首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.  相似文献   

2.
As shown by a nitrocellulose filter binding assay, in the absence of Mg2+ EcoRII restriction endonuclease binds specifically to a set of synthetic concatemer DNA duplexes of varying chain length, containing natural and modified recognition sites of this enzyme. The binding of the substrates with the central AT, TT or AA-pair in the recognition site decreases at AT greater than TT much greater than AA. Substitution of the pyrophosphate bond at the cleavage site for the phosphodiester or phosphoramide bond produces little influence on the stability of the complexes. The affinity of the enzyme for nonspecific sites is two orders of magnitude less than that for the specific EcoRII sequences. Equilibrium association constant for a substrate with one recognition site is 3.9 X 10(8) M-1. Addition of Mg2+ leads to the destabilization of the EcoRII endonuclease complex with DNA duplex, containing pyrophosphate bonds. The dissociation rate constants and the lifetime of the EcoRII endonuclease--synthetic substrates complexes have been determined.  相似文献   

3.
EcoRII is a type IIE restriction endonuclease characterized by a highly cooperative reaction mechanism that depends on simultaneous binding of the dimeric enzyme molecule to two copies of its DNA recognition site. Transmission electron microscopy provided direct evidence that EcoRII mediates loop formation of linear DNA containing two EcoRII recognition sites. Specific DNA binding of EcoRII revealed a symmetrical DNase I footprint occupying 16-18 bases. Single amino acid replacement of Val(258) by Asn yielded a mutant enzyme that was unaffected in substrate affinity and DNase I footprinting properties, but exhibited a profound decrease in cooperative DNA binding and cleavage activity. Because the electrophoretic mobility of the mutant enzyme-DNA complexes was significantly higher than that of the wild-type, we investigated if mutant V258N binds as a monomer to the substrate DNA. Analysis of the molecular mass of mutant V258N showed a high percentage of protein monomers in solution. The dissociation constant of mutant V258N confirmed a 350-fold decrease of the enzyme dimerization capability. We conclude that Val(258) is located in a region of EcoRII involved in homodimerization. This is the first report of a specific amino acid replacement in a restriction endonuclease leading to the loss of dimerization and DNA cleavage while retaining specific DNA binding.  相似文献   

4.
We present here the first detailed biochemical analysis of an archaeal restriction enzyme. PspGI shows sequence similarity to SsoII, EcoRII, NgoMIV and Cfr10I, which recognize related DNA sequences. We demonstrate here that PspGI, like SsoII and unlike EcoRII or NgoMIV and Cfr10I, interacts with and cleaves DNA as a homodimer and is not stimulated by simultaneous binding to two recognition sites. PspGI and SsoII differ in their basic biochemical properties, viz. stability against chemical denaturation and proteolytic digestion, DNA binding and the pH, MgCl(2) and salt-dependence of their DNA cleavage activity. In contrast, the results of mutational analyses and cross-link experiments show that PspGI and SsoII have a very similar DNA binding site and catalytic center as NgoMIV and Cfr10I (whose crystal structures are known), and presumably also as EcoRII, in spite of the fact that these enzymes, which all recognize variants of the sequence -/CC-GG- (/ denotes the site of cleavage), are representatives of different subgroups of type II restriction endonucleases. A sequence comparison of all known restriction endonuclease sequences, furthermore, suggests that several enzymes recognizing other DNA sequences also share amino acid sequence similarities with PspGI, SsoII and EcoRII in the region of the presumptive active site. These results are discussed in an evolutionary context.  相似文献   

5.
The present study deals with the binding and cleavage by EcoRII endonuclease of concatemer DNA duplexes containing EcoRII recognition sites (formula; see text) in which dT is replaced by dU or 5-bromodeoxyuridine, or 5'-terminal dC in the dT-containing strand is methylated at position 5. The enzyme molecule is found to interact with the methyl group of the dT residue of the DNA recognition site and to be at least in proximity to the H5 atom of the 5'-terminal dC residue in dT-containing strand of this site. Modification of any of these positions exerts an equal effects on the cleavage of both DNA strands. Endonuclease EcoRII was found to bind the substrate specifically. At the same time modification of the bases in recognized sequence may result in the formation of unproductive, though stable, enzyme-substrate complexes.  相似文献   

