首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metalloregulatory protein ArsR, which offers high affinity and selectivity toward arsenite, was overexpressed in Escherichia coli in an attempt to increase the bioaccumulation of arsenic. Overproduction of ArsR resulted in elevated levels of arsenite bioaccumulation but also a severe reduction in cell growth. Incorporation of an elastin-like polypeptide as the fusion partner to ArsR (ELP153AR) improved cell growth by twofold without compromising the ability to accumulate arsenite. Resting cells overexpressing ELP153AR accumulated 5- and 60-fold-higher levels of arsenate and arsenite than control cells without ArsR overexpression. Conversely, no significant improvement in Cd2+ or Zn2+ accumulation was observed, validating the specificity of ArsR. The high affinity of ArsR allowed 100% removal of 50 ppb of arsenite from contaminated water with these engineered cells, providing a technology useful to comply with the newly approved U.S. Environmental Protection Agency limit of 10 ppb. These results open up the possibility of using cells overexpressing ArsR as an inexpensive, high-affinity ligand for arsenic removal from contaminated drinking and ground water.  相似文献   

2.
3.
植物螯合肽合酶(pcs)受重金属离子激活,并以还原型谷胱甘肽为底物合成植物螯合肽(PCs),在植物和真菌的重金属解毒机制中起重要作用.拟南芥基因组中有两个编码PCS的基因AtPCS1和AtPCS2,但AtPCS1单基因功能缺失即可导致相应的突变体cad1—3对镉高度敏感,其体内也检测不到PCs;而体外表达分析表明,AtPCS2具有完全的PCs合酶活性,预示植物体内可能存在AtPCS2的负向调控机制.基于该推测,构建了CaMV35S启动子驱动的AtPCS2基因编码区与c—Myc抗原标签融合的过表达载体.结果表叽在cadl-3的MV35S/AtPCS2:cMyc的异位表达株系中,AtPCS2的mRNA和蛋白都保持较高的表达量.不仅如此,AtPCS2具有植物螯合肽合成能力,并完全互补了cad1-3突变体的镉敏感性状.AtPCS2和EYFP的融合蛋白在细胞质有明显表达,在细胞核也检测到一定信号.以上结果表明,AtPCS2在植物体内可能主要受转录水平调控,而且可能具有调节PCs合成以外的其他生化功能.  相似文献   

4.
Phytochelatins (PCs) with good binding affinities for a wide range of heavy metals were exploited to develop microbial sorbents for cadmium removal. PC synthase from Schizosaccharomyces pombe (SpPCS) was overexpressed in Escherichia coli, resulting in PC synthesis and 7.5-times-higher Cd accumulation. The coexpression of a variant γ-glutamylcysteine synthetase desensitized to feedback inhibition (GshI*) increased the supply of the PC precursor glutathione, resulting in further increases of 10- and 2-fold in PC production and Cd accumulation, respectively. A Cd transporter, MntA, was expressed with SpPCS and GshI* to improve Cd uptake, resulting in a further 1.5-fold increase in Cd accumulation. The level of Cd accumulation in this recombinant E. coli strain (31.6 μmol/g [dry weight] of cells) was more than 25-fold higher than that in the control strain.  相似文献   

5.
Russian Journal of Plant Physiology - Transgenic plants containing genes of bacterial phytases represent one of the promising ways to solve the problem of phosphorus deficiency in the nutrition of...  相似文献   

6.
We expressed the Arabidopsis thaliana gene for phytochelatin synthase (PCSAt) in Mesorhizobium huakuii subsp. rengei B3, a microsymbiont of Astragalus sinicus, a legume used as manure. The PCSAt gene was expressed under the control of the nifH promoter, which regulates the nodule-specific expression of the nifH gene. The expression of the PCSAt gene was demonstrated in free-living cells under low-oxygen conditions. Phytochelatin synthase (PCS) was expressed and catalyzed the synthesis of phytochelatins [(γ-Glu-Cys)n-Gly; PCs] in strain B3. A range of PCs, with values of n from 2 to 7, was synthesized by cells that expressed the PCSAt gene, whereas no PCs were found in control cells that harbored the empty plasmid. The presence of CdCl2 activated PCS and induced the synthesis of substantial amounts of PCs. Cells that contained PCs accumulated 36 nmol of Cd2+/mg (dry weight) of cells. The expression of the PCSAt gene in M. huakuii subsp. rengei B3 increased the ability of cells to bind Cd2+ approximately 9- to 19-fold. The PCS protein was detected by immunostaining bacteroids of mature nodules of A. sinicus containing the PCSAt gene. When recombinant M. huakuii subsp. rengei B3 established the symbiotic relationship with A. sinicus, the symbionts increased Cd2+ accumulation in nodules 1.5-fold.  相似文献   

