首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We investigated genetic diversity and phylogenetic relationships among three morphologically distinct populations of Dall's porpoise (Phocoenoides dalli) in Japanese waters by analyzing mitochondrial DNA variation. These populations, the Sea of Japan-Okhotsk dalli-type population, the truei-type population and the standard dalli-type population in the northwestern North Pacific, are clearly discriminated from each other by differences in the size of their white flank patch. A total of 479 bp of the mitochondrial control region and flanking tRNA genes was sequenced for 103 individuals. Haplotypic diversity was high (h = 0.968), but these haplotypes differed by only a few nucleotides (pi = 0.0106). Although many haplotypes were shared between populations, analysis of molecular variance (AMOVA) indicated genetic subdivision among the three populations (overall F (ST) = 0.023, P < 0.001; phi(ST) = 0.026, P = 0.029). Pairwise comparisons indicated a low but significant difference between the Sea of Japan-Okhotsk and the other two populations, whereas there was no significant difference between the latter. These results suggest that there is a close evolutionary relationship among these populations despite their consistent differences in coloration. This may reflect genetic polymorphism in the common ancestral population, which subsequently underwent a rapid divergence. The low genetic variability and haplotypic differentiation of the Sea of Japan-Okhotsk population suggest that it originated from a small population that colonized the Sea of Japan or that experienced population reduction when this Sea was isolated from the North Pacific in the last glacial period.  相似文献   

2.
Dall's porpoises from the Sea of Japan population taken by a dolphin fishery vessel were examined. Estimated body lengths at sexual maturity were similar to those for the truei -type population off the Pacific coast of Japan but larger than those for the offshore dalli -type in the North Pacific. The Sea of Japan population is known to migrate to the Pacific coast of Japan through Tsugaru Strait and to the Sea of Okhotsk through Soya Strait in summer. From the difference of catch composition, individuals of different reproductive status in this population are considered to have different patterns of summer migration. Most of the individuals which migrate into the Pacific Ocean through Tsugaru Strait are sexually immature, while those migrating into the Sea of Okhotsk are mature. The Sea of Okhotsk is thought to be a breeding area for this population. The calving season is estimated to be May through June, which is earlier than that of the truei -type off the Pacific coast of northern Japan. This may be an adaptation to lower water temperatures in the Sea of Japan during winter.  相似文献   

3.
Adult body size (size at maturity) is one of the key life history traits and is well known to sometimes correlate with latitude in anadromous salmonids. However, it is poorly understood whether geographic size patterns except for latitudinal trends occur or why such patterns have been shaped. The present paper briefly reviewed body size variation between anadromous returns of masu salmon Oncorhynchus masou in the Okhotsk group (10 populations along the Sea of Okhotsk coast), the Pacific group (2 populations along the Pacific Ocean coast) and the Sea of Japan group (24 populations along the Sea of Japan coast). The Okhotsk group was smaller than the Sea of Japan group. Although the statistical analysis detected no differences among the remaining combinations, the Okhotsk group was possibly smaller than the other groups because the size of the Pacific group seemed to be within range of the Sea of Japan group but tended to be larger than that of the Okhotsk group. Future research should first test whether size at maturity genetically differs between the Okhotsk group and the other two groups to explore further evolutionary factors shaping geographic size variation.  相似文献   

4.
Knowledge of geographic variation is important to questions of population assessment and management. Fraser's dolphins have been exploited in two regions in the western Pacific. Analysis of 137 skulls from the Philippines, Japan, Taiwan, Australia, Indonesia, Malaysia, South Africa, France, the U.S., St. Vincent and the Grenadines, and the eastern tropical Pacific revealed sexual dimorphism in 5 of 26 measurements (difference of 1.9%-5.8% between males and females), similar to levels of cranial dimorphism in other small pelagic delphinids. Males had a larger braincase and temporal fossae and smaller external nares than females. Sexually dimorphic characters were excluded, and male and females samples were pooled to examine geographic differences in the remaining characters. Multivariate analyses yielded significant differences between the Philippine and Japanese series within the North Pacific and between a pooled North Pacific series and a North Atlantic series. The Japanese skulls were on average broader and had a wider rostrum, larger orbit, larger internal nares, and longer braincase than the Philippine skulls. These differences suggest that Fraser's dolphins exploited in Japanese and Philippine waters in directed fisheries or as by catch belong to different populations and should be assessed and managed separately.  相似文献   

