首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peroxidase-labelled Helix pomatia A hemagglutinin (HPH) was used as a T-cell marker for neuraminidase-treated human lymphocytes from blood or cerebrospinal fluid (CSF). Lymphocytes from the blood of 22 patients with noninflammatory diseases of the central nervous system and from the CSF of 16 patients with noninfectious diseases and 29 patients suffering from meningitis or meningoencephalitis were studied. Most HPH-binding cells were found in normal CSF. The variance in the number of reactive lymphocytes was higher in the CSF from patients with inflammatory diseases than in the other types of samples.  相似文献   

2.
When inoculated into cell cultures to search for cytopathic viruses, six out of 384 cerebrospinal fluid (CSF) samples from patients with different neurological disorders proved to have a transmissible cytotoxic activity (TCA) not correlated to a conventional infectious agents. Properties shown by a TCA previously detected in the CSF sample of a patient with brain ischemia (Portolani et al., 2005) were shared by each of the newly isolated TCAs. We conclude that independently of the neurological clinical picture shown by the patient, the TCA detected in the CSF samples under study could have the same origin.  相似文献   

3.
Secure determination of the binding of 99mTc-radiopharmaceuticals to plasma (P) and blood cell (BC) constituents can help to understand the biodistribution of radiophamaceuticals. The reported precipitation studies of blood with radiopharmaceuticals have shown that the results can not be easily compared between studies. We decided to determine the "gold standard" concentration of trichloroacetic acid (TCA) to evaluate the binding to blood elements for several radiopharmaceuticals used in routine nuclear medicine. We have studied phytic (99mTc-PHY), diethylenetriaminepentaacetic (99mTc-DTPA), glucoheptonic (99mTc-GHA) and dimercaptosuccinic (99mTc-DMSA) acids. Blood was incubated with radiopharmaceuticals, centrifuged and P and BC separated. Samples of P and BC were also precipitated with TCA concentrations (20.0, 10.0, 5.0, 1.0, 0.5 and 0.1 percent) and soluble (SF) and insoluble fractions (IF) were isolated. The percent radioactivity (percent rad) in IF-P depends on TCA concentration. It varied from 36.4 to 65.0 (99mTc-PHY), from 17.9 to 32.0 (99mTc-DTPA), from 11.5 to 38.8 (99mTc-GHA) and from 52.8 to 66.2 (99mTc-DMSA). The results for the binding of 99mTc-PHY to IF-P show that there was no differences in the percent rad when TCA concentrations of 0.1 to 1.0 percent were used. For 99mTc-DTPA, 5.0 percent is the best TCA concentration. For 99mTc-GHA, low values of percent rad bound to IF-P is found with TCA concentrations of 0.1, 0.5 and 1.0. Interestingly, with 99mTc-DMSA, high values of bound radioactivity are not dependent on TCA concentrations (0.1 to 10.0). Radioactivity in IF-BC depends on TCA concentration and it varied for 99mTc-PHY (80.1 to 54.1) and for 99mTc-GHA (85.5 to 61.7). With 99mTc-DTPA and with 99mTc-DMSA the percent rad in IF-BC seems independent of TCA concentration. We suggest that the evaluation of the binding of the various 99mTc-radiopharmaceuticals to blood constituents, using only one TCA concentration, should be avoided.  相似文献   

4.
We have previously found that tricyclic antidepressants (TCAs) induce apoptosis in quiescent human lymphocytes. The aim of the present study was to evaluate if TCAs induce apoptosis in proliferating human lymphocytes and in established blastoid lymphocytes also. The development of conA-induced lymphoblast populations was followed by measuring the CD25 membrane expression. Three TCA compounds were run with the following concentrations: imipramine (10, 20, 30, 40, 60 M), clomipramine (1, 10, 20, 30, 40 M) and citalopram (40, 60, 80, 100, 180 M). They all induced a dose-dependent apoptosis both in continuously transformed, as well as in established lymphoblasts. Preincubation of the TCA up to 48 h did not significantly increase induction of apoptosis. The three drugs tested were found to be potent inducers of apoptosis in proliferating lymphocytes. Furthermore, we found that the apoptotic populations in proliferating and in established blastoid lymphocytes were of f airly the same magnitude than in the corresponding population in TCA-incubated resting lymphocytes. In conclusion, we demonstrate that TCAs induce apoptosis in proliferating lymphocytes, as they do in quiescent lymphocytes. Furthermore, the exent of apoptosis was even more pronounced in TCA-incubated lymphoblasts compared to TCA-treated resting lymphocytes.  相似文献   