7.
8.
9.
Accumulation of coumarins in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
The biosynthesis of coumarins in plants is not well understood, although these metabolic pathways are often found in the plant kingdom. We report here the occurrence of coumarins in Arabidopsis thaliana ecotype Columbia. Considerably high levels of scopoletin and its beta-d-glucopyranoside, scopolin, were found in the wild-type roots. The scopolin level in the roots was approximately 1200nmol/gFW, which was approximately 180-fold of that in the aerial parts. Calli accumulated scopolin at a level of 70nmol/gFW. Scopoletin and scopolin formation were induced in shoots after treatment with either 2,4-dichlorophenoxyacetic acid (at 100microM) or a bud-cell suspension of Fusarium oxysporum. In order to gain insight into the biosynthetic pathway of coumarins in A. thaliana, we analyzed coumarins in the mutants obtained from the SALK Institute collection that carried a T-DNA insertion within the gene encoding the cytochrome P450, CYP98A3, which catalyzes 3'-hydroxylation of p-coumarate units in the phenylpropanoid pathway. The content of scopoletin and scopolin in the mutant roots greatly decreased to approximately 3% of that in the wild-type roots. This observation suggests that scopoletin and scopolin biosynthesis in A. thaliana are strongly dependent on the 3'-hydroxylation of p-coumarate units catalyzed by CYP98A3. We also found that the level of skimmin, a beta-d-glucopyranoside of umbelliferone, was slightly increased in the mutant roots.  相似文献   

10.
1 L-myo-Inositol 1-Phosphate Synthase from Arabidopsis thaliana   总被引:5,自引:1,他引:4       下载免费PDF全文
  相似文献   

11.
We determined the characteristics of phytochelatin synthase from tobacco (Nicotiana tabacum cv. Bright Yellow-2) cells, especially the conditions for the enzyme stability. From the results, we proposed the optimum assay conditions of the enzyme activity.  相似文献   