5.
Prevalence of the larval cestode, Phyllobothrium delphini , was estimated from 2,445 Dall's porpoise, Phocoenoides dalli , from the incidental take of the Japanese high seas salmon drift-net fishery in the northwestern North Pacific Ocean, Bering Sea, and a local hand harpoon fishery in the southern Sea of Okhotsk. Prevalence of P. delphini was 22.7% in the northwestern North Pacific Ocean and 1.4% in the Bering Sea. This parasite was not found in the southern Sea of Okhotsk. Geographical differences in the prevalence of P. delphini may be due, at least in part, to regional differences in abundance of elasmobranchs known to feed on marine mammals and suspected as hosts of the parasite. Estimated intensity of infection of individual porpoises by P. delphini was low (estimated mean intensity of 3.5 plerocercoids per animal). This is a low intensity of infection compared to other species of small cetaceans studied and may be due to both differences in regional abundance of elasmobranchs and the comparatively short life span of P. dalli.  相似文献   

6.
A survey of mtDNA variation among populations of chum salmon Oncorhynchus keta around the Pacific Rim revealed four large population groups: Rim of the Sea of Japan, the Rim of the Okhotsk Sea and West Bering Sea, North‐west Alaska and Gulf of Alaska. The observed population structure appears to reflect isolation by distance with limited gene flow between regions and larger amounts of gene flow between populations within these four regions.  相似文献   

7.
We used 11 restriction endonucleases to study mtDNA variation in 101 Dall's porpoises Phocoenoides dalli from the Bering Sea and western North Pacific. There was little phylogeographic patterning among the 34 mtDNA haplotypes identified in this analysis, suggesting a strong historical connection among populations across this region. Nonetheless, mtDNA variation does not appear to be randomly distributed in this species. Both GST and AMOVA uncovered significant differences in the distribution of mtDNA variation between the Bering Sea and western North Pacific populations. These mtDNA results, coupled with differences in allozyme variation and parasite infestation, support the demographic distinctiveness of Bering Sea and western North Pacific stocks of Dall's porpoise. The lack of a strong phylogeographic orientation of mtDNA haplotypes within the Dall's porpoise is similar to the pattern reported in other vertebrates such as coyotes, blackbirds, chickadees, marine catfish, and catadromous eels. Like Dall's porpoise, these species are broadly distributed, and have large populations linked by moderate to high levels of gene flow. However, the more complex, deeply branched phylogenetic network of mtDNA haplotypes within Dall's porpoise, relative to these other vertebrates, suggests important differences between these species in the forces shaping mtDNA variation. One such force is the effective size of female populations, which appears to have been comparatively large and stable in Dall's porpoise.  相似文献   

8.
The molecular phylogeny of the Careproctus rastrinus species complex is presented on the basis of sequence variations in the 16S rRNA and cytochrome b genes (1,447 base pairs) of mitochondrial DNA using specimens collected from across the North Pacific and its marginal seas, including the Sea of Japan, the Pacific coast of Japan, the Sea of Okhotsk, the Bering Sea, the Gulf of Alaska, and the Arctic Ocean. Gene flow and migration between geographic regions is apparently strictly restricted in the C. rastrinus species complex, as this phylogeny revealed nine genetically diverged groups in the C. rastrinus species complex, most of which corresponded well with major geographic regions. Most of the groups were different in terms of morphological characters. Five nominal species have been considered to be members of the complex and have been variously recognized as being valid or as synonyms of C. rastrinus, but the present genetic and morphological differences suggested that the C. rastrinus species complex represents far more divergence. Such cryptic diversity of the C. rastrinus species complex defined by geographic regions may be related to their low dispersal ability, because they bear large demersal eggs. The genetic divergence suggested that colder climates from the late Pliocene and the isolation of marginal seas during the Pleistocene may have driven the divergence of the C. rastrinus species complex.  相似文献   

