首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new genus and species of medium-sized fossil primate, Myanmarpithecus yarshensis, is described from the lastest middle Eocene sediments of Pondaung, central Myanmar (Burma). The specimens consist of right maxillary fragments with P(4)-M(3)and a left mandibular corpus with C-P(3)and M(2-3). To date, three purported anthropoids have been discovered from the Pondaung Formation: Pondaungia and Amphipithecus (Amphipithecidae) and Bahinia (Eosimiidae). Myanmarpithecus differs from these other Pondaung primates in having cingular hypocones on upper molars and in lacking paraconids on M(2-3). Although Myanmarpithecus resembles some utahiin omomyines in superficial aspects of the morphology of M(2-3)(i.e., mesiodistally compressed molar trigonid and enamel crenulation), the morphological analysis of upper molars and lower premolars indicates that it is neither an omomyoid nor an adapoid but is more derived than fossil prosimians (such as adapoids, omomyoids, and tarsiers) and more anthropoid-like. On the other hand, it is more primitive (prosimian-like) than early anthropoids from the late Eocene/early Oligocene of the Fayum, Egypt. Myanmarpithecus is likely to be an early, primitive anthropoid ("protoanthropoid").  相似文献   

2.
The extinct Southeast Asian primate family Amphipithecidae is regularly cited in discussions of anthropoid origins, but its phylogenetic position remains controversial. In part, the lack of consensus regarding amphipithecid relationships can be attributed to uncertainty regarding the homology of upper molar structures in this group. Here, we describe a virtually pristine upper molar of Pondaungia cotteri from the late middle Eocene Pondaung Formation of Myanmar, which is the first example of a relatively unworn and well-preserved amphipithecid upper molar ever recovered. The distolingual upper molar cusp in this new specimen of Pondaungia appears to be a lingually displaced and enlarged metaconule, rather than a hypocone or pseudohypocone as previous workers have thought. Reassessment of the upper molar morphology of other amphipithecids and putative amphipithecids reveals a very similar pattern in Siamopithecus, Myanmarpithecus and Ganlea, all of which are interpreted as having upper molars showing many of the same derived features apparent in Pondaungia. In contrast, the upper molar morphology of Bugtipithecus diverges radically from that of undoubted amphipithecids, and the latter taxon is excluded from Amphipithecidae on this basis. Phylogenetic analyses of several character–taxon matrices culled from the recent literature and updated to reflect the new information on amphipithecid upper molar morphology yield similar results. Consensus tree topologies derived from these analyses support amphipithecid monophyly and stable relationships within Amphipithecidae. Amphipithecids appear to be stem members of the anthropoid clade.  相似文献   

3.
We estimated body masses for middle to late Eocene East Asian eosimiids and amphipithecids from the crown areas of cheek teeth. First, we calculated body mass estimate equations via an extant primate sample of 11 prosimian and 30 anthropoid species, and compared the reliability of the resulting body mass estimate regressions. M 1–2 and M 1–2 are better body mass estimators, especially for fossils with few samples, because of their low intraspecific variations in dimensions. Moreover, body masses derived from M 1–2 tend to indicate lower estimate error than those from other cheek teeth. The relationships between tooth crown areas and body mass differ between prosimians and anthropoids; the estimated body mass from crown area of P 4 or any molar will be larger if anthropoids, instead of prosimians, are used as a reference taxon. Second, We applied the regressions to the fossil primates. The estimated body masses in kg are as follows: Eosimias centennicus, 0.16; E. sinensis, 0.14; Eosimiidae indet. from the Pondaung Formation, 0.41; Bahinia pondaungensis, 0.57; Myanmarpithecus yarshensis, 1.8; Amphipithecus mogaungensis, 6.8; Pondaungia cotteri, 5.9; Pondaungia savagei, 8.8; Siamopithecus eocaenus, 5.9. Eosimiids fit the prosimian model better than the anthropoid model. Amphipithecids do not fit one model particularly better than the other, as the estimates vary considerably according to the tooth used and the reference taxon. The anthropoid model gives smaller differences between upper- and lower-molar-based body mass estimates, but premolars are relatively much smaller in amphipithecids than in extant prosimians and anthropoids.  相似文献   