5.
Activated T lymphocytes play a crucial role in orchestrating cellular infiltration during a cell-mediated immune (CMI) reaction. TCA3, a C-C chemokine, is produced by Ag-activated T cells and is chemotactic for neutrophils and macrophages, two cell types in a murine CMI reaction. Using a gelatin sponge model for delayed-type hypersensitivity (DTH), we show that TCA3 is a component of the expression phase of an anticryptococcal CMI response in mice. TCA3 mRNA levels are augmented in anticryptococcal DTH reactions at the same time peak influxes of neutrophils and lymphocytes are observed. Neutralization of TCA3 in immunized mice results in reduced numbers of neutrophils and lymphocytes at DTH reaction sites. However, when rTCA3 is injected into sponges in naive mice, only neutrophils are attracted into the sponges, indicating TCA3 is chemotactic for neutrophils, but not lymphocytes. We show that TCA3 is indirectly attracting lymphocytes into DTH-reactive sponges by affecting at least one other chemokine that is chemotactic for lymphocytes. Of the two lymphocyte-attracting chemokines assessed, monocyte-chemotactic protein-1 and macrophage-inflammatory protein-1alpha (MIP-1alpha), only MIP-1alpha was reduced when TCA3 was neutralized, indicating that TCA3 affects the levels of MIP-1alpha, which attracts lymphocytes into the sponges. TCA3 also plays a role in protection against Cryptococcus neoformans in the lungs and brains of infected mice, as evidenced by the fact that neutralization of TCA3 results in increased C. neoformans CFU in those two organs.  相似文献   

6.
BACKGROUND: We analyzed the gammadelta T cell composition and responses in the peripheral blood and cerebrospinal fluid (CSF) of children affected by tuberculous meningitis (TBM) and in control children. MATERIALS AND METHODS: Peripheral blood and CSF samples were stimulated with different phosphoantigens and IL-2, and expansion of Vgamma9/Vdelta2 T cells assessed by FACS analysis. Vgamma9/Vdelta2 lines were obtained by culturing CSF or peripheral blood mononuclear cells (PBMC) in vitro with phosphoantigens and IL-2 for 2 months, and tested for proliferation and cytokine production in response to phosphoantigens. Vdelta2(D)Jdelta junctional sequence length was assessed by PCR. RESULTS: The repertoire of gammadelta T cells from the CSF of TBM patients was characterized by the predominance of Vgamma9/Vdelta2 T lymphocytes, which accounted for >80% of gammadelta T cells. Vgamma9/Vdelta2 cells from the CSF of TBM children responded to different synthetic and natural (mycobacterial) phosphoantigens and produced discrete amounts of IFN-gamma and TNF-alpha. The in vitro expansion of Vgamma9/Vdelta2 T cells from CSF and peripheral blood of TBM patients prominently decreased following chemotherapy, and similarly, the proportion of ex vivo unstimulated Vgamma9/Vdelta2 T cells in CSF of TBM patients decreased to levels detected in the CSF of control subjects. Vdelta2 CDR3 TCR analysis showed that the remaining Vdelta2 cells in the CSF of TBM patients were still polyclonal. CONCLUSIONS: These findings are consistent with an involvement of Vgamma9/Vdelta2 T cells in TBM. http://link. springer-ny.com/link/service/journals/00020/bibs/5n5p301. html  相似文献   

7.
In this study we confirm earlier reports of an increase of the proportion of T and CD4+ lymphocytes and a decrease of B and CD8+ lymphocytes in cerebrospinal fluid (CSF) as compared to peripheral blood (PB) in MS patients. In addition we now demonstrate that this difference between CSF and PB lymphocyte populations is of the same magnitude in healthy individuals suggesting that it is physiological and not associated with disease. Functionally distinct subsets of the T human helper cell (CD4+) population have previously been defined by the monoclonal antibodies 4B4 (CDw29), Leu-18 (CD45R), and UCHL-1. In the present investigation we demonstrate a selective increase in the proportion of CD4+CDw29+CD45R-UCHL-1+ lymphocytes in CSF as compared to PB of both MS patients and healthy individuals, which strongly indicates that also this enrichment is physiological rather than associated with disease. A possible relationship between this subset of CD4+ lymphocytes and T memory cells is discussed.  相似文献   