6.
Enzymatic digestion with a type IIP restriction endonuclease EcoRV was investigated on a DNA-immobilized 27-MHz quartz crystal microbalance (QCM). Real-time observations of both the enzyme binding process and the DNA cleavage process of EcoRV were followed by frequency (mass) changes on the QCM, which were dependent on divalent cations such as Ca(2+) or Mg(2+). In the presence of Ca(2+), the site-specific binding of EcoRV to DNA could be observed, without the catalytic process. On the other hand, in the presence of Mg(2+), both the binding of the enzyme to the specific DNA (mass increase) and the site-specific cleavage reaction (mass decrease) could be observed continuously from QCM frequency changes. From time courses of frequency (mass) changes, each kinetic parameter, namely binding rate constants (k(on)), dissociation rate constants (k(off)), dissociation constants (K(d)) of EcoRV to DNA, and catalytic rate constant (k(cat)) of the cleavage reaction, could be determined. The binding kinetic parameters of EcoRV in the presence of Ca(2+) were consistent with those of the binding process followed by the cleavage process in the presence of Mg(2+). The k(cat) value obtained by the QCM method was also consistent with that obtained by other methods. This study is the first to simultaneously determine k(on), k(off), and k(cat) for a type IIP restriction endonuclease on one device.  相似文献   

7.
Yamaotsu N  Suga M  Hirono S 《Biopolymers》2001,58(4):410-421
Trifluoperazine (TFP) has been widely studied in relation to its mode of binding and its inactivation of calmodulin (CaM). Most studies in solution have indicated that CaM has two high-affinity binding sites for TFP. The crystal structure of the 1:4 CaM-TFP complex (CaM-4TFP) shows that three TFP molecules bind to the C-domain of CaM, and that one TFP molecule binds to the N-domain. In contrast, the crystal structure of the 1:1 CaM-TFP complex (CaM-1TFP) shows that one TFP molecule binds to the C-domain. It has been thought that the binding of one TFP molecule to the C-domain is followed by binding to the N-domain. The crystal structure of the 1:2 CaM-TFP complex (CaM-2TFP), moreover, has recently been determined, showing that two TFP molecules bind to the C-domain. In order to determine the structure of the CaM-TFP complex and to clarify the interaction between CaM and TFP in solution, we performed a molecular dynamics simulation of the CaM-TFP complex in aqueous solution starting from the CaM-4TFP crystal structure. The obtained solution structure is very similar to the CaM-2TFP crystal structure. The computer simulation showed that the binding ability of the secondary binding site of the C-domain is higher than that of the primary binding site of the N-domain.  相似文献   

8.
Concatemer DNA duplexes which contain at the EcoRII restriction endonuclease cleavage sites (formula; see text) phosphodiester, phosphoamide or pyrophosphate internucleotide bonds have been synthesized. It has been shown that this enzyme did not cleave the substrate at phosphoamide bond. EcoRII endonuclease catalyzes single-strand cleavages both in dA- and dT-containing strands of the recognition site if the cleavage of the other strand has been blocked by modification of scissile bond or if the other strand has been cleaved. This enzyme interacts with both strands of the DNA recognition site, each of them being cleaved independently on the cleavage of another one. Nucleotide sequences flanking the EcoRII site on both sides are necessary for effective cleavage of the substrate.  相似文献   

9.
10.
Ability of the EcoRII restriction endonuclease to cleave 14-base-pair DNA duplexes with nucleotide substitutions in the recognition site CCA/TGG and in the adjacent base pair has been studied. Modifications leading to a local change in the substrate conformation (rU residue in and outside the recognition site, A.A- or A.C-pairs in the flanking sequence) reduce the rate of hydrolysis, the effect being maximal when the modified base pair is outside the recognition site. No digestion occurs when the internal dC-residue of the recognition site is 5-methylated in one or both strands. Replacement of dT residue in the EcoRII recognition site by dfl5U residue results in a dramatic inhibition of hydrolysis. Km and kcat for the cleavage of 14-base-pair DNA duplex have been determined. The cleavage rate of the dT-containing strand of the recognition site in 1.5 fold higher comparing with the dA-containing strand. The cleavage of both strands of the substrate by EcoRII endonuclease is confirmed to proceed in one enzyme-substrate complex.  相似文献   