12.
N-Acylethanolamines (NAEs) are lipids involved in several physiological processes in animal and plant cells. In brain, NAEs are ligands of endocannabinoid receptors, which modulate various signaling pathways. In plant, NAEs regulate seed germination and root development, and they are involved in plant defense against pathogen attack. This signaling activity is started by an enzyme called N-acylphosphatidylethanolamine (NAPE) synthase. This catalyzes the N-acylation of phosphatidylethanolamine to form NAPE, which is most likely hydrolyzed by phospholipase D β/γ isoforms to generate NAE. This compound is further catabolized by fatty amide hydrolase. The genes encoding the enzymes involved in NAE metabolism are well characterized except for the NAPE synthase gene(s). By heterologous expression in Escherichia coli and overexpression in plants, we characterized an acyltransferase from Arabidopsis thaliana (At1g78690p) catalyzing the synthesis of lipids identified as NAPEs (two-dimensional TLC, phospholipase D hydrolysis assay, and electrospray ionization-tandem mass spectrometry analyses). The ability of free fatty acid and acyl-CoA to be used as acyl donor was compared in vitro with E. coli membranes and purified enzyme (obtained by immobilized metal ion affinity chromatography). In both cases, NAPE was synthesized only in the presence of acyl-CoA. β-Glucuronidase promoter experiments revealed a strong expression in roots and young tissues of plants. Using yellow fluorescent protein fusion, we showed that the NAPE synthase is located in the plasmalemma of plant cells.N-Acylethanolamines (NAEs)2 are bioactive lipids composed of an ethanolamine headgroup amide-linked to an acyl chain varying in length and degree of saturation. In animals, NAEs are involved in different physiological processes, such as neuroprotective action (1), embryo development (2), cell proliferation (3), apoptosis (4), nociception, anxiety, inflammation, appetite/anorexia, learning, and memory (for review, see Ref. 5). Most studies carried out with animal cells/tissues have focused on N-arachidonoylethanolamine (anandamide, NAE20:4), which is synthesized in brain neurons but also, under certain conditions, in macrophage cells (6). NAE20:4 binds CB1 cannabinoid receptors located in brain neurons (7) and also acts as ligand of vanilloid receptors for pain modulation (8). In addition, it has been shown that NAE20:4 also promotes food intake, whereas NAE18:0 and NAE18:1 exert anorexic effects by increasing satiety (911). NAE16:0 is accumulated during inflammation and has several anti-inflammatory effects (for a review, see Ref. 12).In plants, NAEs are thought to be involved in various physiological functions. For example, because NAE levels observed in various dry seeds decline rapidly after imbibition, a possible role of these compounds in the regulation of seed germination has been proposed (13). It was further observed that the addition of 25 μm NAE12:0 to growth medium of Arabidopsis thaliana leads to a decrease in the size of the main and lateral roots and in root hair formation. This reduction in growth was associated with a modification of cytoskeletal organization (14). NAE12:0 is also able to delay cut Dianthus caryophyllus (carnation) senescence by decreasing oxidative damage and enhancing antioxidant defense (15), whereas NAE14:0 inhibits the elicitor-induced medium alkalinization and activates phenylalanine ammonia lyase gene expression involved in plant defense against pathogen attack (16).Both in plant and animal cells (for a review, see Ref. 17), NAEs are formed by the hydrolysis (by PLDs) of N-acylphosphatidylethanolamine (NAPE). NAPE is an unusual derivative of phosphatidylethanolamine (PE) with a third fatty acid linked to the amine position of the ethanolamine headgroup. In animals, the formation of NAEs is catalyzed by a PLD with a high specificity toward NAPE (NAPE-PLD). In plants, PLDβ and PLDγ isoforms, but not PLDα, hydrolyzed NAPE into NAE in vitro, and this is thought to operate in response to several biotic and abiotic stresses. Both in animals and in plants, NAEs signaling is terminated by the action of fatty acid amide hydrolases, which hydrolyze NAEs to free fatty acid and ethanolamine. FAAH has been identified and characterized in mammals and plants (for a review, see Ref. 17). In Arabidopsis, FAAH has been shown to modulate NAE content. Moreover, lines overexpressing FAAH displayed enhanced seedling growth as well as increased cell size (18) and were also more susceptible to bacterial pathogens (19).Although the role of NAEs and their catabolism have been extensively investigated, little is known about their precursors, the NAPEs. NAPEs represent a minor phospholipid class but are present in all tissues of plants and animals. The principal function of NAPEs is to serve as a precursor for the production of lipid mediator NAEs, but it has also been suggested that NAPEs could serve as a membrane stabilizer to maintain cellular compartmentalization during tissue damage (20). More recently, N-palmitoyl-PE was proposed to act as an inhibitor of macrophage phagocytosis through inhibition of the activation of Rac1 and Cdc42 (21).In the animal and plant kingdoms, therefore, the signaling events mediated by NAEs appear to be involved in many physiological processes that have been extensively studied. The genes encoding the enzymes involved in the synthesis (from NAPEs) and the degradation of NAEs have been cloned and characterized. By contrast, little is known about the physiological roles of NAPEs or about the first step of this lipid signaling pathway, namely the N-acylation of PE to form NAPEs. In animals, the synthesis of NAPEs is catalyzed by an N-acyltransferase, where the O-linked acyl unit from a phospholipid donor is transferred to the ethanolamine headgroup of PE (22). Recently, a rat LRAT-like protein 1 or RLP1 was shown to display such an activity, but according to the authors, RLP-1 can function as a PE N-acyltransferase, catalytically distinguishable from the known Ca2+-dependent N-acyltransferase (23). However, a different situation is observed in plants. NAPE synthase activity was shown to directly acylate PE with free fatty acids (24, 25), but a gene encoding a NAPE synthase activity remained unidentified until now. The present work shows that the A. thaliana acyltransferase At1g78690p catalyzes the synthesis of NAPEs from PE and acyl-CoAs in vitro as well as in vivo when this enzyme is expressed in E. coli and overexpressed in plants.  相似文献   

