaptobrevin, have shown that antibodies only partially inhibited fusion of synaptic vesicles and plasma membranes in vitro. These results indicate that other additional component(s), which may or may not be related to synaptobrevin or synaptotagmin, mediate this process. It can be assumed that fusion of synaptic vesicles with plasma membranes in vitro depends upon the complex interaction of a large number of protein factors.  相似文献   

4.
Purified G-protein from vesicular stomatitis virus was reconstituted into egg phosphatidylcholine vesicles by detergent dialysis of octyl glucoside. A homogeneous population of reconstituted vesicles could be obtained, provided the protein to lipid ratio was high (about 0.3 mol % protein) and the detergent removal was slow. The reconstituted vesicles were assayed for fusion activity using electron microscopy and fluorescence energy transfer. The fusion activity mediated by the viral envelope protein was dependent upon pH, temperature, and target membrane lipid composition. Incubation of reconstituted vesicles at low pH with small unilamellar vesicles containing negatively charged lipids resulted in the appearance of large cochleate structures, as shown by electron microscopy using negative stain. This process did not cause leakage of a vesicle-encapsulated aqueous marker. The rate of fusion was pH-dependent with a pK of about 4 and the apparent energy of activation for the fusion was 16 +/- 1 kcal/mol. G-protein-mediated fusion showed a large preference for target membranes which contain phosphatidylserine or phosphatidic acid. Inclusion of 36% cholesterol in any of the lipid compositions had no effect on the rate of fusion. These reconstituted vesicles provide a system to study the mechanism of pH-dependent fusion induced by a viral spike protein.  相似文献   

5.
The final step in exocytosis is the fusion of synaptic vesicle membrane with the synaptosomal plasma membrane, leading to the release of the neurotransmitters. We have reconstituted this fusion event in vitro, using isolated synaptic vesicles and synaptosomal plasma membranes from the bovine brain. The membranes of synaptic vesicles were loaded with the lipid--soluble fluorescent probe octadecylrhodamine B at the concentration that resulted in self-quenching of its fluorescence. The vesicles were then incubated with synaptosomal plasma membranes at 37 degrees C and fusion was measured through the dilution-dependent de-quenching of the fluorescence of the probe. Synaptic vesicles by themselves did not fused with plasma membrane, only addition of ATP induced the fusion. W-7 and trifluoroperasine, the drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the ATP-induced fusion synaptic vesicles and synaptosomal plasma membranes. Our results indicate that the membrane fusion in the nerve terminals during exocytosis may be under direct control of calmodulin-dependent protein phosphorylation.  相似文献   

6.
Zhang C  Li A  Gao S  Zhang X  Xiao H 《PloS one》2011,6(6):e21233
Efficient membrane fusion has been successfully mimicked in vitro using artificial membranes and a number of cellular proteins that are currently known to participate in membrane fusion. However, these proteins are not sufficient to promote efficient fusion between biological membranes, indicating that critical fusogenic factors remain unidentified. We have recently identified a TIP30 protein complex containing TIP30, acyl-CoA synthetase long-chain family member 4 (ACSL4) and Endophilin B1 (Endo B1) that promotes the fusion of endocytic vesicles with Rab5a vesicles, which transport endosomal acidification enzymes vacuolar (H+)-ATPases (V-ATPases) to the early endosomes in vivo. Here, we demonstrate that the TIP30 protein complex facilitates the fusion of endocytic vesicles with Rab5a vesicles in vitro. Fusion of the two vesicles also depends on arachidonic acid, coenzyme A and the synthesis of arachidonyl-CoA by ACSL4. Moreover, the TIP30 complex is able to transfer arachidonyl groups onto phosphatidic acid (PA), producing a new lipid species that is capable of inducing close contact between membranes. Together, our data suggest that the TIP30 complex facilitates biological membrane fusion through modification of PA on membranes.  相似文献   