11.
SecA, the dimeric ATPase subunit of bacterial protein translocase, catalyses translocation during ATP-driven membrane cycling at SecYEG. We now show that the SecA protomer comprises two structural modules: the ATPase N-domain, containing the nucleotide binding sites NBD1 and NBD2, and the regulatory C-domain. The C-domain binds to the N-domain in each protomer and to the C-domain of another protomer to form SecA dimers. NBD1 is sufficient for single rounds of SecA ATP hydrolysis. Multiple ATP turnovers at NBD1 require both the NBD2 site acting in cis and a conserved C-domain sequence operating in trans. This intramolecular regulator of ATP hydrolysis (IRA) mediates N-/C-domain binding and acts as a molecular switch: it suppresses ATP hydrolysis in cytoplasmic SecA while it releases hydrolysis in SecY-bound SecA during translocation. We propose that the IRA switch couples ATP binding and hydrolysis to SecA membrane insertion/deinsertion and substrate translocation by controlling nucleotide-regulated relative motions between the N-domain and the C-domain. The IRA switch is a novel essential component of the protein translocation catalytic pathway.  相似文献   

12.
The type II restriction endonuclease SsoII shows sequence similarity with 10 other restriction endonucleases, among them the type IIE restriction endonuclease EcoRII, which requires binding to an effector site for efficient DNA cleavage, and the type IIF restriction endonuclease NgoMIV, which is active as a homotetramer and cleaves DNA with two recognition sites in a concerted reaction. We show here that SsoII is an orthodox type II enzyme, which is active as a homodimer and does not require activation by binding to an effector site. Nevertheless, it shares with EcoRII and NgoMIV a very similar DNA-binding site and catalytic center as shown here by a mutational analysis, indicative of an evolutionary relationship between these three enzymes. We suggest that a similar relationship exists between other orthodox type II, type IIE, and type IIF restriction endonucleases. This may explain why similarities may be more pronounced between members of different subtypes of restriction enzymes than among the members of a given subtype.  相似文献   

13.
DNA methylation is an important cellular mechanism for controlling gene expression. Whereas the mutagenic properties of many DNA adducts, e.g., those arising from polycyclic aromatic hydrocarbons, have been widely studied, little is known about their influence on DNA methylation. We have constructed site-specifically modified 18-mer oligodeoxynucleotide duplexes containing a pair of stereoisomeric adducts derived from a benzo[a]pyrene-derived diol epoxide [(+)- and (-)-r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, or B[a]PDE] bound to the exocyclic amino group of guanine. The adducts, either (+)- or (-)-trans-anti-B[a]P-N(2)-dG (G*), positioned either at the 5'-side or the 3'-side deoxyguanosine residue in the recognition sequence of EcoRII restriction-modification enzymes (5'-...CCA/TGG...) were incorporated into 18-mer oligodeoxynucleotide duplexes. The effects of these lesions on complex formation and the catalytic activity of the EcoRII DNA methyltransferase (M.EcoRII) and EcoRII restriction endonuclease (R.EcoRII) were investigated. The M.EcoRII catalyzes the transfer of a methyl group to the C5 position of the 3'-side cytosine of each strand of the recognition sequence, whereas R.EcoRII catalyzes cleavage of both strands. The binding of R.EcoRII to the oligodeoxynucleotide duplexes and the catalytic cleavage were completely abolished when G was positioned at the 3'-side dG position (5'-...CCTGG*...). When G* was at the 5'-side dG position, binding was moderately diminished, but cleavage was completely blocked. In the case of M.EcoRII, binding is diminished by factors of 5-30 but the catalytic activity was either abolished or reduced 4-80-fold when the adducts were located at either position. Somewhat smaller effects were observed with hemimethylated oligodeoxynucleotide duplexes. These findings suggest that epigenetic effects, in addition to genotoxic effects, need to be considered in chemical carcinogenesis initiated by B[a]PDE, since the inhibition of methylation may allow the expression of genes that promote tumor development.  相似文献   

