共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity 总被引:4,自引:0,他引:4
Fukuen S Iwaki M Yasui A Makishima M Matsuda M Shimomura I 《The Journal of biological chemistry》2005,280(25):23653-23659
8.
9.
10.
Yan ZC Liu DY Zhang LL Shen CY Ma QL Cao TB Wang LJ Nie H Zidek W Tepel M Zhu ZM 《Biochemical and biophysical research communications》2007,354(2):427-433
Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-delta (PPAR-delta)-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p<0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p<0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-delta. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-delta. Furthermore, selective silencing of PPAR-delta by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00+/-0.06 (n=3) to 1.91+/-0.06 (n=3; p<0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-delta significantly reduced CB1 expression to 0.39+/-0.03 (n=3; p<0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-delta. Both CB1 and PPAR-delta are intimately involved in therapeutic interventions against a most important cardiovascular risk factor. 相似文献
11.
Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin 总被引:1,自引:0,他引:1 下载免费PDF全文
Studies have demonstrated cross talk between beta-catenin and peroxisome proliferator-activated receptor gamma (PPARgamma) signaling pathways. Specifically, activation of PPARgamma induces the proteasomal degradation of beta-catenin in cells that express an adenomatous polyposis coli-containing destruction complex. In contrast, oncogenic beta-catenin is resistant to such degradation and inhibits the expression of PPARgamma target genes. In the present studies, we demonstrate a functional interaction between beta-catenin and PPARgamma that involves the T-cell factor (TCF)/lymphocyte enhancer factor (LEF) binding domain of beta-catenin and a catenin binding domain (CBD) within PPARgamma. Mutation of K312 and K435 in the TCF/LEF binding domain of an oncogenic beta-catenin (S37A) significantly reduces its ability to interact with and inhibit the activity of PPARgamma. Furthermore, these mutations render S37A beta-catenin susceptible to proteasomal degradation in response to activation of PPARgamma. Mutation of F372 within the CBD (helices 7 and 8) of PPARgamma disrupts its binding to beta-catenin and significantly reduces the ability of PPARgamma to induce the proteasomal degradation of beta-catenin. We suggest that in normal cells, PPARgamma can function to suppress tumorigenesis and/or Wnt signaling by targeting phosphorylated beta-catenin to the proteasome through a process involving its CBD. In contrast, oncogenic beta-catenin resists proteasomal degradation by inhibiting PPARgamma activity, which requires its TCF/LEF binding domain. 相似文献
12.
Hunter JG van Delft MF Rachubinski RA Capone JP 《The Journal of biological chemistry》2001,276(41):38297-38306
13.
14.
15.
Role of peroxisome proliferator-activated receptor gamma in glucose-induced insulin secretion 总被引:4,自引:0,他引:4
Peroxisome proliferator-activated receptor (PPAR) isoforms (α and γ) are known to beexpressed in pancreatic islets as well as in insulin-producing cell lines.Ligands of PPAR have been shoWn toenhance glucose-induced insulin secretion in rat pancreatic islets.However,their effect on insulin secretionis still unclear.To understand the molecular mechanism by which PPAR7 exerts its effect on glucose-induced insulin secretion,we examined the endogenous activity of PPAR isoforms,and studied the PPARyfunction and its target gene expression in INS-1 cells.We found that:(1)endogenous PPARγ was activatedin a ligand-dependent manner in INS-1 cells;(2)overexpression of PPARy in the absence of PPARγ ligandsenhanced glucose-induced insulin secretion,which indicates that the increased glucose-induced insulin secretionis a PPARγ-mediated event;(3)the addition of both PPARγ and retinoid X receptor (RXR) ligands showed asynergistic effect on the augmentation of reporter activity,suggesting that the hetero-dimerization of PPAR7and RXR is required for the regulation of the target genes;(4)PPARs upregulated both the glucose transporter2 (GLUT2) and Cbl-associated protein (CAP) genes in INS-1 cells.Our findings suggest an importantmechanistic pathway in which PPARγ enhances glucose-induced insulin secretion by activating the expressionof GLUT2 and CAP genes in a ligand-dependent manner. 相似文献
16.