7.
K Klappe  J Wilschut  S Nir  D Hoekstra 《Biochemistry》1986,25(25):8252-8260
A kinetic and quantitative characterization of the fusion process between Sendai virus and phospholipid vesicles is presented. Membrane fusion was monitored in a direct and continuous manner by employing an assay which relies on the relief of fluorescence self-quenching of the probe octadecylrhodamine B chloride which was located in the viral membrane. Viral fusion activity was strongly dependent on the vesicle lipid composition and was most efficient with vesicles solely consisting of acidic phospholipids, particularly cardiolipin (CL). This result implies that the fusion of viruses with liposomes does not display an absolute requirement for specific membrane receptors. Incorporation of phosphatidylcholine (PC), rather than phosphatidylethanolamine (PE), into CL bilayers strongly inhibited fusion, suggesting that repulsive hydration forces interfere with the close approach of viral and target membrane. Virus-liposome fusion products were capable of fusing with liposomes, but not with virus. In contrast to fusion with erythrocyte membranes, fusion between virus and acidic phospholipid vesicles was triggered immediately, did not strictly depend on viral protein conformation, and did not display a pH optimum around pH 7.5. On the other hand, with vesicles consisting of PC, PE, cholesterol, and the ganglioside GD1a, the virus resembled more closely the fusogenic properties that were seen with erythrocyte target membranes. Upon decreasing the pH below 5.0, the viral fusion activity increased dramatically. With acidic phospholipid vesicles, maximal activity was observed around pH 4.0, while with GD1a-containing zwitterionic vesicles the fusion activity continued to increase with decreasing pH down to values as low as 3.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calcium-induced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy: and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

9.
The basic problem of nuclear pore assembly is the big perinuclear space that must be overcome for nuclear membrane fusion and pore creation. Our investigations of ternary complexes: DNA–PC liposomes–Mg2+, and modern conceptions of nuclear pore structure allowed us to introduce a new mechanism of nuclear pore assembly. DNA-induced fusion of liposomes (membrane vesicles) with a single-lipid bilayer or two closely located nuclear membranes is considered. After such fusion on the lipid bilayer surface, traces of a complex of ssDNA with lipids were revealed. At fusion of two identical small liposomes (membrane vesicles) <100 nm in diameter, a “big” liposome (vesicle) with ssDNA on the vesicle equator is formed. ssDNA occurrence on liposome surface gives a biphasic character to the fusion kinetics. The “big” membrane vesicle surrounded by ssDNA is the base of nuclear pore assembly. Its contact with the nuclear envelope leads to fast fusion of half of the vesicles with one nuclear membrane; then ensues a fusion delay when ssDNA reaches the membrane. The next step is to turn inside out the second vesicle half and its fusion to other nuclear membrane. A hole is formed between the two membranes, and nucleoporins begin pore complex assembly around the ssDNA. The surface tension of vesicles and nuclear membranes along with the kinetic energy of a liquid inside a vesicle play the main roles in this process. Special cases of nuclear pore formation are considered: pore formation on both nuclear envelope sides, the difference of pores formed in various cell-cycle phases and linear nuclear pore clusters.  相似文献   

10.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calciuminduced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy; and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

11.
Zhen Zhang 《Biophysical journal》2010,98(11):2524-2534
A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca2+-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca2+-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca2+-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape.  相似文献   

12.
Dynamics of fusion pores connecting membranes of different tensions   总被引:1,自引:0,他引:1       下载免费PDF全文
The energetics underlying the expansion of fusion pores connecting biological or lipid bilayer membranes is elucidated. The energetics necessary to deform membranes as the pore enlarges, in some combination with the action of the fusion proteins, must determine pore growth. The dynamics of pore growth is considered for the case of two homogeneous fusing membranes under different tensions. It is rigorously shown that pore growth can be quantitatively described by treating the pore as a quasiparticle that moves in a medium with a viscosity determined by that of the membranes. Motion is subject to tension, bending, and viscous forces. Pore dynamics and lipid flow through the pore were calculated using Lagrange's equations, with dissipation caused by intra- and intermonolayer friction. These calculations show that the energy barrier that restrains pore enlargement depends only on the sum of the tensions; a difference in tension between the fusing membranes is irrelevant. In contrast, lipid flux through the fusion pore depends on the tension difference but is independent of the sum. Thus pore growth is not affected by tension-driven lipid flux from one membrane to the other. The calculations of the present study explain how increases in tension through osmotic swelling of vesicles cause enlargement of pores between the vesicles and planar bilayer membranes. In a similar fashion, swelling of secretory granules after fusion in biological systems could promote pore enlargement during exocytosis. The calculations also show that pore expansion can be caused by pore lengthening; lengthening may be facilitated by fusion proteins.  相似文献   