14.
15.
14-membered DNA-duplexes containing modified nucleoside residues, viz 4-N-methyldeoxycytidine (m4dC), 6-N-methyldeoxyadenosine (m6dA) or deoxyinosine (dI), in only one strand of the recognition site (CCA/TGG) of MvaI and EcoRII endonucleases were synthesized. It was shown that MvaI and EcoRII endonucleases interact with the exocyclic amino groups of the external dC residues and of the central dA residue of the recognition site exposed into the DNA major groove. These endonucleases which are isochizomers were found to possess different mechanisms of substrate cleavage. The ability of MvaI endonuclease to hydrolyze only unmodified strand of methylated duplexes allows one to make site-directed single-strand nicks in double-stranded DNA. Elimination of the 2-NH2-group located in the minor groove of DNA by substituting dI for dG had little, if any, effect on the hydrolytic activity of EcoRII and MvaI endonucleases.  相似文献   

16.
C D Pein  M Reuter  D Cech  D H Krüger 《FEBS letters》1989,245(1-2):141-144
Some DNA species are resistant towards the restriction endonuclease EcoRII despite the presence of unmodified recognition sites. We show that 14 base-pair oligonucleotide duplexes containing the EcoRII recognition site 5'-CC(A/T)GG are cleaved by this enzyme and are able to stimulate EcoRII cleavage of such resistant DNA molecules (e.g. DNA of bacterial virus T3). A direct correlation between the concentration of oligonucleotide duplex molecules and the degree of EcoRII digestion of the primarily resistant DNA is observed. This indicates a stoichiometric rather than a catalytic mode of enzyme activation. An excess of DNA devoid of EcoRII sites ('non-site' DNA, e.g. MvaI-digested T7 DNA) does not interfere with the activity of EcoRII.  相似文献   

17.
Ribonuclease HI (RNase H) is a member of the nucleotidyl-transferase superfamily and endo-nucleolytically cleaves the RNA portion in RNA/DNA hybrids and removes RNA primers from Okazaki fragments. The enzyme also binds RNA and DNA duplexes but is unable to cleave either. Three-dimensional structures of bacterial and human RNase H catalytic domains bound to RNA/DNA hybrids have revealed the basis for substrate recognition and the mechanism of cleavage. In order to visualize the enzyme’s interactions with duplex DNA and to establish the structural differences that afford tighter binding to RNA/DNA hybrids relative to dsDNA, we have determined the crystal structure of Bacillus halodurans RNase H in complex with the B-form DNA duplex [d(CGCGAATTCGCG)]2. The structure demonstrates that the inability of the enzyme to cleave DNA is due to the deviating curvature of the DNA strand relative to the substrate RNA strand and the absence of Mg2+ at the active site. A subset of amino acids engaged in contacts to RNA 2′-hydroxyl groups in the substrate complex instead bind to bridging or non-bridging phosphodiester oxygens in the complex with dsDNA. Qualitative comparison of the enzyme’s interactions with the substrate and inhibitor duplexes is consistent with the reduced binding affinity for the latter and sheds light on determinants of RNase H binding and cleavage specificity.  相似文献   

18.
I-SceI is a homing endonuclease that specifically cleaves an 18-bp double-stranded DNA. I-SceI exhibits a strong preference for cleaving the bottom strand DNA. The published structure of I-SceI bound to an uncleaved DNA substrate provided a mechanism for bottom strand cleavage but not for top strand cleavage. To more fully elucidate the I-SceI catalytic mechanism, we determined the X-ray structures of I-SceI in complex with DNA substrates that are nicked in either the top or bottom strands. The structures resemble intermediates along the DNA cleavage reaction. In a structure containing a nick in the top strand, the spatial arrangement of metal ions is similar to that observed in the structure that contains uncleaved DNA, suggesting that cleavage of the bottom strand occurs by a common mechanism regardless of whether this strand is cleaved first or second. In the structure containing a nick in the bottom strand, a new metal binding site is present in the active site that cleaves the top strand. This new metal and a candidate nucleophilic water molecule are correctly positioned to cleave the top strand following bottom strand cleavage, providing a plausible mechanism for top strand cleavage.  相似文献   