8.
The influence of purified recombinant human TNF-alpha (rhuTNF-alpha) was assessed, alone and in combination with purified recombinant human IFN-gamma (rhuIFN-gamma), for its effects on enhancing release from human T lymphocytes of activities that stimulate colony formation by granulocyte-macrophage, erythroid, and multipotential progenitor cells. rhuTNF-alpha or rhuIFN-gamma enhanced the release of CSF, which were determined to be granulocyte-CSF and granulocyte-macrophage-CSF by human bone marrow colony assays, morphologic assessment of colony types, and neutralization studies with rabbit anti-human granulocyte-CSF and monoclonal mouse anti-human granulocyte-macrophage-CSF. The CSF were released only when PHA was used, whether or not rhuTNF-alpha and/or rhuIFN-gamma were present while the lymphocytes conditioned the medium. T lymphocytes were sorted into subsets by using three-color immunofluorescence and a dye laser flow cytometry system with cells incubated with biotin anti-Leu-4 labeled with Texas Red, FITC-conjugated anti-Leu-3a, and phycoerythrin-conjugated anti-Leu-2a. Both the Leu-4+3a+2a- and the Leu-4+2a+3a- cells released CSF in response to PHA, but the release of CSF from PHA-stimulated lymphocytes was enhanced by rhuTNF-alpha and rhuIFN-gamma only from the Leu-4+3a+2a- subset of cells. Use of the three-color cell sorting made it highly unlikely that NK cells were involved, because both sorted subsets were positive for Leu-4. rhuTNF-alpha and rhuIFN-gamma synergized to enhance release of CSF such that low concentrations of each molecule, which were inactive when used alone, were active when the two molecules were used together. These studies suggest a role, at least in vitro, for TNF-alpha and IFN-gamma in the release of CSF from subsets of T lymphocytes stimulated with PHA.  相似文献   

9.
10.
C Y Li  L T Yam 《Acta cytologica》1992,36(6):963-967
Serial studies were done on cerebrospinal fluid (CSF) from a patient with sarcoidosis involving the meninges. Initially when the disease was active, the CSF protein was increased and glucose decreased. The number of cells in the CSF was moderately increased, and many mononuclear cells were present. Cytologic studies of the CSF showed many normal and some atypical lymphocytes. Immunochemical studies showed that most of these lymphocytes were T cells, with T-helper cells predominating over T-suppressor cells by a ratio of 3.92; B-lymphocytes were polyclonal. Subsequent studies of the CSF over the following three and one-half years showed that the protein and glucose content and the cell counts in the fluid did not correlate well with the activity of the disease. The number of atypical lymphocytes seemed to be a more useful marker of disease activity in the patient. Cytologic studies, when interpreted within the context of other CSF and clinical findings, are useful for the assessment of patients with sarcoidosis involving the meninges.  相似文献   

11.
Gasoline constitutes a mixture of chemicals that contain well-known genotoxicants. Thus, chronic occupational exposure to gasoline may be considered to possess genotoxic risk. In this study, the frequencies of total chromosomal aberrations (TCA), aberrant cells (Ab.c.), sister chromatid exchanges (SCE), high-frequency cells (HFC), and high-frequency cell individual (HFI) were investigated in peripheral blood lymphocytes from 17 gasoline-exposed workers (10 smokers and 7 non-smokers) and 22 unexposed reference subjects (12 smokers and 10 non-smokers). The exposed subjects were gasoline truck loaders at a gasoline company from Tunis City, north of Tunisia. The results indicate multiple CA, such as dicentrics (DIC), chromatid breaks (SB), and chromosome breaks (DB). A significant difference was observed in TCA and Ab.c. frequencies between exposed and unexposed groups (p < 0.01). A significant difference was found in frequencies of SCE (p < 0.01) and HFI (p < 0.05) between exposed and unexposed groups. SCE and TCA frequencies of smokers were found to be significantly higher than those of non-smokers in both groups. There was an interaction between gasoline exposure and smoking habit for TCA (p = 0.020), but not for SCE. Our findings indicate that gasoline truck loaders were under risk of significant cytogenetic damage that was enhanced by their smoking habit.  相似文献   