13.
Disk membranes and plasma membrane vesicles were prepared from bovine retinal rod outer segments (ROS). The plasma membrane vesicles were labeled with the fluorescent probe octadecylrhodamine B chloride (R18) to a level at which the R18 fluorescence was self-quenched. At pH 7.4 and 37 degrees C and in the presence of micromolar calcium, an increase in R18 fluorescence with time was observed when R18-labeled plasma membrane vesicles were introduced to a suspension of disks. This result was interpreted as fusion between the disk membranes and the plasma membranes, the fluorescence dequenching resulting from dilution of the R18 into the unlabeled membranes as a result of lipid mixing during membrane fusion. While the disk membranes exposed exclusively their cytoplasmic surface, plasma membrane vesicles were found with both possible orientations. These vesicles were fractionated into subpopulations with homogeneous orientation. Plasma membrane vesicles that were oriented with the cytoplasmic surface exposed were able to fuse with the disk membranes in a Ca(2+)-dependent manner. Fusion was not detected between disk membranes and plasma membrane vesicles oriented such that the cytoplasmic surface was on the interior of the vesicles. ROS plasma membrane-disk membrane fusion was stimulated by calcium, inhibited by EGTA, and unaffected by magnesium. Rod photoreceptor cells of vertebrate retinas undergo diurnal shedding of disk membranes containing the photopigment rhodopsin. Membrane fusion is required for the shedding process.  相似文献   

14.
Fusion of synaptic vesicles with various target membranes was investigated on the cell-free model system that reflects the final step of exocytosis. Plasma membranes, synaptic vesicles and liposomes were used as acceptor membranes. The process of membrane fusion was triggered by Ca2+. We have demonstrated that synaptic vesicles are prone to fuse with liposomes in buffer solution. This process was strongly dependent on ionic force of medium and phospholipid composition of liposomes. Cytosolic proteins of synaptosomes inhibited the fusion of synaptic vesicles with liposomes, while these were required for the fusion of synaptic vesicles with native membrane structures. Trypsinolysis of acceptor membranes markedly inhibited the fusion response. It means protein components of target membrane are necessary for realization of the final step of exocytosis.  相似文献   

15.
Lung surfactant secretion in alveolar type II cells occurs following lamellar body fusion with plasma membrane. Annexin A7 is a Ca2+-dependent membrane-binding protein that is postulated to promote membrane fusion during exocytosis in some cell types including type II cells. Since annexin A7 preferably binds to lamellar body membranes, we postulated that specific lipids could modify the mode of annexin A7 interaction with membranes and its membrane fusion activity. Initial studies with phospholipid vesicles containing phosphatidylserine and other lipids showed that certain lipids affected protein interaction with vesicle membranes as determined by change in protein tryptophan fluorescence, protein interaction with trans membranes, and by protein sensitivity to limited proteolysis. The presence of signaling lipids, diacylglycerol or phosphatidylinositol-4,5-bisphosphate, as minor components also modified the lipid vesicle effect on these characteristics and membrane fusion activity of annexin A7. In vitro incubation of lamellar bodies with diacylglycerol or phosphatidylinositol-4,5-bisphosphate caused their enrichment with either lipid, and increased the annexin A7 and Ca2+-mediated fusion of lamellar bodies. Treatment of isolated lung lamellar bodies with phosphatidylinositol- or phosphatidylcholine phospholipase C to increase diacylglycerol, without or with preincubation with phosphatidylinositol-4,5-bisphosphate, augmented the fusion activity of annexin A7. Thus, increased diacylglycerol in lamellar bodies following cell stimulation with secretagogues may enhance membrane fusion activity of annexin A7.  相似文献   

16.
At low surface concentrations that permit formation of impermeable membranes, neuronal soluble N-ethyl maleimide sensitive factor attachment protein receptor (SNARE) proteins form a stable, parallel, trans complex when vesicles are brought into contact by a low concentration of poly(ethylene glycol) (PEG). Surprisingly, formation of a stable SNARE complex does not trigger fusion under these conditions. However, neuronal SNAREs do promote fusion at low protein/lipid ratios when triggered by higher concentrations of PEG. Promotion of PEG-triggered fusion required phosphatidylserine and depended only on the surface concentration of SNAREs and not on the formation of a trans SNARE complex. These results were obtained at protein surface concentrations reported for synaptobrevin in synaptic vesicles and with an optimally fusogenic lipid composition. At a much higher protein/lipid ratio, vesicles joined by SNARE complex slowly mixed lipids at 37 degrees C in the absence of PEG, in agreement with earlier reports. However, vesicles containing syntaxin at a high protein/lipid ratio (>or=1:250) lost membrane integrity. We conclude that the neuronal SNARE complex promotes fusion by joining membranes and that the individual proteins syntaxin and synaptobrevin disrupt membranes so as to favor formation of a stalk complex and to promote conversion of the stalk to a fusion pore. These effects are similar to the effects of viral fusion peptides and transmembrane domains, but they are not sufficient by themselves to produce fusion in our in vitro system at surface concentrations documented to occur in synaptic vesicles. Thus, it is likely that proteins or factors other than the SNARE complex must trigger fusion in vivo.  相似文献   