9.
At present 8 species of Alexandrium genus have been found in seas and adjacent waters of Russia: A. acatenella, A. catenella, A. insuetum, A. margalefii, A. ostenfeldii, A. pseudogonyaulax, A. tamarense, and A. tamutum. The distribution and population density of Alexandrium species varied within the surveyed area of the Pacific: in the Sea of Japan and Sea of Okhotsk, 7 species were recorded; 3 species were recorded along the Pacific coast of Kamchatka; and 2 species were found in the Bering Sea. A. tamarense was the most widespread and abundant species over the area. A. insuetum was recorded only in the Sea of Japan, and A. catenella, in the Sea of Okhotsk (Terpeniya Bay). The highest concentration of Alexandrium spp. (2–7 million cells/l) was recorded along the Pacific coast of Kamchatka and in the Bering Sea; in the Sea of Okhotsk, a rather high concentration (51000 cells/l) was registered in Aniva Bay; in the Sea of Japan, the highest concentration was recorded in Peter the Great Bay (6000 cells/l). The distribution of cysts (spores) in surface sediments of the Pacific coast of Russia as a whole reflected the pattern of distribution of vegetative cells of Alexandrium. Cysts of Alexandrium cf. tamarense prevailed all over the area, with the maximum concentration along the Pacific coast of Kamchatka. Beyond that type of cysts, insignificant numbers of cysts of Alexandrium cf. minutum were recorded in Peter the Great Bay and Aniva Bay. Analysis of seasonal dynamics revealed that cells of Alexandrium spp. occurred in Peter the Great Bay from June up to September, and along the Pacific coast of Kamchatka from April to October. In the first region, the maximum density was recorded in August; it was provided by A. pseudogonyaulax (59% of the total density of Alexandrium), A. tamarense (35%), and A. insuetum (6%). In the second region, it was recorded in July, thanks only to development of A. tamarense.  相似文献   

10.
A “change” in water circulation took place in the Bering Sea in 2007. The Bering Sea cyclonic gyre decreased to the size of the Commander Basin; the longitudinal northward flow from the Near Strait intensified, and the latitudinal westward flow from the Aleutian Basin along the Koryak coast and the Bering Slope Current became noticeably weaker. The longitudinal flow formed a hydrodynamic front along the border of the Russian EEZ that prevented cold subsurface waters from spreading eastward. The changes in circulation of waters that were observed in the Bering Sea during the 2007–2011 period, as compared to the situation in 2002–2006, had an influence on the intensity of feeding migrations of immature salmon into Russian waters. The abundance of immature chum, sockeye, and chinook salmon in the western part of the sea declined and the pattern of their spatial distribution was altered. In 2012, after the water circulation changed to its original pattern, the abundance of salmon was restored to the levels that were recorded in 2002–2006.  相似文献   

11.
Sablefish Anoplopoma fimbria is a deep-sea fish, endemic to the North Pacific Ocean, with continuous range from southern California to the central part of Honshu Island, including the Bering and Okhotsk Seas. It is an important commercial species and a promising object for aquaculture [1, 2]. Compared to the eastern part of the range [3, 4] the population structure of sablefish in Asian waters is poorly studied. It is believed that sablefish goes to the Bering Sea and Pacific waters of Kamchatka and the Kuril Islands from the northeastern Pacific, and Asian waters are its eviction zone [5]. Other authors suggest that replenishment of sablefish off the eastern Kamchatka and the Kuril Islands is not only due to migration of the adult fish from the Bering Sea along the continental slope, but also due to the drift of yearlings by Aleutian current over the American coast [6].  相似文献   