12.
It is unknown which factors determine the changes in cerebrospinal fluid (CSF) pressure inside the craniospinal system during the changes of the body position. To test this, we have developed a new model of the CSF system, which by its biophysical characteristics and dimensions imitates the CSF system in cats. The results obtained on a model were compared to those in animals observed during changes of body position. A new model was constructed from two parts with different physical characteristics. The "cranial" part is developed from a plastic tube with unchangeable volume, while the "spinal" part is made of a rubber baloon, with modulus of elasticity similar to that of animal spinal dura. In upright position, in the "cranial" part of the model the negative pressure appears without any measurable changes in the fluid volume, while in "spinal" part the fluid pressure is positive. All of the observed changes are in accordance to the law of the fluid mechanics. Alterations of the CSF pressure in cats during the changes of the body position are not significantly different compared to those observed on our new model. This suggests that the CSF pressure changes are related to the fluid mechanics, and do not depend on CSF secretion and circulation. It seems that in all body positions the cranial volume of blood and CSF remains constant, which enables a good blood brain perfusion.  相似文献   

13.

Introduction

B-cell non-Hodgkin lymphoma (B-NHL) is the most common hematological malignancy and different genetic alterations are frequently detected in transformed B lymphocytes. Within this heterogeneous disease, certain aggressive subgroups have an increased risk of central nervous system (CNS) involvement at diagnosis and/or relapse, resulting in parenchymal or leptomeningeal infiltration (LI) in 5–15% of cases. The current sensitivity limitations of cerebrospinal fluid (CSF) cytology and contrast-enhanced MRI for CNS involvement, mainly at early stages, motivates the search for alternative diagnostic methods.

Objectives

Here we aim at using untargeted 1H-NMR metabolomics to identify putative biomarkers for LI in B-NHL patients.

Methods

CSF and peripheral blood samples were obtained from B-NHL patients with a positive (n?=?7, LI group) or negative LI diagnostic (n?=?13, control group). For seven patients, CSF samples were collected during the course of intrathecal chemotherapy, making it possible to assess the patient´s response to treatment. 1H-NMR spectra were acquired and statistical multivariate and univariate analysis were performed to identify significant alterations.

Results

Significant metabolite differences were found between LI and control groups in CSF, but not in serum. A predictive PLS-DA cross-validated model identified significant pool changes in glycine, alanine, pyruvate, acetylcarnitine, carnitine, and phenylalanine. Additionally, increments in protein signals were detected in the LI group. Significantly, the PLS-DA model predicted correctly all samples obtained from the group of patients in remission during LI treatment.

Conclusions

The results show that the CSF NMR-metabolomics approach is a promising complementary method in clinical diagnosis and treatment follow-up of LI in B-NHL patients.
  相似文献   

14.
The effect of recombinant alpha interferon (INF) to the colony stimulating factor (CSF) production was examined with in vitro culture of the bone marrow of patients with chronic granulocytic leukaemia (CGL). It could be found that addition of interferon into a suspension of preincubated phytohaemagglutinin (PHA) lymphocytes from peripheral blood represents an inhibity factor for colony and cluster formation in autologic human marrow cultures.  相似文献   

15.

Background

Measurement of HIV DNA-bearing cells in cerebrospinal fluid (CSF) is challenging because few cells are present. We present a novel application of the sensitive droplet digital (dd)PCR in this context.

Methods

We analyzed CSF cell pellets and paired peripheral blood mononuclear cells (PBMC) from 28 subjects, 19 of whom had undetectable HIV RNA (<48 copies/mL) in both compartments. We extracted DNA from PBMC using silica-based columns and used direct lysis on CSF cells. HIV DNA and the host housekeeping gene (RPP30) were measured in CSF and PBMC by (dd)PCR. We compared HIV DNA levels in virally-suppressed and-unsuppressed subgroups and calculated correlations between HIV DNA and RNA levels in both compartments using non-parametric tests.

Results

HIV DNA was detected in 18/28 (64%) CSF cell pellets, including 10/19 (53%) samples with undetectable HIV RNA. HIV DNA levels in CSF cell pellets were not correlated with RPP30 (p = 0.3), but correlated positively with HIV RNA in CSF (p = 0.04) and HIV DNA in PBMC (p = 0.03). Cellular HIV DNA in CSF was detected in comparable levels in HIV RNA-suppressed and unsuppressed subjects (p = 0.14). In contrast, HIV DNA levels in PBMC were significantly lower in HIV RNA-suppressed than in unsuppressed subjects (p = 0.014). Among subjects with detectable HIV DNA in both compartments, HIV DNA levels in CSF were significantly higher than in PBMC (p<0.001).