4.
Myanmarpithecus yarshensis is an amphipithecid primate from the middle Eocene Pondaung Formation in Myanmar. It was previously known based on maxillary fragments with P4–M3 and mandibular fragments with C–P3 and M2–3. This study reports new materials for the genus, including a humeral head fragment, a lingual fragment of the right M2, a lingual fragment of the right M3, and a left I1. These new materials were collected from approximately the same point, and likely belonged to the same individual. The upper molar morphology and size of the new materials show similarity to those of the type specimen, indicating that the new materials can be assigned to M. yarshensis. The humeral head is the first postcranial element that is associated with dental materials for amphipithecids. The morphological similarity between the previously reported larger humerus and this specimen confirms the assignment of the former specimen to Amphipithecidae and suggests common locomotor adaptations in the family. The upper central incisor is large relative to the molar fragments, but is within the variation among extant platyrrhines. The tooth is spatulate-shaped and high crowned, and lacks the mesial process, indicating similarity to I1 of haplorhines and clear differences from that of adapoids. It has been suggested that amphipithecids, including Myanmarpithecus, have affinities with notharctine adapoids, but the morphology of I1 does not support the notharctine hypothesis of the Amphipithecidae.  相似文献   

5.
Two isolated cranial fragments from the late middle Eocene Pondaung Formation of central Myanmar have previously been interpreted as frontal bones of the amphipithecid primate Amphipithecus mogaungensis. Aside from a few maxillary fragments, these specimens provide the only potential source of information currently available regarding the cranial anatomy of Amphipithecidae. Were this taxonomic attribution correct, these specimens would indicate that amphipithecids retained numerous primitive skull features, including the absence of a postorbital septum, the retention of a voluminous olfactory chamber, and strong separation between the forebrain and the orbital fossa. However, several anatomical details observable on these specimens are incompatible with their attribution to any primate and strongly suggest that they cannot be ascribed to Mammalia. Particularly problematic in this regard are the extreme thickness of the dermal bone, the odd structure of the alleged "frontal trigon," and the mediolateral orientation and uniquely robust construction of the descending process of the frontal bone (which partially segregates the orbital and temporal fossae). Because these isolated elements can no longer be attributed to Amphipithecus, the anatomical, phylogenetic, and behavioral inferences regarding amphipithecid paleobiology that have been drawn from these specimens can no longer be sustained.  相似文献   

6.
7.
A specimen of Pondaungia from the late middle Eocene Pondaung Formation in central Myanmar includes maxillary fragments and parts of the dentition, some hitherto undocumented, including the upper central incisor, canine, premolars and molars. Pondaungia has a large spatulate I1 closely resembling that of crown anthropoids. It possesses a stout projecting upper canine (like anthropoids) but differs from that tooth of crown anthropoids in lacking a strong mesial groove. There are three upper premolars of which P2 is distinctly smaller than P3 or P4. P3 has a buccolingually oriented mesial profile and an inflated distal profile resembling that of parapithecids and crown anthropoids. The distolingual molar cusp is a hypocone and is not homologus with the "pseudohypocone" of notharctines because the cusp is neither twinned with the protocone nor attached to a Nannopithex-fold. Pondaungia has a stout zygomatic root with a strongly demarcated muscle scar for the superficial masseter situated well above the occlusal plane. The inferior orbital margin is not preserved but the inflated suborbital region allows for the inference that the orbit was small. This specimen is not sufficiently well preserved to identify if there was postorbital closure. However, a specimen of the frontal bone of Amphipithecus shows that its orbital septum was absent or poorly developed. If, as commonly supposed, Pondaungia andAmphipithecus are sister taxa, postorbital closure was probably absent in Pondaungia. The large incisors, molars with poorly developed crests and thick enamel, together with the stoutly developed and strong dorsal component of the force vector of the superficial masseter muscle suggest that Pondaungia had a diet low in fiber, but that included hard food objects like nuts or seeds. The present material adds to the structural similarities between Pondaungia and anthropoids, but whether these similarities are due to shared descent or functional and adaptive convergence remains unresolved.  相似文献   