19.
Mutational analysis has previously indicated that D83 and E98 residues are essential for DNA cleavage activity and presumably chelate a Mg2+ ion at the active site of MunI restriction enzyme. In the absence of metal ions, protonation of an ionizable residue with a pKa > 7.0, most likely one of the active site carboxylates, controls the DNA binding specificity of MunI [Lagunavicius, A., Grazulis, S., Balciunaite, E., Vainius, D., and Siksnys, V. (1997) Biochemistry 36, 11093-11099.]. Thus, competition between H+ and Mg2+ binding at the active site of MunI presumably plays an important role in catalysis/binding. In the present study we have identified elementary steps and intermediates in the reaction pathway of plasmid DNA cleavage by MunI and elucidated the effect of pH and Mg2+ ions on the individual steps of the DNA cleavage reaction. The kinetic analysis indicated that the multiple-turnover rate of plasmid cleavage by MunI is limited by product release throughout the pH range 6.0-9.3. Quenched-flow experiments revealed that open circle DNA is an obligatory intermediate in the reaction pathway. Under optimal reaction conditions, open circle DNA remains bound to the MunI; however it is released into the solution at low [MgCl2]. Rate constants for the phoshodiester bond hydrolysis of the first (k1) and second (k2) strand of plasmid DNA at pH 7.0 and 10 mM MgCl2 more than 100-fold exceed the kcat value which is limited by product dissociation. The analysis of the pH and [Mg2+] dependences of k1 and k2 revealed that both H+ and Mg2+ ions compete for the binding to the same residue at the active site of MunI. Thus, the decreased rate of phosphodiester hydrolysis by MunI at pH < 7.0 may be due to the reduction of affinity for the Mg2+ binding at the active site. Kinetic analysis of DNA cleavage by MunI yielded estimates for the association-dissociation rate constants of enzyme-substrate complex and demonstrated the decreased stability of the MunI-DNA complex at pH values above 8.0.  相似文献   

20.
Nagarajan R  Stivers JT 《Biochemistry》2006,45(18):5775-5782
Vaccinia DNA topoisomerase (vTopo) is a prototypic eukaryotic type I topoisomerase that shows high specificity for nucleophilic substitution at a single phosphodiester linkage in the pentapyrimidine recognition sequence 5'-(C/T)+5 C+4 C+3 T+2 T+1 p / N(-1). This reaction involves reversible transesterification where the active site tyrosine of the enzyme and a 5'-hydroxyl nucleophile of DNA compete for attack at the phosphoryl group. The finite lifetime of the covalent phosphotyrosine adduct allows the enzyme to relax multiple supercoils by rotation of the 5'-OH strand before the DNA backbone is religated. To dissect the nature of the unique sequence specificity, subtle modifications to the major groove of the GGGAA 5'-sequence of the nonscissile strand were introduced and their effects on each step of the catalytic cycle were measured. Although these modifications had no effect on noncovalent DNA binding (K(D)) or the rate of reversible DNA cleavage (k(cl)), significant decreases in the cleavage equilibrium (K(cl) = k(cl)/k(r)) arising from increased rates of 5'-hydroxyl attack (k(r)) at the phosphotyrosine linkage were observed. These data and other findings support a model in which major groove interactions are used to position the phosphotyrosine linkage relative to the mobile 5'-hydroxyl nucleophile. In the absence of native sequence interactions, the phosphotyrosine has a higher probability of encountering the 5'-hydroxyl nucleophile, leading to an enhanced rate of ligation and a diminished equilibrium constant for cleavage. By this unusual specificity mechanism, the enzyme prevents formation of stable covalent adducts at nonconsensus sites in genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号