Conclusions

Despite low mononuclear cell numbers in CSF, HIV DNA was detected in most virally suppressed individuals. In contrast to PBMC, suppressive ART was not associated with lower HIV DNA levels in CSF cells, compared to no ART, perhaps due to poorer ART penetration, slower decay of HIV DNA, or enrichment of HIV DNA-bearing mononuclear cells into the CSF, compared to blood. Future studies should determine what fraction of HIV DNA is replication-competent in CSF leukocytes, compared to PBMC.  相似文献   

16.
Dichloroacetate (DCA) and trichloroacetate (TCA) are prominent by-products of chlorination of drinking water. Both chemicals have been shown to be hepatic carcinogens in mice. Prior work has demonstrated that DCA inhibits its own metabolism in rats and humans. This study focuses on the effect of prior administration of DCA or TCA in drinking water on the pharmacokinetics of a subsequent challenge dose of DCA or TCA in male B6C3F1 mice. Mice were provided with DCA or TCA in their drinking water at 2 g/l for 14 days and then challenged with a 100 mg/kg i.v. (non-labeled) or gavage (14C-labeled) dose of DCA or TCA. The challenge dose was administered after 16 h fasting and removal of the haloacetate pre-treatment. The haloacetate blood concentration-time profile and the disposition of 14C were characterized and compared with controls. The effect of pre-treatment on the in vitro metabolism of DCA in hepatic S9 was also evaluated. Pre-treatment with DCA caused a significant increase in the blood concentration-time profiles of the challenge dose of DCA. No effect on the blood concentration-time profile of DCA was observed after pre-treatment with TCA. Pre-treatment with TCA had no effect on subsequent doses of DCA. Pre-treatment with DCA did not have a significant effect on the formation of 14CO2 from radiolabeled DCA. In vitro experiments with liver S9 from DCA-pre-treated mice demonstrated that DCA inhibits it own metabolism. These results indicate that DCA metabolism in mice is also susceptible to inhibition by prior treatment with DCA, however the impact on clearance is less marked in mice than in F344 rats. In contrast, the metabolism and pharmacokinetics of TCA is not affected by pre-treatment with either DCA or TCA.  相似文献   