12.
The Careproctus rastrinus species complex, widely known from the North Pacific, has been revealed recently to include nine genetically divergent groups on the basis of mitochondrial DNA (mtDNA) sequence variations. Herein we describe an AFLP analysis that focuses on three closely related groups in order to clarify the evolutionary history of the species complex in the Sea of Japan and off the Pacific coast of Japan. A principal coordinate analysis indicated the absence of nuclear divergence in two groups defined by mtDNA variations in the Sea of Japan, whereas another group from the Pacific coast of northern Japan was clearly distinct. This suggests extensive gene flow between two groups in the Sea of Japan as a result of secondary contact.  相似文献   

13.
Three major mitochondrial DNA (mtDNA) haplogroups were identified in 5 data sets for North Pacific and Bering Sea walleye pollock. The common haplogroup A showed mirror-image clines on both sides of the North Pacific with high frequencies in southern areas (P(A) > 0.84) and low frequencies in the Bering Sea (P(A) < 0.36). Two additional haplogroups showed complimentary, but weaker, clines in the opposite direction. These clines are unlikely to have arisen by chance during postglacial colonizations of coastal waters in the North Pacific and Bering Sea, and they do not appear to reflect isolation by distance. Contrary to these trends, pollock at the western end of the Aleutian Island Archipelago were genetically more similar to Asian than to North American pollock, a pattern likely reflecting postglacial colonization. Haplogroup F(ST) values for a given haplotype diversity were significantly larger than expected under the island model of migration and random drift, a result implicating natural selection. Frequencies of haplogroup A were highly correlated with sea surface temperature (r > 0.91), whereas frequencies of groups B and C showed negative correlations with temperature. Selection may be operating directly on mtDNA variability or may be mediated through cytonuclear interactions. This biogeographic evidence adds to a growing body of literature indicating that selection may play a greater role in sculpting mtDNA variability than previously thought.  相似文献   

14.
A newly developed DNA microarray was applied to identify mitochondrial (mt) DNA haplotypes of more than 2200 chum salmon in the Bering Sea and North Pacific Ocean in September 2002 and also 2003, when the majority of maturing fish were migrating toward their natal river. The distribution of haplotypes occurring in Asian and North American fish in the surveyed area was similar in the 2 years. A conditional maximum likelihood method for estimation of stock compositions indicated that the Japanese stocks were distributed mainly in the north central Bering Sea, whereas the Russian stocks were mainly in the western Bering Sea. The North American stocks were abundant in the North Pacific Ocean around the Aleutian Islands. These results indicate that the Asian and North American stocks of chum salmon are nonrandomly distributed in the Bering Sea and the North Pacific Ocean, and further the oligonuleotide DNA microarray developed by us has a high potential for identification of stocks among mixed ocean aggregates of high-seas chum salmon.  相似文献   

15.
Synopsis The genetic and morphological features ofGasterosteus aculeatus were investigated for 29 populations around Japan. Allozyme analyses recognized two groups (Pacific Ocean group and Japan Sea group) that had distinct characteristic features, and showed high genetic differentiation between them (D = 0.482). The Pacific Ocean group had a wide range, from North America to Japan, along the Pacific coast. The distribution of the Japan Sea group was limited around the Sea of Japan and the Sea of Okhotsk. The distribution of these groups were found to be sympatric on the Pacific coast of Hokkaido Island, Japan. From this area, genetic analyses demonstrated that the sympatric populations of the two groups formed independent breeding stocks, and it is considered that the two groups were reproductively isolated from each other. Additionally, each group had distinctive morphological features of lateral plates and caudal keels in the sympatric area. These results suggested that these two groups of the threespine stickleback comprise different species and that the Japan Sea group is taxonomically distinguishable fromG. aculeatus.  相似文献   