17.
While biological membrane fusion is classically defined as the leak-free merger of membranes and contents, leakage is a finding in both experimental and theoretical studies. The fusion stages, if any, that allow membrane permeation are uncharted. In this study we monitored membrane ionic permeability at early stages of fusion mediated by the fusogenic protein influenza hemagglutinin (HA). HAb2 cells, expressing HA on their plasma membrane, fused with human red blood cells, cultured liver cells PLC/PRF/5, or planar phospholipid bilayer membranes. With a probability that depended upon the target membrane, an increase of the electrical conductance of the fusing membranes (leakage) by up to several nS was generally detected. This leakage was recorded at the initial stages of fusion, when fusion pores formed. This leakage usually accompanied the "flickering" stage of the early fusion pore development. As the pore widened, the leakage reduced; concomitantly, the lipid exchange between the fusing membranes accelerated. We conclude that during fusion pore formation, HA locally and temporarily increases the permeability of fusing membranes. Subsequent rearrangement in the fusion complex leads to the resealing of the leaky membranes and enlargement of the pore.  相似文献   

18.
All positive-strand RNA viruses of eukaryotes studied assemble RNA replication complexes on the surfaces of cytoplasmic membranes. Infection of mammalian cells with poliovirus and other picornaviruses results in the accumulation of dramatically rearranged and vesiculated membranes. Poliovirus-induced membranes did not cofractionate with endoplasmic reticulum (ER), lysosomes, mitochondria, or the majority of Golgi-derived or endosomal membranes in buoyant density gradients, although changes in ionic strength affected ER and virus-induced vesicles, but not other cellular organelles, similarly. When expressed in isolation, two viral proteins of the poliovirus RNA replication complex, 3A and 2C, cofractionated with ER membranes. However, in cells that expressed 2BC, a proteolytic precursor of the 2B and 2C proteins, membranes identical in buoyant density to those observed during poliovirus infection were formed. When coexpressed with 2BC, viral protein 3A was quantitatively incorporated into these fractions, and the membranes formed were ultrastructurally similar to those in poliovirus-infected cells. These data argue that poliovirus-induced vesicles derive from the ER by the action of viral proteins 2BC and 3A by a mechanism that excludes resident host proteins. The double-membraned morphology, cytosolic content, and apparent ER origin of poliovirus-induced membranes are all consistent with an autophagic origin for these membranes.  相似文献   

19.
SNARE molecules are the core constituents of the protein machinery that facilitate fusion of synaptic vesicles with the presynaptic plasma membrane, resulting in the release of neurotransmitter. On a molecular level, SNARE complexes seem to play a quite versatile and involved role during all stages of fusion. In addition to merely triggering fusion by forcing the opposing membranes into close proximity, SNARE complexes are now seen to also overcome subsequent fusion barriers and to actively guide the fusion reaction up to the expansion of the fusion pore. Here, we review recent advances in the understanding of SNARE-mediated membrane fusion by molecular simulations.  相似文献   

20.
The peptide sequence B18, derived from the membrane-associated sea urchin sperm protein bindin, triggers fusion between lipid vesicles. It exhibits many similarities to viral fusion peptides and may have a corresponding function in fertilization. The lipid-peptide and peptide-peptide interactions of B18 are investigated here at the ultrastructural level by electron microscopy and x-ray diffraction. The histidine-rich peptide is shown to self-associate into two distinctly different supramolecular structures, depending on the presence of Zn(2+), which controls its fusogenic activity. In aqueous buffer the peptide per se assembles into beta-sheet amyloid fibrils, whereas in the presence of Zn(2+) it forms smooth globular clusters. When B18 per se is added to uncharged large unilamellar vesicles, they become visibly disrupted by the fibrils, but no genuine fusion is observed. Only in the presence of Zn(2+) does the peptide induce extensive fusion of vesicles, which is evident from their dramatic increase in size. Besides these morphological changes, we observed distinct fibrillar and particulate structures in the bilayer, which are attributed to B18 in either of its two self-assembled forms. We conclude that membrane fusion involves an alpha-helical peptide conformation, which can oligomerize further in the membrane. The role of Zn(2+) is to promote this local helical structure in B18 and to prevent its inactivation as beta-sheet fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号