8.
Most omomyids are relatively small bodied (e.g. <500 g), but beginning in the middle Eocene, some omomyids began to grow larger. The largest omomyids occur in the late middle Eocene during the Uintan NALMA, reaching an estimated body mass over 1 kg. The hind limb skeleton of small omomyids is relatively well known, and is generally thought to show active arboreal quadrupedal and leaping adaptations. New postcranial specimens of previously unknown elements from the larger Uintan omomyids, Ourayia (two species), Chipetaia lamporea, and Mytonius hopsoni have recently been recovered from the Uinta Formation, Utah, and from the Mission Valley Formation, California, and they provide additional information concerning their locomotor behavior.The new specimens include several distal tibiae, partial calcanei, a complete talus and a proximal first metatarsal of Chipetaia; distal femora, distal tibiae, cuboids, and partial calcanei of Ourayia uintensis; a complete calcaneus of Ourayia sp.; and a partial calcaneus and talus of Mytonius. Metric analysis of these elements, together with qualitative observations of non-metric traits, indicate that Ourayia and Chipetaia show equal or greater development of traits associated with leaping behavior (including elongation of the calcaneus, navicular and cuboid) than do smaller omomyids from North America. The elements of Mytonius, although fragmentary, lack some leaping features that are well-developed in Ourayia and Chipetaia, suggesting that Mytonius may have relied more on arboreal quadrupedal locomotion than on leaping.  相似文献   

9.
Over the last 90 years, Eocene and Oligocene aged sediments in the Fayum Depression of Egypt have yielded at least 17 genera of fossil primates. However, of this diverse sample the diets of only four early Oligocene anthropoid genera have been previously studied using quantitative methods. Here we present dietary assessments for 11 additional Fayum primate genera based on the analysis of body mass and molar shearing crest development. These studies reveal that all late Eocene Fayum anthropoids were probably frugivorous despite marked subfamilial differences in dental morphology. By contrast, late Eocene Fayum prosimians demonstrated remarkable dietary diversity, including specialized insectivory (Anchomomys), generalized frugivory (Plesiopithecus), frugivory+insectivory (Wadilemur), and strict folivory (Aframonius). This evidence that sympatric prosimians and early anthropoids jointly occupied frugivorous niches during the late Eocene reinforces the hypothesis that changes in diet did not form the primary ecological impetus for the origin of the Anthropoidea. Early Oligocene Fayum localities differ from late Eocene Fayum localities in lacking large-bodied frugivorous and folivorous prosimians, and may document the first appearance of primate communities with trophic structures like those of extant primate communities in continental Africa. A similar change in primate community structure during the Eocene-Oligocene transition is not evident in the Asian fossil record. Putative large anthropoids from the Eocene of Asia, such as Amphipithecus mogaungensis, Pondaungia cotteri, and Siamopithecus eocaenus, share with early Oligocene Fayum anthropoids derived features of molar anatomy related to an emphasis on crushing and grinding during mastication. However, these dental specializations are not seen in late Eocene Fayum anthropoids that are broadly ancestral to the later-occurring anthropoids of the Fayum's upper sequence. This lack of resemblance to undisputed Eocene African anthropoids suggests that the "progressive" anthropoid-like dental features of some large-bodied Eocene Asian primates may be the result of dietary convergence rather than close phyletic affinity with the Anthropoidea.  相似文献   

10.
Here, we describe the first skeletal remains of Notostylops recovered from middle Eocene levels of the Sarmiento Formation, Patagonia, Argentina. The remains include two teeth of Notostylops murinus, the axis, vertebral bodies, a rib, a left humerus, both radii, two metapodials, two phalanges, the pelvis, a right femur, a right calcaneus and several broken bones. Radial bones are not fused to ulnas, and are shorter than the humerus, very generalized, with an oval head, a marked neck and a radial tubercle. The humerus and the femur show pronounced insertion structures. Our analysis suggests that the appendicular skeleton of Notostylops is too generalized and shares several features with that of terrestrial rodents as Sciuridae. Unlike the appendicular skeletons of cursorial or saltatorial mammals, which restrict mobility, the skeleton of Notostylops indicates the ability to make a variety of different movements, as would be expected for terrestrial, fossorial or arboreal mammals. This skeleton gives new information about the locomotor behaviour of notoungulates, particularly in their basal forms. The results will also allow the identification of isolated notoungulate bones and raise questions about the previous taxonomic assignment of postcrania to Pleurostylodon.  相似文献   