16.
Wild stocks of chum salmon, Oncorhynchus keta, have experienced recent declines in some areas of their range. Also, the release of hatchery chum salmon has escalated to nearly three billion fish annually. The decline of wild stocks and the unknown effects of hatchery fish combined with the uncertainty of future production caused by global climate change have renewed interest in the migratory patterns of chum salmon on the high seas. We studied the composition of high-seas mixtures of maturing and immature individuals using baseline data for 20 allozyme loci from 356 populations from throughout the Pacific Rim. Composition estimates were made from three time series. Two of these time series were from important coastal migratory corridors: the Shumagin Islands south of the Alaska Peninsula and the east coast of the Kamchatka Peninsula. The third was from chum salmon captured incidentally in the Bering Sea trawl fishery for walleye pollock. We also analyzed geographically dispersed collections of chum salmon captured in the month of July. The time series show dynamic changes in stock composition. The Shumagin Island corridor was used primarily by Northwest Alaskan and Asian populations in June; by the end of July stocks from the Alaska Peninsula and southern North America dominated the composition. The composition along the Kamchatka coast changed dramatically from primarily Russian stocks in May to primarily Japanese stocks in August; the previously undocumented presence of stocks from the Alaska Peninsula and Gulf of Alaska was also demonstrated. Immature chum salmon from throughout the Pacific Rim, including large proportions of southern North American stocks, contributed to the Bering Sea bycatch during the months of September and October. The migration routes of North American stocks is far more widespread than previously observed, and the Bering Sea is an important rearing area for maturing and immature chum salmon from throughout the species' range.  相似文献   

17.
Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here.  相似文献   

18.
For many years, researchers have speculatedthat fin whales are year-round residents in theSea of Cortez (= Gulf of California). Previouswork by Bérubé and co-workers has shownthat the degree of genetic diversity among finwhales in the Sea of Cortez at nuclear andmitochondrial loci is highly reduced. However,the relatively unobstructed connection with theNorth Pacific Ocean argues that Sea of Cortezfin whales are part of a much larger easternNorth Pacific population given the extensivemigratory ranges observed in fin whales andbaleen whales in general. The low degree ofgenetic variation might thus simply be due tohistoric fluctuations in the effectivepopulation size of an eastern North Pacificpopulation. In order to test if the reducedgenetic variation detected among fin whales inthe Sea of Cortez is due to small populationsize or a past bottleneck in an otherwise largeeastern North Pacific population, we analyzedthe geographic distribution of geneticvariation at a single mitochondrial (controlregion) and 16 nuclear loci in samplescollected from fin whales in the eastern NorthPacific (n = 12) as well as the Sea of Cortez(n = 77). Our results showed that fin whalesobserved in the Sea of Cortez constitute ahighly isolated and thus evolutionary uniquepopulation, which warrants special conservationmeasures given the current low estimate ofabundance of approximately 400 individuals.  相似文献   

19.
20.
According to materials of trap, long-line, and trawl fishing, specific features of distribution of sablefish Anoplopoma fimbria and some of its biological characteristics in Pacific waters off the southeastern coast of Kamchatka, continental slope of the western part of the Bering Sea, Shirshov Underwater Ridge, and off the Commander Islands are considered. Maximum density concentrations according to data of trap fishing was noted along southeastern coast of Kamchatka and the data of trawl fishing indicated most frequent catches in the western part of the Bering Sea in the area of Koryak coast up to Cape Navarin. The pattern of vertical distribution in different areas considerably differs. The magnitude of trap catches in different areas is different and determined by the type of trap and the period of soaking. The size composition, fatness, and the sex ratio are different in catches of different fishing gear and differ between regions. On the whole, in Russian Far Eastern waters, females mature in mass at a body length of 71 cm and males at 57 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号