13.
14.
15.
Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk.  相似文献   

16.
Ammonia production and assimilation1 were examined in photorespiratory mutants of Arabidopsis thaliana L. lacking ferredoxin-dependent glutamate synthase (Fd-GluS) activity. Although photosynthesis was rapidly inhibited in these mutants in normal air, NH4+ continued to accumulate. The accumulation of NH4+ was also seen after an initial lag of 30 minutes in 2% O2, 350 microliters per liter of CO2 and after 90 minutes in 2% O2, 900 microliters per liter of CO2. The accumulation of NH4+ in normal air and low O2 was also associated with an increase in the total pool of amino acid-N and glutamine, and a decrease in the pools of glutamate, aspartate, alanine, and serine. Upon return to dark conditions, or to 21% O2, 1% CO2 in the light, the NH4+ which had accumulated in the leaves was reassimilated into amino acids. The addition of methionine sulfoximine (MSO) resulted in higher accumulations of NH4+ in glutamate synthase mutants and prevented the reassimilation of NH4+ upon return to the dark. The addition of MSO also resulted in the accumulation of NH4+ in glutamate synthase mutants in the light and in 21% O2, 1% CO2. These results indicate that glutamine synthetase is essential for the reassimilation of photorespiratory NH4+ and for primary N assimilation in the leaves and strongly suggest that glutamate dehydrogenase plays only a minimal role in the assimilation of ammonia. Levels of NADH-dependent glutamate synthase (NADH-GluS) appear to be sufficient to account for the assimilation of NH4+ by a GS/NADH-GluS cycle.  相似文献   

17.
The present study was carried out to analyze the dihydrodipicolinate synthase (dhdps) gene promoter activity by tracing the GUS expression in tissues and in organs of Arabidopsis thaliana by in planta transformation. The Agrobacterium construct pBI101 used in the studies consists of the reporter gene gus under the control of Arabidopsis thaliana dhdps promoter with 3’ nos controlling sequences and nptll gene under the control of nos promoter and nos terminator. GUS expression in transformed Arabidopsis thaliana was found to be cell type-specific and expressed mainly in the fast growing tissues, where the protein synthesis is high. The histochemical analysis results indicate that the GUS expression was mainly observed in root meristem (elongation zone), emerging lateral roots and in the leaf vascular tissues. In reproductive organs, the GUS expression was observed in anthers, pollen grains and young immature embryos. Southern blot analysis results of T2, progeny showed the presence of a single integration locus for both the nptll and dhdps promoter.The segregation analysis results showed that the kanamycin resistance gene has not followed the normal Mendelian inheritance.This might be due to the methylation of the nptll gene in some of the transformants.  相似文献   

18.
This study evaluated the feasibility of transgenic Arabidopsis engineered to express the bacterial heavy metal transporter MerC for the phytoremediation of mercury pollution. MerC, MerC–SYP121, or MerC–AtVAM3 proteins were found to be expressed in leaf segments of transgenic plants using an anti-MerC antibody immunostaining method. By sucrose density gradient centrifugation and immunoblotting analyses, MerC, MerC–SYP121, and MerC–AtVAM3 were found to localized in the Golgi apparatus, plasma membrane, and vacuole membrane, respectively. Transgenic Arabidopsis plants that expressed merC–SYP121 were more resistant to mercury and accumulated significantly more of this metal than wild-type Arabidopsis. These results demonstrated that expression of the bacterial heavy metal transporter MerC promoted the transport and accumulation of mercury in transgenic Arabidopsis, which may be a useful method for improving plants for the phytoremediation of mercury pollution.  相似文献   

19.
拟南芥花粉细胞质游离钙离子荧光测定法   总被引:3,自引:0,他引:3  
以拟南芥花粉为材料,利用低温装载法在完整的花粉粒中,成功地载入酯化形式的钙离子荧光探针Fura-2/AM。利用荧光比率分析法对花粉细胞质中游离钙离子的分布特点进行研究并测定了花粉细胞内游离钙离子浓度。结果表明花粉萌发初期细胞质内游离钙离子呈极性分布,萌发沟附近的钙离子浓度明显高于其它部位,萌发孔附近最高,花粉细胞核中最低。花粉粒细胞萌发状态下的[Ca2 ]i=246±38nmol/L,该值与花粉粒细胞萌发状态下游离钙离子浓度用其它方法测得值接近,进一步表明所建立的用Fura-2/AM检测拟南芥花粉粒细胞质游离钙离子的方法是可靠的。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号