11.
The HGL-50 locality, situated on the Glib Zegdou outlier in the Gour Lazib of Algeria (Hammada du Dra), is famous for having yielded several dental remains of primates dating from the late Early to the early Middle Eocene. These primates include Algeripithecus minutus, Azibius trerki and a new species of cf. Azibius (not described yet). Algeripithecus was widely acknowledged to be one of the oldest known anthropoids from Africa. However, very recent discoveries strongly suggest that Algeripithecus is closely related to Azibius and that both taxa are phylogenetically remote from the clade Anthropoidea. Algeripithecus and Azibius make up the family Azibiidae and appear as stem strepsirhines. Here we describe and analyse two ankle bones (tali) found in HGL-50. UM/HGL50-466 is a small left talus, which is appropriate in size to belong to A. trerki, while UM/HGL50-467 is a right talus, which is significantly larger and appropriate in size to belong to the new large species of cf. Azibius. Both tali exhibit a suite of features that resemble conditions primarily found in extinct and extant strepsirhine and adapiform primates; conditions that are consistent with the strepsirhine-like dentition characterizing azibiids. Functionally, these two tali indicate that Azibius species were engaged in a form of active arboreal quadrupedalism with some ability to climb and leap. Azibiids were rather small-bodied primates, approximating the size of some modern dwarf lemurs (Cheirogaleidae) and sportive lemurs (Lepilemuridae) from Madagascar. Given their small body-size and their talar morphology, living cheirogaleid lemurs, which are agile arboreal quadrupeds (with climbing, springing and branch running activities), might appear as good analogues for azibiids in terms of locomotor behaviour.  相似文献   

12.
According to the most recent discoveries from the Middle Eocene of Myanmar and China, anthropoid primates originated in Asia rather than in Africa, as was previously considered. But the Asian Palaeogene anthropoid community remains poorly known and inadequately sampled, being represented only from China, Myanmar, Pakistan and Thailand. Asian Eocene anthropoids can be divided into two distinct groups, the stem group eosimiiforms and the possible crown group amphipithecids, but the phylogenetic relationships between these two groups are not well understood. Therefore, it is critical to understand their evolutionary history and relationships by finding additional fossil taxa. Here, we describe a new small-sized fossil anthropoid primate from the Late Eocene Krabi locality in Thailand, Krabia minuta, which shares several derived characters with the amphipithecids. It displays several unique dental characters, such as extreme bunodonty and reduced trigon surface area, that have never been observed in other Eocene Asian anthropoids. These features indicate that morphological adaptations were more diversified among amphipithecids than was previously expected, and raises the problem of the phylogenetic relations between the crown anthropoids and their stem group eosimiiforms, on one side, and the modern anthropoids, on the other side.  相似文献   

13.
The forelimb joints of terrestrial primate quadrupeds appear better able to resist mediolateral (ML) shear forces than those of arboreal quadrupedal monkeys. These differences in forelimb morphology have been used extensively to infer locomotor behavior in extinct primate quadrupeds. However, the nature of ML substrate reaction forces (SRF) during arboreal and terrestrial quadrupedalism in primates is not known. This study documents ML-SRF magnitude and orientation and forelimb joint angles in six quadrupedal anthropoid species walking across a force platform attached to terrestrial (wooden runway) and arboreal supports (raised horizontal poles). On the ground all subjects applied a lateral force in more than 50% of the steps collected. On horizontal poles, in contrast, all subjects applied a medially directed force to the substrate in more than 75% of the steps collected. In addition, all subjects on arboreal supports combined a lower magnitude peak ML-SRF with a change in the timing of the ML-SRF peak force. As a result, during quadrupedalism on the poles the overall SRF resultant was relatively lower than it was on the runway. Most subjects in this study adduct their humerus while on the poles. The kinetic and kinematic variables combine to minimize the tendency to collapse or translate forelimbs joints in an ML plane in primarily arboreal quadrupedal primates compared to primarily terrestrial quadrupedal ones. These data allow for a more complete understanding of the anatomy of the forelimb in terrestrial vs. arboreal quadrupedal primates. A better understanding of the mechanical basis of morphological differences allows greater confidence in inferences concerning the locomotion of extinct primate quadrupeds.  相似文献   

14.
Dionisios Youlatos 《Geobios》2003,36(2):229-239
This paper investigates substrate preferences of the Greek Colobine Mesopithecus pentelicus WAGNER, from the Miocene of Pikermi, by examining selected functional features of the calcaneus that distinguish between arboreal and terrestrial Cercopithecidae. Mesopithecus possesses a relatively long proximal calcaneal region associated with a slightly low and wide surface for the insertion of m. triceps surae. These features approximate that of semi-terrestrial Cercopithecidae and would suggest terrestrial cursorial activities. On the other hand, the relatively long and narrow proximal calcaneo-astragalar facet, similar to that of most arboreal species, would provide ampler subtalar movements. The mosaic of these features implies a semi-terrestrial way of life and conforms to the savanna-woodland paleoenvironment of Pikermi, Greece. These features appear to be well associated with foot function and change of habitus and are used to examine scenarios of the evolutionary history of the Colobinae.  相似文献   