17.
The analysis of cerebrospinal fluid (CSF) is used in biomarker discovery studies for various neurodegenerative central nervous system (CNS) disorders. However, little is known about variation of CSF proteins and metabolites between patients without neurological disorders. A baseline for a large number of CSF compounds appears to be lacking. To analyze the variation in CSF protein and metabolite abundances in a number of well-defined individual samples of patients undergoing routine, non-neurological surgical procedures, we determined the variation of various proteins and metabolites by multiple analytical platforms. A total of 126 common proteins were assessed for biological variations between individuals by ESI-Orbitrap. A large spread in inter-individual variation was observed (relative standard deviations [RSDs] ranged from 18 to 148%) for proteins with both high abundance and low abundance. Technical variation was between 15 and 30% for all 126 proteins. Metabolomics analysis was performed by means of GC-MS and nuclear magnetic resonance (NMR) imaging and amino acids were specifically analyzed by LC-MS/MS, resulting in the detection of more than 100 metabolites. The variation in the metabolome appears to be much more limited compared with the proteome: the observed RSDs ranged from 12 to 70%. Technical variation was less than 20% for almost all metabolites. Consequently, an understanding of the biological variation of proteins and metabolites in CSF of neurologically normal individuals appears to be essential for reliable interpretation of biomarker discovery studies for CNS disorders because such results may be influenced by natural inter-individual variations. Therefore, proteins and metabolites with high variation between individuals ought to be assessed with caution as candidate biomarkers because at least part of the difference observed between the diseased individuals and the controls will not be caused by the disease, but rather by the natural biological variation between individuals.The analysis of CSF1 is indispensable in the diagnosis and understanding of various neurodegenerative CNS disorders (13). CSF is a fluid that has different functions, such as the protection of the brain from outside forces, transport of biological substances, and excretion of toxic and waste substances. It is in close contact with the extracellular fluid of the brain. Therefore, the composition of CSF can reflect biological processes of the brain (4). By discovering the characterization of the proteome and metabolome of CSF we may gain better insight on the pathogenesis of CNS disorders. This would be significant because, for many of these disorders, the etiology is still unclear.CSF is produced in the ventricles of the brain and in the subarachnoidal spaces. Humans normally produce around 500 mL of CSF each day, and the total volume of CSF at a given time is approximately 150 mL. CSF reflects the composition of blood plasma, although the concentrations of most proteins and metabolites in CSF are lower. However, individual proteins and metabolites can act differently. Active transport from blood and secretion from the brain contribute to the specific composition of CSF. This composition can be disturbed in neurological disorders (56). Since CNS-specific proteins and metabolites are typically low in abundance compared with their levels in blood, this change in composition is more likely to be found in CSF because in blood the more abundant plasma proteins can completely mask the signal of the less abundant proteins. Also, if the disease markers do not cross the blood-brain-barrier, then the CSF is the only viable biofluid source. Therefore, CSF might be an excellent source for biomarker discovery for CNS disorders if we follow the hypothesis that neurological diseases induce alterations in CSF protein and metabolite levels.Analysis of metabolites in CSF has been common practice in clinical chemistry for decades to analyze biomarkers for inborn errors of metabolism. The approaches used are either metabolite profiling of CSF using NMR (7), or targeted analysis of one or a few metabolites using specific analytical methods (8). Metabolomics includes the analysis of metabolites in biofluids by NMR or MS-based approaches, i.e. LC-MS or GC-MS. Several metabolite profiling studies were performed on CSF using NMR, some of which were published only recently (9,10). Surprisingly, very few metabolomics studies using MS-based methods have been performed on CSF to date (11,12). One of the reasons is the fact that the human CSF metabolome has not yet been characterized very well. Many CSF metabolites remain unidentified, and for those that have been identified there is not much known about normal concentration ranges. A systematic categorization of the CSF metabolome is necessary and expected to be beneficial for future biomarker discoveries. Recently, Wishart et al. made a good start in exploring the human CSF metabolome with their computer-aided literature survey that resulted in 308 detectable metabolites in human CSF (13).The CSF proteome has been characterized to a much larger extent than the CSF metabolome and is currently the topic of investigations in several research groups worldwide. Recently, studies have been published with numerous identities and quantities of CSF proteins. Pan and co-workers were able to identify 2,594 proteins in well-characterized pooled human CSF samples using strict proteomics criteria with a combination of linear trap quadrupole LTQ-FT (Thermo Fisher Scientific, Bremen, Germany) and MALDI TOF/TOF equipment (14). They were also able to quantify several proteins using a targeted LC MALDI TOF/TOF approach (15). Hu et al. have studied the intra- and inter-individual variation in human CSF and found large variations in protein concentrations in six patients by means of two dimensional–gel electrophoresis (16), focusing mainly on the variations within individuals at two different time-points. Although only a limited number of proteins was analyzed, the variation between the time-points was profound, exceeding 200% for seven proteins.Unique CSF biomarkers may contribute to a deeper understanding of the mechanisms of CNS disorders. However, for this assumption to come true, there are still challenges ahead. Although CSF is not as complex as blood (almost missing the cellular part and the clotting system present in blood), it is expected to consist of thousands of organic- and non-organic salts, sugars, lipids, and proteins. A large part of the CSF consists of a few highly abundant metabolites and proteins, which hamper, if no precautions are undertaken, the identification and quantification of metabolites and proteins that occur in lower amounts. The analysis of the CSF metabolome is complicated because of the diverse chemical nature of metabolites and the lower concentration of metabolites compared with blood. Analytical method development is still required because it is not possible to identify the entire range of CSF metabolites with one single analytical method. Although in proteome research efforts have been made to quantify proteins, metabolomics studies up to now either do not provide quantitative information or they only give information for the most abundant metabolites.Another challenge is the sample amount obtained by lumbar puncture to collect CSF. Lumbar puncture is an invasive method that is not performed as frequently as blood sampling. However, often after the analysis of various clinical parameters, only a limited amount of CSF sample is available for biomarker discovery. Metabolomics studies are hampered by limited CSF sample amount. Therefore, analytical methods are required that are suitable to handle relatively small sample volumes.The main objectives of this study were (1) to analyze the variation in CSF protein and metabolite abundances in a number of well-defined individual samples by multiple analytical platforms; and (2) to integrate metabolomics and proteomics to present biological variations in metabolite and protein abundances and compare these with technical variations with the currently used analytical methods. The results will facilitate and increase the application of CSF for future biomarker discovery studies in the field of neurodegenerative diseases and neuro-oncology.  相似文献   