Yosuke Toyota Sayaka Nomura Makoto Makishima Yuichi Hashimoto Minoru Ishikawa 《Bioorganic & medicinal chemistry letters》2017,27(12):2776-2780
Anti-inflammatory effects of peroxisome proliferator-activated receptor gamma (PPRAγ) ligands are thought to be largely due to PPARγ-mediated transrepression. Thus, transrepression-selective PPARγ ligands without agonistic activity or with only partial agonistic activity should exhibit anti-inflammatory properties with reduced side effects. Here, we investigated the structure-activity relationships (SARs) of PPARγ agonist rosiglitazone, focusing on transrepression activity. Alkenic analogs showed slightly more potent transrepression with reduced efficacy of transactivating agonistic activity. Removal of the alkyl group on the nitrogen atom improved selectivity for transrepression over transactivation. Among the synthesized compounds, 3l exhibited stronger transrepressional activity (IC50: 14 μM) and weaker agonistic efficacy (11%) than rosiglitazone or pioglitazone. 相似文献
17.
Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists 总被引:35,自引:0,他引:35
Way JM Görgün CZ Tong Q Uysal KT Brown KK Harrington WW Oliver WR Willson TM Kliewer SA Hotamisligil GS 《The Journal of biological chemistry》2001,276(28):25651-25653
Elevated levels of the hormone resistin, which is secreted by fat cells, are proposed to cause insulin resistance and to serve as a link between obesity and type 2 diabetes. In this report we show that resistin expression is significantly decreased in the white adipose tissue of several different models of obesity including the ob/ob, db/db, tub/tub, and KKA(y) mice compared with their lean counterparts. Furthermore, in response to several different classes of antidiabetic peroxisome proliferator-activated receptor gamma agonists, adipose tissue resistin expression is increased in both ob/ob mice and Zucker diabetic fatty rats. These data demonstrate that experimental obesity in rodents is associated with severely defective resistin expression, and decreases in resistin expression are not required for the antidiabetic actions of peroxisome proliferator-activated receptor gamma agonists. 相似文献
18.
19.
Feige JN Gelman L Rossi D Zoete V Métivier R Tudor C Anghel SI Grosdidier A Lathion C Engelborghs Y Michielin O Wahli W Desvergne B 《The Journal of biological chemistry》2007,282(26):19152-19166
The ability of pollutants to affect human health is a major concern, justified by the wide demonstration that reproductive functions are altered by endocrine disrupting chemicals. The definition of endocrine disruption is today extended to broader endocrine regulations, and includes activation of metabolic sensors, such as the peroxisome proliferator-activated receptors (PPARs). Toxicology approaches have demonstrated that phthalate plasticizers can directly influence PPAR activity. What is now missing is a detailed molecular understanding of the fundamental basis of endocrine disrupting chemical interference with PPAR signaling. We thus performed structural and functional analyses that demonstrate how monoethyl-hexyl-phthalate (MEHP) directly activates PPARgamma and promotes adipogenesis, albeit to a lower extent than the full agonist rosiglitazone. Importantly, we demonstrate that MEHP induces a selective activation of different PPARgamma target genes. Chromatin immunoprecipitation and fluorescence microscopy in living cells reveal that this selective activity correlates with the recruitment of a specific subset of PPARgamma coregulators that includes Med1 and PGC-1alpha, but not p300 and SRC-1. These results highlight some key mechanisms in metabolic disruption but are also instrumental in the context of selective PPAR modulation, a promising field for new therapeutic development based on PPAR modulation. 相似文献
20.
Peroxisome proliferators-activated receptor gamma (PPARgamma) has been shown to suppress cell proliferation and tumorigenesis, whereas the gastrointestinal regulatory peptide gastrin stimulates the growth of neoplastic cells. The present studies were directed to determine whether changes in PPARgamma expression might mediate the effects of gastrin on the proliferation of colorectal cancer (CRC). Initially, using growth assays, we determined that the human CRC cell line DLD-1 expressed both functional PPARgamma and gastrin receptors. Amidated gastrin (G-17) attenuated the growth suppressing effects of PPARgamma by decreasing PPARgamma activity and total protein expression, in part through an increase in the rate of proteasomal degradation. G-17-induced degradation of PPARgamma appeared to be mediated through phosphorylation of PPARgamma at serine 84 by a process involving the biphasic phosphorylation of ERK1/2 and activation of the epidermal growth factor receptor (EGFR). These results were confirmed through the use of EGFR antagonist AG1478 and MEK1 inhibitor PD98059. Furthermore, mutation of PPARgamma at serine 84 reduced the effects of G-17, as evident by inability of G-17 to attenuate PPARgamma promoter activity, degrade PPARgamma, or inhibit the growth suppressing effects of PPARgamma. The results of these studies demonstrate that the trophic properties of gastrin in CRC may be mediated in part by transactivation of the EGFR and phosphorylation of ERK1/2, leading to degradation of PPARgamma protein and a decrease in PPARgamma activation. 相似文献