15.
A detailed endocranial cast of the olfactory bulb of Amphipithecus mogaungensis, a latest middle Eocene primate from the Pondaung Formation (Myanmar), was studied in comparison with some Paleogene primates, the olfactory bulb of which has been reported. The olfactory bulb of Amphipithecus is located just anterior to the postorbital constriction, that is, within the interorbital septum. It is relatively large and pedunculate, not overlapped by the frontal lobe, and consists of two parallell aligned bodies. The relative volume of the olfactory bulb shows the same pattern as in adapiforms, but the location and bilobed form are more similar to those of omomyoids than of adapiforms. Electronic Publication  相似文献   

16.
Orangutans are amongst the most craniometrically variable of the extant great apes, yet there has been no attempt to explicitly link this morphological variation with observed differences in behavioral ecology. This study explores the relationship between feeding behavior, diet, and mandibular morphology in orangutans. All orangutans prefer ripe, pulpy fruit when available. However, some populations of Bornean orangutans (Pongo pygmaeus morio and P. p. wurmbii) rely more heavily on bark and relatively tough vegetation during periods of low fruit yield than do Sumatran orangutans (Pongo abelii). I tested the hypothesis that Bornean orangutans exhibit structural features of the mandible that provide greater load resistance abilities to masticatory and incisal forces. Compared to P. abelii, P. p. morio exhibits greater load resistance abilities as reflected in a relatively deeper mandibular corpus, deeper and wider mandibular symphysis, and relatively greater condylar area. P. p. wurmbii exhibits most of these same morphologies, and in all comparisons is either comparable in jaw proportions to P. p. morio, or intermediate between P. p. morio and P. abelii. These data indicate that P. p. morio and P. p. wurmbii are better suited to resisting large and/or frequent jaw loads than P. abelii. Using these results, I evaluated mandibular morphology in P. p. pygmaeus, a Bornean orangutan population whose behavioral ecology is poorly known. Pongo p. pygmaeus generally exhibits relatively greater load resistance capabilities than P. abelii, but less than P. p. morio. These results suggest that P. p. pygmaeus may consume greater amounts of tougher and/or more obdurate foods than P. abelii, and that consumption of such foods may intensify amongst Bornean orangutan populations. Finally, data from this study are used to evaluate variation in craniomandibular morphology in Khoratpithecus piriyai, possibly the earliest relative of Pongo from the late Miocene of Thailand, and the late Pleistocene Hoa Binh subfossil orangutan recovered from Vietnam. With the exception of a relatively thicker M(3) mandibular corpus, K. piriyai has jaw proportions that would be expected for an extant orangutan of comparable jaw size. Likewise, the Hoa Binh subfossil does not differ in skull proportions from extant Pongo, independent of the effects of increase in jaw size. These results indicate that differences in skull and mandibular proportions between these fossil and subfossil orangutans and extant Pongo are allometric. Furthermore, the ability of K. piriyai to resist jaw loads appears to have been comparable to that of extant orangutans. However, the similarity in jaw proportions between P. abelii and K. piriyai suggest the latter may have been dietarily more similar to Sumatran orangutans.  相似文献   

17.
Most of the 16 currently recognized astrapothere genera are well known through numerous specimens preserving at least almost complete dentition. One of the exceptions is the enigmatic genus Isolophodon Roth, 1903, based on very scant and fragmentary materials from Paleogene levels of central Patagonia. This taxon was ruled out from almost all taxonomic lists, although its validity has not been discussed by subsequent authors. We herein re-describe and discuss the taxonomic status of the species of Isolophodon. The type species, I. cingulosus Roth, 1903, is characterized by having lower cheek teeth with a much reduced hypoflexid, resembling derived uruguaytheriines, but lower-crowned and with three lower premolars, as in the species of Astraponotus Ameghino, 1901. This is the only astrapothere nominal species attributable to the Tinguirirican South American Land Mammal Age (SALMA, Early Oligocene). Isolophodon aplanatus Roth, 1903 (Casamayoran and Mustersan SALMAs, middle Late Eocene) has proportionally more elongated lower molars and a less developed paraflexid than the type species. Isolophodon would represent an early diverging lineage of astrapotheriids, in which some dental features evolved convergently with the more derived uruguaytheriines. Additionally, we describe other fragmentary but very significant specimens from Paleogene localities in central Patagonia (Argentina) attributable to the following taxa: cf. Scaglia kraglievichorum (Barrancan? subage), based on a partial upper molar nearly 60% larger than the type of Scaglia kraglievichorum Simpson, 1957; Astrapotheriidae gen. et sp. 1 (Barrancan? Subage, Middle Eocene), based on an isolated upper molar larger than any other Eocene astrapothere; Astrapotheriidae gen. et sp. 2, based on five isolated upper cheek teeth from “La Cantera” (Gran Barranca, Early Oligocene), characterized by a large, isolated hypocone and accessory cusps on P3-P4. These taxa enlarge the known diversity of Paleogene astrapotheres and document novel evolutionary patterns for these mammals.  相似文献   