18.
An assay measuring the release of TCA soluble radioactive peptides from 3H acetylated casein or hemoglobin has been used to demonstrate that human peripheral blood lymphocytes contain a number of proteases, including cathepsin D, a neutral serine protease(s) inhibited by DFP and TLCK and probably a thiol protease(s) as well. We have also found a neutral protease activity bound to the surface of the lymphocyte, but not secreted into the medium which is not inhibited by TLCK. TLCK inhibits blast transformation to PHA under conditions that do not profoundly affect protein synthesis and inhibits the total extractable proteolytic activity of lymphocytes by approximately 25%. Lymphocytes contain one or more proteases that may play a role in blast transformation and other lymphocyte functions.  相似文献   

19.
Neuromyelitis optica (NMO) is an inflammatory disease characterized by recurrent attacks of optic neuritis and myelitis. It is generally accepted that autoantibodies against aquaporin 4 water channel protein play a pathogenic role in neuromyelitis optica. We have recently reported that plasmablasts are increased in the peripheral blood of this autoimmune disease, and are capable of producing autoantibodies against aquaporin 4. Here, we demonstrate that CD138+HLA-DR+ plasmablasts, a subset of IgG-producing cells, are increased in the peripheral blood and are enriched among the cerebrospinal fluid (CSF) lymphocytes during the relapse of neuromyelitis optica. Notably, these CD138+HLA-DR+ plasmablasts overexpress CXCR3, whose ligands are present in the cerebrospinal fluid during the relapse of neuromyelitis optica. These results led us to speculate that plasmablasts producing anti-aquaporin 4 autoantibodies might traffic toward the central nervous system (CNS). Furthermore, we performed single-cell sorting of plasmablasts from peripheral blood and CSF samples from NMO and sequenced the complementarity-determining regions (CDRs) of the IgG heavy chain expressed by the sorted plasmablast clones. There were high frequencies of mutations in the CDRs compared with framework regions, indicating that these plasmablast clones would represent a post-germinal center B-cell lineage. Consistent with the preceding results, the plasmablast clones from the peripheral blood shared the same CDR sequences with the clones from the CSF. These results indicate that IgG-producing plasmablasts, which are guided by helper T-cells, may migrate from the peripheral blood preferentially to the CSF. Since migratory plasmablasts could be involved in the inflammatory pathology of NMO, the B-cell subset and their migration might be an attractive therapeutic target.  相似文献   

20.

Objective

Tonic-clonic activity (TCA) at onset complicates 3% to 21% of cases of subarachnoid hemorrhage (SAH). The impact of onset TCA on in-hospital complications, including seizures, remains unclear. One study associated onset TCA with poor clinical outcome at 6 weeks after SAH, but to our knowledge no other studies have confirmed this relationship. This study aims to assess the impact of onset TCA on in-hospital complications, poor functional outcome, mortality, and epilepsy at 3 months.

Methods

Analysis of a prospective study cohort of 1479 SAH patients admitted to Columbia University Medical Center between 1996 and 2012. TCA within 6 hours of hemorrhage onset was identified based on accounts of emergency care providers or family witnesses.

Results

TCA at onset was described in 170 patients (11%). Patients with onset TCA were younger (P = 0.002), presented more often with poor clinical grade (55% vs. 26%, P<0.001) and had larger amounts of cisternal, intraventricular, and intracerebral blood than those without onset TCA (all, P<0.001). After adjusting for known confounders, onset TCA was significantly associated with in-hospital seizures (OR 3.80, 95%-CI: 2.43–5.96, P<0.001), in-hospital pneumonia (OR 1.56, 95%-CI: 1.06–2.31, p = 0.02), and delayed cerebral ischemia (OR 1.77, 95%-CI: 1.21–2.58, P = 0.003). At 3 months, however, onset TCA was not associated with poor functional outcome, mortality, and epilepsy after adjusting for age, admission clinical grade, and cisternal blood volume.

Conclusions

Onset TCA is not a rare event as it complicates 11% of cases of SAH. New and clinically relevant findings are the association of onset TCA with in-hospital seizures, pneumonia and delayed cerebral ischemia. Despite the increased risk of in-hospital complications, onset TCA is not associated with disability, mortality, and epilepsy at 3 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号