18.
Conventional wisdom ties the origin and early evolution of the genus Homo to environmental changes that occurred near the end of the Pliocene. The basic idea is that changing habitats led to new diets emphasizing savanna resources, such as herd mammals or underground storage organs. Fossil teeth provide the most direct evidence available for evaluating this theory. In this paper, we present a comprehensive study of dental microwear in Plio-Pleistocene Homo from Africa. We examined all available cheek teeth from Ethiopia, Kenya, Tanzania, Malawi, and South Africa and found 18 that preserved antemortem microwear. Microwear features were measured and compared for these specimens and a baseline series of five extant primate species (Cebus apella, Gorilla gorilla, Lophocebus albigena, Pan troglodytes, and Papio ursinus) and two protohistoric human foraging groups (Aleut and Arikara) with documented differences in diet and subsistence strategies. Results confirmed that dental microwear reflects diet, such that hard-object specialists tend to have more large microwear pits, whereas tough food eaters usually have more striations and smaller microwear features. Early Homo specimens clustered with baseline groups that do not prefer fracture resistant foods. Still, Homo erectus and individuals from Swartkrans Member 1 had more small pits than Homo habilis and specimens from Sterkfontein Member 5C. These results suggest that none of the early Homo groups specialized on very hard or tough foods, but that H. erectus and Swartkrans Member 1 individuals ate, at least occasionally, more brittle or tough items than other fossil hominins studied.  相似文献   

19.
Primate appendicular limb bones were measured on the cross-sectional geometry at the mid-length of the humerus and femur and on the external dimensions of long bones of the same individuals. Cross sections were directly measured by means of computer tomography or direct sectioning. The morphometry of bones and locomotor behaviour is discussed from the viewpoint of the functional differentiation between the fore- and hindlimbs. The primate group which daily adopted a relatively terrestrial locomotor type demonstrates robust forelimb bones compared with the group which adopted a fully arboreal locomotor type. In contrast, the arboreal group showed relatively large and long hindlimb bones. The difference resembled the previously reported comparison between terrestrial and arboreal groups among wholly quadrupedal mammals. Humans were more similar to the arboreal group than to the terrestrial group. Parameters of the cross-sectional geometry showed a slightly positive allometry in total primate species. Slopes of the parameters were explained by the influence of muscle force.  相似文献   

20.
The primate family, Amphipithecidae, lived during the early Cenozoic in South Asia. In this study, the diet of late middle Eocene amphipithecids from the Pondaung Formation (Central Myanmar) is characterized using three different approaches: body mass estimation, shearing quotient quantification and dental microwear analysis. Our results are compared with other Paleogene amphipithecids from Thailand and Pakistan, and to the other members of the primate community from the Pondaung Formation. Our results indicate a majority of frugivores within this primate community. Pondaungia and “Amphipithecus” included hard objects, such as seeds and nuts, in their diet. Folivory is secondary for these taxa. Myanmarpithecus probably had a mixed diet based on fruit and leaves. Contrasting results and a unique dental morphology distinguish Ganlea from other amphipithecids. These render interpretation difficult but nevertheless indicate a diet tending towards leaves and fruit. However, the anterior dentition of Ganlea suggests that this taxon engaged in seed predation, using its protruding canine as a tool to husk hard fruits and obtain the soft seeds inside. Bahinia and Paukkaungia, two other Pondaung primates, are small (<500 g) and therefore would have depended on insects as their source of protein. As such, they occupied a very different ecological niche from Pondaung amphipithecids. This primate community is then compared with the Eocene-Oligocene primate communities of the Fayum from North Africa. Similarities between the late middle Eocene Pondaung primate community and extant equatorial and tropical South American primate communities are noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号